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Abbreviations

• OWF = one-way function (family/collection)

• OWP = one-way permutation (family/collection)

• TDP = trapdoor one-way permutation

• PRG = pseudorandom generator

• PRF = pseudorandom function

• PRP = pseudorandom permutation

• TBC = tweakable block cipher

• UOWHF = universal one-way hash function (family/collection)

• CRHF = collision resistant hash function (family/collection)

• ES = (private-key) encryption scheme

• PKES = public-key encryption scheme

• MAC = message authentication code

• DSS = digital signature scheme

• DLP = discrete logarithm problem



Exercise 1 True/False each 1P=6P

Points are rewarded as follows:

• Correct answer: 1P

• Incorrect answer: -1P

• No answer: 0P

The final number of points is the total if positive, otherwise zero.

true false

The one-time-pad ES is CPA-secure.
� �

For a perfectly secret ES with message spaceM and key space
K, |K| ≥ |M| has to hold.

� �

If PRGs exist, then P 6= NP.
� �

No deterministic (stateless) ES can be CCA-secure.
� �

You have seen in the lecture how to construct a family of CRHFs
based on the assumption that the DLP is hard relative to any
DLP-generator.

� �

Let F be a PRP of key and block length n. Then Tk[t](x) :=
Ft(x)⊕ k is a secure TBC.

� �

Solution: Explanation:

(a) The one-time-pad ES is deterministic, so it can never be CPA-secure.

(b) Mentioned in the slides.

(c) From PRGs, we can built a comp. secret ES which implies existence of OWF and, subsequently, that
P 6= NP.

(d) See the slides.

(e) The construction in the slides was only defined for GenGSP (as it requires the used group to be of
prime order/a field so that the linear equation can always be solved).

(f) Eve can compute Ft(x) herself as she knows x, t which means that from a single oracle query she can
obtain k.





Exercise 2 “One-liners” 1P each = 10P

Give a short (one line) answer/explanation using the results from the lecture and the exercises.

(1P) : Summarize Kerckhoff’s main principle.

Answer : The ES method must not be required to be secret, and it must be able to fall into
the hands of the enemy without inconvenience.

(1P) : State the four main goals of cryptography.

Answer : Privacy, Integrity, Authentication, Non-repudiation.

(1P) : Roughly spoken, the computational Diffie-Hellman problem requires Eve to ...

Answer : compute gab given (G, q, g, ga, gb).

(1P) : Based on which requirement on the DLP-generator GenG can the El Gamal PKES
be proven CPA-secure?

Answer : The DDH needs to be hard relative to GenG.

(1P) : State the name of a DSS based on the RSA-TDP which can be proven secure in the
random oracle model.

Answer : RSA-PSS or RSA-FDH (full-domain hashing using a KDF).





(1P) : Let h : {0, 1}l × {0, 1}l → {0, 1}l be a compression function, and HIV the hash
function obtained from h using the Merkle-Damg̊ard construction with IV as the
intialization vector. Construct from h a MAC using the NMAC construction.
It suffices to define Mac.

Answer : Macki,ko(m) := h(ko, Hki(m)).

(1P) : SHA-1 is not considered collision-resistant anymore, but NMAC instantiated with
SHA-1 may still be considered a secure MAC - based on which assumption?

Answer : Holds if we assume that the compression function underlying SHA-1 is a PRF.

(1P) : Briefly describe a decision procedure to solve the DDH in prime order groups of the
form 〈Z∗p, ·, 1〉 in DPT with non-negligible probability.

Given (p, p− 1, g, ga, gb, z) ...

Answer : Eve assumes z = gab mod p iff z
p−1
2 = 1 (iff z is a square).

(1P) : Assume Alice and Bob use an RSA-based PKES with NA resp. NB Alice’s resp. Bob’s
modulus. Assume that NA and NB are products of two odd primes with NA 6= NB.
Show that PPT-Eve can decrypt any message sent to Alice or Bob if gcd(NA, NB) > 1.

Answer : Using Euclid’s algorithm, Eve efficiently obtains the common prime factor t :=
gcd(NA, NB) which allows her to factorize the moduli.

(1P) : Name one type of attack not covered by the definition of secure MAC scheme.

Answer : Replay attack (or man-in-the-middle or side channel or ...).





Exercise 3 3P

Draw a graph with nodes

{OWP,PRG,PRP,CPA-secure ES, secure DSS,CCA-secure PKES,TDP}

and edges A→ B if it was mentioned in the lecture that the existence of A implies the existence of B.

Remark : Say that two nodes are equivalent if A→ B and B → A. Feel free to combine equivalent nodes
into a single node but state explicitly which nodes are combined into one.

Solution: Required edges: (for marking, we considered the transitive closure of your graph)

TDP → CCA-secure PKES

TDP → OWP

OWP → REST

CCA-secure PKES → REST

REST = PRG, PRP, CPA-secure ES, secure DSS (all equivalent to existence of OWFs)





Exercise 4 6P

Let F be a PRF (not necessarily a PRP) of key and block length n

(a) (2P) Construct from F a CPA-secure ES Ef = (Genf ,Encf ,Decf ) for messages of fixed length l(n) = n
(based on the assumption that F is a PRF).

(b) i) (1P) Construct from Ef (not from F ) a CPA-secure ES E with admissible message space
({0, 1}n)+ (based on the assumption that Ef is CPA-secure). Here, it suffices to define Enck(m).

ii) (1P) Assuming that Ef is CCA-secure, does your construction guarantee that E is also CCA-
secure? (y/n)

(c) i) (1P) Name two modes of operations which can be used to construct from F directly a CPA-secure
ES with admissible message space ({0, 1}n)+ (based on the assumption that F is a PRF).

ii) (1P) State two advantages of these modes compared to the two-step construction of (a) and (b).

Remarks :

• If you use constructions not mentioned in the lecture nodes (slides), then you need to show that your
constructions indeed have the required properties.

• ({0, 1}n)+ = {m ∈ {0, 1}+ | ∃k > 0 : |m| = k · n}.

Solution:

(a) Genf : on input 1n, outputs a k
u
∈ {0, 1}n.

Encf : on input k ∈ {0, 1}n, and m ∈ {0, 1}n, chooses ρ
u
∈ {0, 1}n and outputs (ρ, Fk(ρ)⊕m).

Decf : on input k ∈ {0, 1}n, and (ρ, c) ∈ {0, 1}2n, outputs c⊕ Fk(ρ).

(b) i) Enc: on input k ∈ {0, 1}n and m = m(1)m(2) . . .m(l) with n =
∣∣m(i)

∣∣,
outputs Encfk(m(1))Encfk(m(2)) . . .Encfk(m(l)).

(Note that the admissible message space was required to be ({0, 1}n)+. Padding with the length
of the message is not necessary (in fact wrong as it restricts the message space) as CPA-security
does not consider the case that Eve drops message blocks. This only matters for MACs.)

ii) No. (Not required: as Eve can simply permute the message blocks in order to be allowed to use
the decryption oracle.)

(c) i) As F is a PRF, but not a PRP, only rCTR and OFB are applicable.

ii) Advantages of both modes: only n random bits per message m instead of |m| random bits, and
ciphertext length |m|+ n instead of 2 |m|.
Other possible advantages: speed as the ciphertext is shorter





Exercise 5 7P

Let F be a PRF of key and block length n.

(a) (2P) Draw the two-round Feistel network Pk1,k2(x||y) := FNFk1
,Fk2

(x||y) based on F using two inde-

pendent round keys k1, k2
u
∈ {0, 1}n.

Remark : k1 should be the key that is used in the first round. x is the “left half” of the input, y is
the “right half”.

(b) i) (2P) Compute Pk1,k2(0
n||y) and Pk1,k2(Fk1(0

n)⊕ z||0n).

ii) (1P) Show that PPT-Eve can compute P−1k1,k2
when given oracle access to Pk1,k2 .

(c) (2P) Is FNFk1
,Fk2

,Fk3
with three independent keys k1, k2, k3

u
∈ {0, 1}n a PRP? Is it a PRF? (y/n)

Solution:

(a) See the slides for an illustration:

Result of first round: (y, Fk1(y)⊕ x).

Result of second round: (Fk1(y)⊕ x, Fk2(Fk1(y)⊕ x)⊕ y).

(b) i) Pk1,k2(0
n, y) = (Fk1(y), Fk2(Fk1(y))⊕ y).

Pk1,k2(Fk1(0
n)⊕ z, 0n) = (z, Fk2(z)).

ii) By the preceding result, Eve can compute Fk1 , Fk2 by quering her oracle at most twice. Any
Feistel network can be efficiently inverted if the round functions can be efficiently computed.

(Note that Eve is not given access to k so the important observation is that she can trick the
oracle into supplying the required information.)

(c) i) Yes (see the result regarding FNs in the slides).

ii) Yes (see the result that any PRP is also a PRF).





Exercise 6 6P

Let p = 5, q = 11, N = 55 and G = 〈Z∗55, ·, 1〉. For k ∈ N set πk(x) := xk mod N .

(a) (1P) Show that π3 is a permutation on G.

Remark : You have seen at least two conditions on k s.t. πk is a permutation.

(b) i) (2P) Determine, preferably the minimal, d ∈ N s.t. πd = π−13 .

ii) (1P) What algorithm can be used to determine d efficiently? State precisely what the algorithm
computes.

Remark: It doesn’t matter how you determine d (except for cheating). But you need to argue that
d is the inverse of π3.

(c) (2P) Compute π−13 (6) using the Chinese remainder theorem and Garner’s formula:

I−1(u, v) =
((

(u− v)(q−1 mod p)
)

mod p
)
· q + v

Remark : Please, make the steps of your computation visible to us.

Solution:

(a) It suffices to check that gcd(3, |G|) = 1 (more precisely gcd(3, λG) = 1). As |G| = φ(55) = 40, this
follows immediately.

(b) We can choose d ≡ 3−1 mod 40 or d ≡ 3−1 mod 20. In this case, d = 27 resp. d = 7 is quite easy to
see directly.

Check: 3d = 21 ≡ 1 (mod 20).

In general, using Euclid’s extended algorithm we can compute x, y ∈ Z in DPT s.t. gcd(a, b) = ax+by.

(c) u : 67 ≡ 17 ≡ 1 (mod 5) and v : 67 ≡ (36)3 · 6 ≡ 33 · 6 ≡ 8 (mod 11).

(For d = 27, note that you can reduce the exponent by the order of the resp. multiplicative group,
i.e., 4 resp. 10.)

Then: 11−1 ≡ 1−1 ≡ 1 (mod 5).

So: ((1− 8)1 mod 5) · 11 + 8 = 41.





Exercise 7 2P*

Let F be a PRF of block and key length n.

Define G : {0, 1}n → {0, 1}2n by G(k) := Fk(0n)Fk(0n−11).

Show formally that G is a PRG based on the assumption that F is a PRF.

Hint : Construct from a PPT-distinguisher DG for G a PPT-distinguisher DF for F .

Solution: DOF queries O on 0n and 0n−11 to obtain x and y. It then returns DG(xy).

IfO = OF , then xy = Fk(0n)Fk(0n−11) for some k
u
∈ {0, 1}n, i.e., Pr

[
DOF (1n) = 1

]
= Pr

k
u
∈{0,1}n

[DG(G(k)) = 1].

If O = OFunc, then z := xy
u
∈ {0, 1}2n as OFunc is queried on two distinct inputs. So, Pr

[
DOF (1n) = 1

]
=

Pr
z
u
∈{0,1}2n

[DG(z) = 1].

Hence, for the advantage εF of DF we obtain

εF (n) = Pr
[
DOF

F (1n) = 1
]
−Pr

[
DOFunc(1n) = 1

]
= Pr

k
u
∈{0,1}n

[DG(G(k)) = 1]−Pr
z
u
∈{0,1}2n

[DG(z) = 1] = εG(n)

with εG the advantage of DG.

As F is assumed to be a PRF, εF is negligible and, thus, εG, too.

As DG was chosen arbitrary, we obtain that G is a PRG.




