SOLUTION

Cryptography - Endterm

Last name:

First name:

Student ID no.:

Signature:

Code $\in\{A, \ldots, Z\}^{6}$:

- If you feel ill, let us know immediately.
- Please, do not write until told so. You are given approx. 10 minutes to read the exercises and address us in case of questions or problems.
- You will be given 90 minutes to fill in all the required information and write down your solutions.
- Only fill in a code if you agree that your results are published under this code on a webpage.
- Don't forget to sign.
- Write with a non-erasable pen, do not use red or green color.
- You are not allowed to use auxiliary means other than your pen and a simple calculator.
- You may answer in English or German.
- Please turn off your cell phone.
- Check that you have received 9 sheets of paper and, please, try to not destroy the binding.
- Write your solutions directly into the exam booklet.
- Should you require additional scrap paper, please tell us.
- You can obtain 40 points in the exam. You need 17 points in total to pass including potential bonuses awarded.
- See the next page for a list of abbreviations.
- Don't fill in the table below.
- Good luck!

Ex1	Ex2	Ex3	Ex4	Ex5	Ex6	Ex7	\sum

Abbreviations

- $\mathrm{OWF}=$ one-way function (family/collection)
- OWP = one-way permutation (family/collection)
- $\mathrm{TDP}=$ trapdoor one-way permutation
- PRG $=$ pseudorandom generator
- $\mathrm{PRF}=$ pseudorandom function
- $\operatorname{PRP}=$ pseudorandom permutation
- $\mathrm{TBC}=$ tweakable block cipher
- UOWHF = universal one-way hash function (family/collection)
- $\mathrm{CRHF}=$ collision resistant hash function (family/collection)
- $\mathrm{ES}=$ (private-key) encryption scheme
- PKES $=$ public-key encryption scheme
- MAC $=$ message authentication code
- $\operatorname{DSS}=$ digital signature scheme
- DLP $=$ discrete logarithm problem

Points are rewarded as follows:

- Correct answer: 1 P
- Incorrect answer: -1P
- No answer: 0P

The final number of points is the total if positive, otherwise zero.

	true	false
The one-time-pad ES is CPA-secure.	\square	\boxtimes
For a perfectly secret ES with message space \mathcal{M} and key space $\mathcal{K},\|\mathcal{K}\| \geq\|\mathcal{M}\|$ has to hold.	\boxtimes	\square
If PRGs exist, then $\mathbf{P} \neq \mathbf{N P}$.	\boxtimes	\square
No deterministic (stateless) ES can be CCA-secure.	\boxtimes	\square
You have seen in the lecture how to construct a family of CRHFs based on the assumption that the DLP is hard relative to any DLP-generator.	\square	\boxtimes
Let F be a PRP of key and block length n. Then $T_{k}[t](x):=$ $F_{t}(x) \oplus k$ is a secure TBC.	\square	\boxtimes

Solution: Explanation:
(a) The one-time-pad ES is deterministic, so it can never be CPA-secure.
(b) Mentioned in the slides.
(c) From PRGs, we can built a comp. secret ES which implies existence of OWF and, subsequently, that $\mathbf{P} \neq \mathbf{N P}$.
(d) See the slides.
(e) The construction in the slides was only defined for $\operatorname{Gen}_{\mathcal{S} \mathbb{S}}$ (as it requires the used group to be of prime order/a field so that the linear equation can always be solved).
(f) Eve can compute $F_{t}(x)$ herself as she knows x, t which means that from a single oracle query she can obtain k.

Give a short (one line) answer/explanation using the results from the lecture and the exercises.
(1P): Summarize Kerckhoff's main principle.

Answer: The ES method must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience.
(1P): State the four main goals of cryptography.

Answer: Privacy, Integrity, Authentication, Non-repudiation.
(1P): Roughly spoken, the computational Diffie-Hellman problem requires Eve to ...

Answer: compute $g^{a b}$ given $\left(\mathbb{G}, q, g, g^{a}, g^{b}\right)$.
(1P): Based on which requirement on the DLP-generator GenG can the El Gamal PKES be proven CPA-secure?

Answer: The DDH needs to be hard relative to Gen \mathcal{G}.
(1P): State the name of a DSS based on the RSA-TDP which can be proven secure in the random oracle model.

Answer: RSA-PSS or RSA-FDH (full-domain hashing using a KDF).
(1P): Let $h:\{0,1\}^{l} \times\{0,1\}^{l} \rightarrow\{0,1\}^{l}$ be a compression function, and $H_{\text {IV }}$ the hash function obtained from h using the Merkle-Damgård construction with IV as the intialization vector. Construct from h a MAC using the NMAC construction. It suffices to define Mac.

Answer: $\operatorname{Mac}_{k_{i}, k_{o}}(m):=h\left(k_{o}, H_{k_{i}}(m)\right)$.
(1P): SHA-1 is not considered collision-resistant anymore, but NMAC instantiated with SHA-1 may still be considered a secure MAC - based on which assumption?

Answer: Holds if we assume that the compression function underlying SHA-1 is a PRF.
(1P): Briefly describe a decision procedure to solve the DDH in prime order groups of the form $\left\langle\mathbb{Z}_{p}^{*}, \cdot, 1\right\rangle$ in DPT with non-negligible probability.
Given $\left(p, p-1, g, g^{a}, g^{b}, z\right) \ldots$

Answer: Eve assumes $z=g^{a b} \bmod p$ iff $z^{\frac{p-1}{2}}=1$ (iff z is a square).
(1P): Assume Alice and Bob use an RSA-based PKES with N_{A} resp. N_{B} Alice's resp. Bob's modulus. Assume that N_{A} and N_{B} are products of two odd primes with $N_{A} \neq N_{B}$. Show that ppt-Eve can decrypt any message sent to Alice or Bob if $\operatorname{gcd}\left(N_{A}, N_{B}\right)>1$.

Answer: Using Euclid's algorithm, Eve efficiently obtains the common prime factor $t:=$ $\operatorname{gcd}\left(N_{A}, N_{B}\right)$ which allows her to factorize the moduli.
(1P): Name one type of attack not covered by the definition of secure MAC scheme.

Answer: Replay attack (or man-in-the-middle or side channel or ...).

Draw a graph with nodes
\{OWP, PRG, PRP, CPA-secure ES, secure DSS, CCA-secure PKES, TDP\}
and edges $A \rightarrow B$ if it was mentioned in the lecture that the existence of A implies the existence of B. Remark: Say that two nodes are equivalent if $A \rightarrow B$ and $B \rightarrow A$. Feel free to combine equivalent nodes into a single node but state explicitly which nodes are combined into one.

Solution: Required edges: (for marking, we considered the transitive closure of your graph)
TDP \rightarrow CCA-secure PKES
TDP \rightarrow OWP
OWP \rightarrow REST
CCA-secure PKES \rightarrow REST
REST $=$ PRG, PRP, CPA-secure ES, secure DSS (all equivalent to existence of OWFs)

Let F be a PRF (not necessarily a PRP) of key and block length n
(a) (2P) Construct from F a CPA-secure ES $\mathcal{E}^{f}=\left(\operatorname{Gen}^{f}\right.$, Enc f, Dec $\left.^{f}\right)$ for messages of fixed length $l(n)=n$ (based on the assumption that F is a PRF).
(b) i) (1P) Construct from \mathcal{E}^{f} (not from F) a CPA-secure ES \mathcal{E} with admissible message space $\left(\{0,1\}^{n}\right)^{+}$(based on the assumption that \mathcal{E}^{f} is CPA-secure). Here, it suffices to define $\operatorname{Enc}_{k}(m)$.
ii) (1P) Assuming that \mathcal{E}^{f} is CCA-secure, does your construction guarantee that \mathcal{E} is also CCAsecure? (y / n)
(c) i) (1P) Name two modes of operations which can be used to construct from F directly a CPA-secure ES with admissible message space $\left(\{0,1\}^{n}\right)^{+}$(based on the assumption that F is a PRF).
ii) (1P) State two advantages of these modes compared to the two-step construction of (a) and (b).

Remarks:

- If you use constructions not mentioned in the lecture nodes (slides), then you need to show that your constructions indeed have the required properties.
- $\left(\{0,1\}^{n}\right)^{+}=\left\{m \in\{0,1\}^{+}|\exists k>0:|m|=k \cdot n\}\right.$.

Solution:

(a) Gen^{f} : on input 1^{n}, outputs a $k \stackrel{u}{\in}\{0,1\}^{n}$.

Enc ${ }^{f}$: on input $k \in\{0,1\}^{n}$, and $m \in\{0,1\}^{n}$, chooses $\rho \stackrel{u}{\in}\{0,1\}^{n}$ and outputs $\left(\rho, F_{k}(\rho) \oplus m\right)$.
Dec^{f} : on input $k \in\{0,1\}^{n}$, and $(\rho, c) \in\{0,1\}^{2 n}$, outputs $c \oplus F_{k}(\rho)$.
(b) i) Enc: on input $k \in\{0,1\}^{n}$ and $m=m^{(1)} m^{(2)} \ldots m^{(l)}$ with $n=\left|m^{(i)}\right|$, outputs $\operatorname{Enc}_{k}^{f}\left(m^{(1)}\right) \operatorname{Enc}_{k}^{f}\left(m^{(2)}\right) \ldots \operatorname{Enc}_{k}^{f}\left(m^{(l)}\right)$.
(Note that the admissible message space was required to be $\left(\{0,1\}^{n}\right)^{+}$. Padding with the length of the message is not necessary (in fact wrong as it restricts the message space) as CPA-security does not consider the case that Eve drops message blocks. This only matters for MACs.)
ii) No. (Not required: as Eve can simply permute the message blocks in order to be allowed to use the decryption oracle.)
(c) i) As F is a PRF, but not a PRP, only rCTR and OFB are applicable.
ii) Advantages of both modes: only n random bits per message m instead of $|m|$ random bits, and ciphertext length $|m|+n$ instead of $2|m|$.
Other possible advantages: speed as the ciphertext is shorter

Let F be a PRF of key and block length n.
(a) (2P) Draw the two-round Feistel network $P_{k_{1}, k_{2}}(x \| y):=\mathrm{FN}_{F_{k_{1}}, F_{k_{2}}}(x \| y)$ based on F using two independent round keys $k_{1}, k_{2} \stackrel{u}{\in}\{0,1\}^{n}$.
Remark: k_{1} should be the key that is used in the first round. x is the "left half" of the input, y is the "right half".
(b) i) (2P) Compute $P_{k_{1}, k_{2}}\left(0^{n} \| y\right)$ and $P_{k_{1}, k_{2}}\left(F_{k_{1}}\left(0^{n}\right) \oplus z \| 0^{n}\right)$.
ii) (1P) Show that PPT-Eve can compute $P_{k_{1}, k_{2}}^{-1}$ when given oracle access to $P_{k_{1}, k_{2}}$.
(c) $(2 \mathrm{P})$ Is $\mathrm{FN}_{F_{k_{1}}, F_{k_{2}}, F_{k_{3}}}$ with three independent keys $k_{1}, k_{2}, k_{3} \stackrel{u}{\in}\{0,1\}^{n}$ a PRP? Is it a PRF? (y/n)

Solution:

(a) See the slides for an illustration:

Result of first round: $\left(y, F_{k_{1}}(y) \oplus x\right)$.
Result of second round: $\left(F_{k_{1}}(y) \oplus x, F_{k_{2}}\left(F_{k_{1}}(y) \oplus x\right) \oplus y\right)$.
(b) i) $P_{k_{1}, k_{2}}\left(0^{n}, y\right)=\left(F_{k_{1}}(y), F_{k_{2}}\left(F_{k_{1}}(y)\right) \oplus y\right)$. $P_{k_{1}, k_{2}}\left(F_{k_{1}}\left(0^{n}\right) \oplus z, 0^{n}\right)=\left(z, F_{k_{2}}(z)\right)$.
ii) By the preceding result, Eve can compute $F_{k_{1}}, F_{k_{2}}$ by quering her oracle at most twice. Any Feistel network can be efficiently inverted if the round functions can be efficiently computed.
(Note that Eve is not given access to k so the important observation is that she can trick the oracle into supplying the required information.)
(c) i) Yes (see the result regarding FNs in the slides).
ii) Yes (see the result that any PRP is also a PRF).

Let $p=5, q=11, N=55$ and $\mathbb{G}=\left\langle\mathbb{Z}_{55}^{*}, \cdot, 1\right\rangle$. For $k \in \mathbb{N}$ set $\pi_{k}(x):=x^{k} \bmod N$.
(a) (1P) Show that π_{3} is a permutation on \mathbb{G}.

Remark: You have seen at least two conditions on k s.t. π_{k} is a permutation.
(b) i) (2P) Determine, preferably the minimal, $d \in \mathbb{N}$ s.t. $\pi_{d}=\pi_{3}^{-1}$.
ii) (1P) What algorithm can be used to determine d efficiently? State precisely what the algorithm computes.
Remark: It doesn't matter how you determine d (except for cheating). But you need to argue that d is the inverse of π_{3}.
(c) $(2 \mathrm{P})$ Compute $\pi_{3}^{-1}(6)$ using the Chinese remainder theorem and Garner's formula:

$$
I^{-1}(u, v)=\left(\left((u-v)\left(q^{-1} \bmod p\right)\right) \bmod p\right) \cdot q+v
$$

Remark: Please, make the steps of your computation visible to us.

Solution:

(a) It suffices to check that $\operatorname{gcd}(3,|\mathbb{G}|)=1$ (more precisely $\left.\operatorname{gcd}\left(3, \lambda_{\mathbb{G}}\right)=1\right)$. As $|\mathbb{G}|=\phi(55)=40$, this follows immediately.
(b) We can choose $d \equiv 3^{-1} \bmod 40$ or $d \equiv 3^{-1} \bmod 20$. In this case, $d=27$ resp. $d=7$ is quite easy to see directly.
Check: $3 d=21 \equiv 1(\bmod 20)$.
In general, using Euclid's extended algorithm we can compute $x, y \in \mathbb{Z}$ in DPT s.t. $\operatorname{gcd}(a, b)=a x+b y$.
(c) $u: 6^{7} \equiv 1^{7} \equiv 1(\bmod 5)$ and $v: 6^{7} \equiv(36)^{3} \cdot 6 \equiv 3^{3} \cdot 6 \equiv 8(\bmod 11)$.
(For $d=27$, note that you can reduce the exponent by the order of the resp. multiplicative group, i.e., 4 resp. 10.)

Then: $11^{-1} \equiv 1^{-1} \equiv 1(\bmod 5)$.
So: $((1-8) 1 \bmod 5) \cdot 11+8=41$.

Let F be a PRF of block and key length n.
Define $G:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ by $G(k):=F_{k}\left(0^{n}\right) F_{k}\left(0^{n-1} 1\right)$.
Show formally that G is a PRG based on the assumption that F is a PRF.
Hint: Construct from a PPT-distinguisher \mathcal{D}_{G} for G a PPT-distinguisher \mathcal{D}_{F} for F.

Solution: $\quad \mathcal{D}_{F}^{\mathcal{O}}$ queries \mathcal{O} on 0^{n} and $0^{n-1} 1$ to obtain x and y. It then returns $\mathcal{D}_{G}(x y)$.
If $\mathcal{O}=\mathcal{O}_{F}$, then $x y=F_{k}\left(0^{n}\right) F_{k}\left(0^{n-1} 1\right)$ for some $k \stackrel{u}{\in}\{0,1\}^{n}$, i.e., $\operatorname{Pr}\left[\mathcal{D}_{F}^{\mathcal{O}}\left(1^{n}\right)=1\right]=\operatorname{Pr}_{k \in\{0,1\}^{n}}\left[\mathcal{D}_{G}(G(k))=1\right]$.
If $\mathcal{O}=\mathcal{O}_{\text {Func }}$, then $z:=x y \stackrel{u}{\in}\{0,1\}^{2 n}$ as $\mathcal{O}_{\text {Func }}$ is queried on two distinct inputs. So, $\operatorname{Pr}\left[\mathcal{D}_{F}^{\mathcal{O}}\left(1^{n}\right)=1\right]=$ $\operatorname{Pr}_{z \in\{0,1\}^{2 n}}\left[\mathcal{D}_{G}(z)=1\right]$.
Hence, for the advantage ε_{F} of \mathcal{D}_{F} we obtain
$\varepsilon_{F}(n)=\operatorname{Pr}\left[\mathcal{D}_{F}^{\mathcal{O}_{F}}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{D}^{\mathcal{O}_{\text {Func }}}\left(1^{n}\right)=1\right]=\operatorname{Pr}_{k^{u} \in\{0,1\}^{n}}\left[\mathcal{D}_{G}(G(k))=1\right]-\operatorname{Pr}_{z \in\{0,1\}^{2 n}}\left[\mathcal{D}_{G}(z)=1\right]=\varepsilon_{G}(n)$
with ε_{G} the advantage of \mathcal{D}_{G}.
As F is assumed to be a PRF, ε_{F} is negligible and, thus, ε_{G}, too.
As \mathcal{D}_{G} was chosen arbitrary, we obtain that G is a PRG.

