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Lecture 1

Introduction



Agenda

• computational complexity and two problems
• your background and expectations
• organization
• basic concepts
• teaser
• summary



Computational Complexity

• quantifying the efficiency of computations
• not: computability, descriptive complexity, . . .
• computation: computing a function f : {0, 1}∗ → {0, 1}∗

• everything else matter of encoding
• model of computation?

• efficiency: how many resources used by computation
• time: number of basic operations with respect to input size
• space: memory usage



Dinner Party

Example (Dinner Party)

You want to throw a dinner party. You have a list of pairs of friends who do
not get along. What is the largest party you can throw such that you do not
invite any two who don’t get along?

person does not get along with
Jack James, John, Kate
James Jack, Hugo, Sayid
John Jack, Juliet, Sun
Kate Jack, Claire, Jin
Hugo James, Claire, Sun
Claire Hugo, Kate, Juliet
Juliet John, Sayid, Claire
Sun John, Hugo, Jin
Sayid James, Juliet, Jin
Jin Sayid, Sun, Kate

• largest party?
• naive computation

• check all sets of people for
compatibility

• number of subsets of n
element set is 2n

• intractable

• can we do better?
• observation: for a given set

compatibility checking is easy
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Map Coloring

Example (Map Coloring)

Can you color a map with three different colors, such that no pair of
adjacent countries has the same color. Countries are adjacent if they have
a non-zero length, shared border.

• naive algorithm: try all colorings
and check

• number of 3-colorings for n
countries: 3n

• can we do better?
• observation: for a given coloring

compatibilty checking is easy
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What about you?

• What do you expect?
• What do you already know about complexity?
• Immediate feedback



Organization

• lecture in English
• course website:
http://www7.in.tum.de/um/courses/complexity/SS19/

• concentrated into the first part of the semester, in 03.09.014
• (reserved slot Monday 14-16)
• Tuesday 10:05-11:35 and 12:25-13:55
• Wednesday 8:25-9:55
• Friday 12:05-13:35 and 14:00-15:30

• tutor: Mikhail Raskin
• weekly exercise sheets, not mandatory
• written or oral exam, depending on number of students
• bonus

• several mini-tests during lectures (un-announced, cover 2-4 lectures)
• self-assessment and feedback to us
• if C is ratio of correct answers, exam bonus computed by

d5C − 1e
2



Literature

• lecture based on Computational Complexity: A Modern Approach by
Sanjeev Arora and Boaz Barak

• book website:
http://www.cs.princeton.edu/theory/complexity/

• useful links plus freely available draft
• lecture is self-contained
• more recommended reading on course website, e.g. Introduction to

the Theory of Computation by Michael Sipser



Agenda

• computational complexity and two problems X
• your background and expectations X
• organization X
• basic concepts
• teaser
• summary



Prerequisites

• sets, relations, functions
• formal languages
• Turing machines
• graphs and algorithms on graphs
• little probability theory
• Landau symbols



Landau symbols

• characterize asymptotic behavior of functions (on integers, reals)
• ignore constant factors
• useful to talk about resource usage

• upper bound: f ∈ O(g) defined by
∃c > 0. ∃n0 > 0. ∀n > n0. f(n) ≤ c · g(n)

• dominated by: f ∈ o(g) defined by ∀ε > 0. ∃n0 > 0. ∀n > n0.
f(n)
g(n) < ε

• lower bound: f ∈ Ω(g) iff g ∈ O(f)

• tight bound: f ∈ Θ(g) iff f ∈ O(g) and f ∈ Ω(g)

• dominating: f ∈ ω(g) iff g ∈ o(f)
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Intractability

Polynomial

versus

Exponential

• computations using exponential time or space intractable for all but
the smallest inputs

• for a map with 200 countries: app. 2.66 · 1095 3-colorings
• atoms in the universe (wikipedia): 8 · 1080

• computational complexity: tractable vs. intractable
• tractable: problems with runtimes

⋃
p>0 O(np)

• intractable: problems with worse runtimes, e.g. 2Ω(n)

• independent of hardware



What about our examples?

• dinner party problem tractable?
• map coloring problem tractable?
• lower bounds on time/space consumption
• upper bounds on time/space consumption
• which is harder?



Dinner Party

person does not get along with
Jack James, John, Kate
James Jack, Hugo, Sayid
John Jack, Juliet, Sun
Kate Jack, Claire, Jin
Hugo James, Claire, Sun
Claire Hugo, Kate, Juliet
Juliet John, Sayid, Claire
Sun John, Hugo, Jin
Sayid James, Juliet, Jin
Jin Sayid, Sun, Kate

• really a graph problem
• each person a node, each relation an edge
• find a maximal set of nodes, such that no two nodes are adjacent
• the independent set problem: Indset
• probably not tractable, no algorithm better than naive one known
• here: maximal independent set of size 4
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Map Coloring

• really a graph problem
• each country a node, each border an edge
• color each node such that no two adjacent nodes have same color
• the three coloring problem: 3−Coloring
• probably not tractable, no algorithm better than naive one known
• here: answer is yes
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Bounds

• upper bounds
• time (naive algorithm): 2O(n) for n persons/countries
• space (naive algorith): O(np) for n persons/countries and a small p

• lower bounds
• very little known
• difficult because of infinitely many algorithms
• both problems could have a linear time and a logarithmic space

algorithm
• but not simultaneously
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Which is harder?

• instead of tight bounds say which problem is harder
• ⇒ reductions

IF there is an efficient procedure for B using a procedure for A

THEN B cannot be radically harder than A

notation: B ≤ A

Applications:
• IF • there is an efficient procedure for problem A and

• B ≤ A
THEN there is an efficient procedure for problem B

• IF • there is no efficient procedure for problem B and
• B ≤ A

THEN there is no efficient procedure for problem A
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3−Coloring ≤ Indset

How can we solve 3−Coloring using an algorithm to solve Indset?

• triplicate the original graph (V ,E) into (V × {1, 2, 3},E′) where

E′ ={((v , i), (w, i)) | (v ,w) ∈ E, i ∈ {1, 2, 3}}∪

{((v , i), (v , j)) | v ∈ V , i , j ∈ {1, 2, 3}}

efficient
• check whether there is an independent set of size |V |

assumed efficient

Need to ensure: procedure returns yes if and only if the graph is
3-colorable.
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Polynomial certificates: NP

• whole class of problems can be reduced to Indset
• all of them have polynomially checkable certificates
• characterizes (in)famous class NP
• all problems in NP reducible to Indset makes Indset NP-hard.
• 3−Coloring also NP-hard
• no polynomial-time algorithms known for NP-hard problems
• not all problems have polynomial certificates, e.g. winning strategy in

chess



Agenda

• computational complexity and two problems X
• your background and expectations X
• organization X
• basic concepts X
• teaser
• summary



Lots of things to explore

• precise definition of computational model and resources
• problems with polynomial time checkable certificates
• space classes
• approximations
• hierarchies (polynomial, time/space tradeoffs)
• randomization
• parallelism
• average case complexities
• probabilistically checkable proofs
• (quantum computing)
• (logical characterizations of complexity classes)
• a bag of proof techniques



What have we learnt?

• polynomial ∼ tractable; exponential ∼ intractable
• lower bounds hard to come by
• reductions key to establish relations among (classes of problems)
• NP: polynomially checkable certificates
• Indset ∈ NP, 3−Coloring ∈ NP



Complexity Theory

Jan Křetı́nský
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Summer 2019

May 9, 2019



Lecture 2

Turing Machines



Agenda

Formalize a model of computation!

• k -tape Turing machines
• robustness
• universal Turing machine
• computability, halting problem
• P



Which models of computation do you know?

• programming languages
• hardware
• biological/chemical systems
• primitive/µ-recursive functions/λ-calculus
• logic
• automata
• quantum computers
• paper and pencil

Turing machines!

Church-Turing Thesis: all models equally expressive
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TMs – illustrated
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k -tape Turing machines

• k scratchpad tapes, infinitely long, contain cells
• one input tape, read-only
• one output tape
• working tapes
• k heads positioned on individual cells for reading and writing

• finite control (finite set of rules)
• vocabulary, alphabet to write in cells
• actions: depending on

• symbols under heads
• control state

one can
• move heads (right, left, stay)
• write symbols into current cells



TMs – reading palindromes

TM for function pal : {0, 1}∗ → {0, 1} which outputs 1 for palindromes.

• copy input to work tape
• move input head to front, work tape head to end
• in each step

• compare input and work tape
• move input head right
• move work head left

• if whole input processed, output 1
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TMs – formally

Definition (k -tape Turing machine (syntax))

Turing machine is a triple (Γ,Q , δ) where
• Γ is a finite alphabet (tape symbols) comprising 0, 1, � (empty cell),

and B (start symbol)
• Q is finite set of states (control) containing qstart and qhalt

• δ : Q × Γk → Q × Γk−1 × {l, s, r}k , transition function such that
δ(qhalt , ~σ) = (qhalt , ~σ2..k , ~s).



TMs – formally

Definition (Computing a function and running time)

Let M be a k -tape TM and x ∈ (Γ \ {�,B})∗ an input. Let T : N→ N and
f : {0, 1}∗ → {0, 1}∗ be functions.

1. the start configuration of M on input x is Bx�ω on the input tape and
B�ω on the k − 1 other tapes; all heads are on B; and M is in state
qstart

2. if M is in state q and (σ1, . . . , σk ) are symbols being read, and
δ(q, (σ1, . . . , σk )) = (q′, (σ′2, . . . , σ

′
k ), ~z), then at the next step M is in

state q′, σi has been replaced by σ′i for i = 2..k and the heads have
moved left, stayed, or r ight according to ~z

3. M has halted if it gets to state qhalt

4. M computes f in time T if it halts on input x with f(x) on its output
tape and every x ∈ {0, 1}∗ requires at most T(|x |) steps.



Remarks on TM definition

• TMs are deterministic
• going left from B means staying
• item 4: consider time-constructible functions T only

• T(n) ≥ n and
• exists TM M computing T in time T

• TM define total functions



Agenda

• k -tape Turing machines X
• robustness
• universal Turing machine
• computability, halting problem
• P



Robustness

Definition of TM is robust, most choices do not change complexity classes.

• alphabet size (two is enough)
• number of tapes (one is enough)
• tape dimensions (one-directional tapes, bi-directional tapes,

two-dimensional tapes)
• random access TMs
• oblivious TMs

• see exercises
• head positions at i-th step of execution on input x depend only on |x |

and i

All variations can simulate each other with at most polynomial overhead in
running time.



Agenda

• k -tape Turing machines X
• robustness X
• universal Turing machine
• computability, halting problem
• P



Universal TM

• TMs can be represented as strings (over {0, 1}) by encoding their
transition function (can you?)
• write Mα for TM represented by string α
• every string α represents some TM
• every TM has infinitely many representations

• if TM M computes f , universal TMU takes representation α of TM M
and input x and computes f(x)

• like general purpose computer loaded with software
• like interpreter for a language written in same language
• U has bounded alphabet, rules, tapes; simulates much larger

machines efficiently



Efficient simulation

Theorem (Universal TM)

There exists a TMU such that for every x, α ∈ {0, 1}∗,U(x, α) = Mα(x). If
Mα holds on x within T steps, thenU(x, α) holds within O(T log T) steps.



Construction ofU
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Simulating another TM

How doesU execute TM M?

1. transform M into M′ with one input, one work, and one output tape
computing the same function quadratic overhead

2. write M′’s description α onto third tape |M′|

3. write encoding of M′ start state on fourth tape |Q ′|
4. for each step of M′

4.1 depending on state and tapes of M′ scan δ′ tape |δ′|

4.2 update constant

Simulation can be done with logarithmic slowdown using clever encoding
of k tapes in one.
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Deciding languages

• often one is interested in functions f : {0, 1}∗ → {0, 1}
• f can be identified with the language Lf = {x ∈ {0, 1}∗ | f(x) = 1}
• TM that computes f is said to decide Lf (and vice versa)



Halting Problem

There are languages that cannot be decided by any TM regardless time
and space.

Example

The halting problem is the set of pairs of TM representations and inputs,
such that the TMs eventually halt on the given input.

Halt = {〈α, x〉 | Mα halts on x}

Theorem
Halt is not decidable by any TM.

Proof: diagonalization and reduction



DTIME

Definition (DTIME)

Let T : N→ N be a function. L ⊆ {0, 1}∗ is in DTIME(T) if there exists a
TM deciding L in time T ′ for T ′ ∈ O(T).

• D refers to deterministic
• constants are ignored since TM can be sped up by arbitrary constants



P

Definition (P)

P =
⋃
c≥1

DTIME(nc)

• P captures tractable computations
• low-level choices of TM definitions are immaterial to P
• Connectivity,Primes ∈ P



What have we learnt?

• many equivalent ways to capture essence of computations
(Church-Turing)

• k -tape TMs
• TM can be represented as strings; universal TM can simulate any TM

given its representations with polynomial overhead only
• uncomputable functions do exist (halting problem): diagonalization

and reductions
• P robust wrt. tweaks in TM definition (universal simulation)
• P captures tractable computations, solvable by TMs in polynomial

time
• diagonalization, reduction
• up next: NP
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Lecture 3

Basic Complexity Classes



Agenda

• decision vs. search
• basic complexity classes

• time and space
• deterministic and non-deterministic

• sample problems



Decision vs. Search

Decision vs. Search

• often one is interested in functions f : {0, 1}∗ → {0, 1}
• f can be identified with the language Lf = {x ∈ {0, 1}∗ | f(x) = 1}
• TM that computes f is said to decide Lf (and vice versa)

Example (Indset)

Consider the independent set problem.

Search What is the largest independent set of a graph?

Decision Indset = {〈G, k 〉 | G has independent set of size k }

Often decision plus binary search can solve search problems.



Decision vs. Search

Agenda

• decision vs. search X
• basic complexity classes

• time and space
• deterministic and non-deterministic

• sample problems



Basic Complexity Classes Time

Time complexity

Definition (DTIME)

Let T : N→ N be a function. L ⊆ {0, 1}∗ is in DTIME(T) if there exists a
TM deciding L in time T ′ for T ′ ∈ O(T).

• D refers to deterministic
• constants are ignored since TM can be sped up by arbitrary constants



Basic Complexity Classes Space

Space complexity

Definition (SPACE)

Let S : N→ N and L ⊆ {0, 1}∗. Define L ∈ SPACE(S) iff
• there exists a TM M deciding L
• no more than S′(n) locations on M’s work tapes ever visited during

computations on every input of length n for S′ ∈ O(S)



Basic Complexity Classes Space

Remarks

• more detailed definition (cf. exercises): count non-� symbols, where
� must not be written

• constants do not matter
• as for time complexity, require space-constructible bounds

• S is space-constructible: there is TM M computing S(|x |) in O(S(|x |))
space on input x

• TM knows its bounds

• work tape restrictions: allows to store input
• space bounds < n make sense (as opposed to time)
• require space log n to remember positions in input



Basic Complexity Classes NDTM

Non-deterministic TMs

Definition (NDTM)

A non-deterministic TM (NDTM) is a triple (Γ,Q , δ) like a deterministic TM
except
• Q contains a distinguished state qaccept

• δ is a pair (δ0, δ1) of transition functions

• in each step, NDTM non-deterministically chooses to apply either δ0

or δ1

• NDTM M accepts x, M(x) = 1 if there exists a sequence of choices
s.t. M reaches qaccept

• M(x) = 0 if every sequence of choices makes M halt without
reaching qaccept



Basic Complexity Classes NDTM

On non-determinism

• not supposed to model realistic devices
• remember impact of non-determinism finite state machines,

pushdown automata
• NDTM compute the same functions as DTM (why?)
• non-determinism ∼ guessing

Non-deterministic complexity
Define NTIME(T) and NSPACE(S) such that T and S are bounds
regardless of non-deterministic choices.



Basic Complexity Classes Definitions

Basic complexity classes

deterministic non-deterministic
time

P =
⋃

p≥1 DTIME(np) NP =
⋃

p≥1 NTIME(np)

EXP =
⋃

p≥1 DTIME(2np
) NEXP =

⋃
p≥1 NTIME(2np

)

space

L = SPACE(log n) NL = NSPACE(log n)

PSPACE =
⋃

p>0 SPACE(np) NPSPACE =
⋃

p>0 NSPACE(np)



Basic Complexity Classes Definitions

Agenda

• decision vs. search X
• basic complexity classes X

• time and space
• deterministic and non-deterministic

• sample problems



Basic Complexity Classes Examples

Interesting examples

Most examples are the hardest within a given complexity class. They are
complete for the class (wrt suitable reductions).

L: essentially constant number of pointers into input plus logarithmically
many boolean flags
• UPath = {〈G, s, t〉 | ∃a path from s to t in undirected graph G}

[Reingold 2004]
• Even = {x | x has an even number of 1s}

NL: L plus guessing, read-once certificates
• Path = {〈G, s, t〉 | ∃a path from s to t in directed graph G}
• 2SAT = {ϕ |
ϕ satisfiable Boolean formula in CNF with two literals per clause }
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Basic Complexity Classes Examples

Interesting examples

P: polynomial time, tractable, low-level choices of TM definitions are
immaterial to P
• Circuit − Eval = {〈C , x〉 | C is a n− in/1−out circuit, xsatisfying signals}
• Primes = {x | x prime} [AKS 2004]
• many graph problems like DFS and BFS

NP: polynomially verifiable certificates, puzzles
• Indset = {〈G, k 〉 | G has an independent set of size k }
• 3−Coloring = {G | G is 3-colorable}
• 3SAT = {ϕ | ϕ satisfiable Boolean formula in CNF with three literals per

clause }

PSPACE: polynomial space, games, for instance
TQBF = {Q1x1 . . .Qk xkϕ | k ≥ 0,Qi ∈ {∀,∃}, ϕ Boolean formula over
xi such that whole formula is true }

EXP: exponential-time, for instance the language
Haltk = {〈M, x, k 〉 | DTM M stops on input x within k steps }
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Basic Complexity Classes Complements

Complements

Definition (Complement classes)

Let C ⊆ P({0, 1}∗) be a complexity class. We define coC = {L | L ∈ C} to
be the complement class of C, where L = {0, 1}∗ \ L is the complement of
L .

• important class coNP
• coNP is not the complement of NP
• example: Tautology ∈ coNP, where a tautology is Boolean formula

that is true for every assignment
• reminder: closure under complement wrt expressiveness and

conciseness
• finite state machines
• pushdown automata
• DTM, NDTM

• note: P ⊆ NP ∩ coNP



Basic Complexity Classes Complements

Agenda

• universal Turing machine X
• decision vs. search X
• computability, halting problem X
• basic complexity classes X



Basic Complexity Classes Complements

Relation between classes

NL

P
NP ∩ coNP

NPcoNP

PSPACE = NPSPACE

EXP

L



Basic Complexity Classes Complements

Teaser

A regular expression over {0, 1} is defined by

r ::= 0 | 1 | rr | r |r | r∗

The language defined by r is written L(r).

What is the computational complexity of

• deciding whether two regular expressions are equivalent, that is
L(r1) = L(r2)?

• deciding whether a regular expression is universal, that is
L(r) = {0, 1}∗?

• deciding the same for star-free regular expressions?



Summary

What have we learnt?

• TM can be represented as strings; universal TM can simulate any TM
given its representations with polynomial overhead only

• uncomputable functions do exist (halting problem): diagonalization
and reductions

• non-deterministic TMs
• space, time, deterministic, non-deterministic, complement complexity

classes
• L, NL, P, NP, EXP, PSPACE
• 2SAT, 3SAT, Path, UPath, TQBF, Primes, Indset, 3−Coloring
• big picture
• up next: justify and explore the big picture
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Lecture 4

NP-completeness



Recap: relations between classes

NL

P
NP ∩ coNP

NPcoNP

PSPACE = NPSPACE

EXP

L



Agenda

• efficiently checkable certificates
• reductions, hardness, completeness
• Cook-Levin: 3SAT is NP-complete



Certificates

NP: efficiently checkable certificates

NP computable with NDTM in polynomial time.

Theorem (Certificates)

For every L ⊆ {0, 1}∗ holds: L ∈ NP if and only if there exists a polynomial
p : N→ N and a polynomial-time TM M such that for every x ∈ {0, 1}∗

x ∈ L ⇔ ∃u ∈ {0, 1}p(|x |). M(x, u) = 1

• M is called verifier
• u is called certificate

Proof:

⇒ certificate is sequence of choices

⇐ NDTM guesses certificate
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Certificates

Examples

• Indset: certificate is set of nodes, size of certificate for k nodes in
graph with n nodes O(k log n)

• 0/1−ILP: given a list of m linear inequalities with rational coefficients
over variables x1, . . . , xk ; find out if there is an assignment of 0s and
1s to xi satisfying all inequalities; certificate is assignment.

• Iso: given two n × n adjacency matrices; do they define isomorphic
graphs; certificate is a permutation π : [n]→ [n]



Certificates

Agenda

• efficiently checkable certificates X
• reductions, hardness, completeness
• Cook-Levin: 3SAT is NP-complete



Completeness

Reductions – reminder

IF there is an efficient procedure for B
using a procedure for A (as an efficient black box)

THEN B cannot be radically harder than A

notation: B ≤ A

(reduction does not make anything smaller)

We have seen (at least) two reductions.
• 3−Coloring was reduced to Indset
• the diagonalized, undecidable language reduced to Halt



Completeness

Reductions – definition

Definition (Karp reduction)

Let L , L ′ ⊆ {0, 1}∗ be languages. L is polynomial-time Karp reducible to L ′

iff there exists a polynomial-time computable funtion f : {0, 1}∗ → {0, 1}∗

such that for all x ∈ {0, 1}∗

x ∈ L ⇔ f(x) ∈ L ′

We write L ≤p L ′.

Note: ≤p is a transitive relation on languages (because the composition of
polynomials is a polynomial).
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Completeness

Hardness and Completeness

Definition (NP-hardness and -completness)

Let L ⊆ {0, 1}∗ be a language.
• L is NP-hard if L ′ ≤p L for every L ′ ∈ NP
• L is NP-complete if L is NP-hard and L ∈ NP.

Examples of NP-hard languages: Indset, Haltk, Halt

Observation

• L NP-hard and L ∈ P implies P = NP
• L NP-complete implies L ∈ P iff P = NP
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Hardness and Completeness

Definition (NP-hardness and -completness)
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Cook-Levin

Do NP-complete languages exist?

• upcoming result independently discovered by Cook (1971) and Levin
(1973)

• uses notion of satisfiable Boolean formulas
• Boolean formula ϕ over variables X = {x1, . . . , xk } defined by

ϕ ::= x | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

• write x instead of ¬x, x and x literals u
• assume formulas are in CNF:

ϕ =
∧

i

∨
j

uij

• disjunctions
∨

j uij called clauses
• formula is in k -CNF if the no clause has more than k literals



Cook-Levin

Cook-Levin Theorem

• ϕ is satisfiable iff there exists an assignments a : X → {0, 1} making ϕ
true

• 3SAT = {ϕ | ϕ in 3-CNF and satisfiable}

Theorem
3SAT is NP-complete.



Cook-Levin

Proof agenda

1. SAT is NP-complete (without restriction to clauses of size three)
1.1 SAT, 3SAT ∈ NP
1.2 for every L ∈ NP L ≤p SAT

2. Show that SAT ≤p 3SAT



Summary

What have we learnt?

• NP is polynomial certificates
• Karp reductions, hardness, completeness
• Cook-Levin: reduce any language in NP to 3SAT
• up next: the proof, more NP-complete problems, P vs. NP, tool

demos
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Lecture 5

NP-completeness (2)



Cook-Levin

Agenda

• Cook-Levin
• SAT demo
• see old friends

• 0/1−ILP
• Indset
• 3−Coloring



Cook-Levin

Cook-Levin: 3SAT is NP-complete

• 3SAT ∈ NP

• the assignement forms a polynomial certificate

• 3SAT is NP-hard
• choose L ∈ NP arbitrary, L ⊆ {0, 1}∗
• find reduction f from L to 3SAT

• ∀x ∈ {0, 1}∗: x ∈ L ⇔ f(x) ∈ 3SAT i.e. ϕx is satisfiable
• f is polynomial time computable
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Cook-Levin

TMs for L and f

L ∈ NP iff there exists a TM M that runs in time T and there is a
polynomial p such that

∀x ∈ L ∃u ∈ {0, 1}p(|x |) M(x, u) = 1⇔ x ∈ L

Assumptions
• fix n ∈ N and x ∈ {0, 1}n arbitrary
• m = n + p(n)

• M = (Γ,Q , δ)

• M is oblivious
• M has two tapes
• define TM Mf that takes M, T , p, x and outputs ϕx
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Cook-Levin

Mf exploits obliviousness

1. simulate M on 0n+p(n) for T(n + p(n)) steps

2. for each 1 ≤ i ≤ T(n + p(n)) store
• inputpos(i): position of input head after i steps
• prev(i): previous step when work head was here (default 1)

3. compute and output ϕx

It does all this in time polynomial in n!
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Cook-Levin

Variables of ϕx

• “input variables” y1, . . . , yn, yn+1, . . . yn+p(n)

• to encode the read-only input tape
• y1, . . . , yn determined by x
• yn+1, . . . yn+p(n) will be certificate

• “computation variables”
z1 z2 . . . zc−1 zc

zc+1 zc+2 . . . z2c−1 z2c
...

...
zc(T(m)−1)+1 zcT(m)

• each row a snapshot
• needs c − 2 bits to encode state q (independent of x)

and 2 bits for the symbols read

• ϕx means “computation on the input is accepting”
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Cook-Levin

Snapshot si = 〈q, 0, 1〉

• state of M at step i, input and work symbol currently read

Accepting computation of M on 〈x, u〉 is a sequence of T(m) snapshots
such that

• first snapshot s1 is 〈qstart ,B,B〉

• last snapshot sT(m) has state qhalt and ouputs 1
• si+1 computed correctly from

• δ
• si

• yinputpos(i+1)

• sprev(i+1)
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Cook-Levin

ϕx = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4

1. relate x and y1, . . . , ym:
∧

1≤i≤n xi = yi , where
x = y ⇔ (x ∨ y) ∧ (x ∨ y)

→ size 4n

2. relate z1, . . . , zc with 〈qstart ,B,B〉

→ size O(c) (CNF, independent of |x |)

3. relate zc(T(m)−1)+1, . . . , zcT(m) with accepting snapshot
→ analogous

4. relate zci+1, . . . , zc(i+1) (snapshot si+1) with
• zc(i−1)+1, . . . , zci−2 (state of snapshot si)
• yinputpos(i+1)

• zc·prev(i) (next work tape symbol, from snapshot sprev(i))
• CNF formula over 2c variables, size O(c22c)

Polynomial in n!
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Stop!

• |ϕx | polynomial in n
• if ϕx is satisfiable, the satisfying assignment yields certificate

yn+1, . . . yn+p(n)

• if a certificate exists in {0, 1}p(n), we get a satisfying assignment
• Mf can output ϕx in polynomial time

⇒ reduction

• but: not to 3SAT
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From CNF to 3CNF

As a last polynomial step, Mf applies the following transformation for each
clause

u1 ∨ u2 ∨ . . . ∨ uk

{

(u1 ∨ u2 ∨ x1)
∧ (x1 ∨ u3 ∨ x2)
∧ (x2 ∨ u4 ∨ x3)
. . .
∧ (xk−2 ∨ uk−1 ∨ uk )

Each clause with k variables transformed into equivalent k − 2 3-clauses
with 2k − 2 variables. All xi fresh.
Example. x ∨ y ∨ z ∨ w becomes x ∨ y ∨ q and q ∨ z ∨ w.



Cook-Levin

From CNF to 3CNF

As a last polynomial step, Mf applies the following transformation for each
clause

u1 ∨ u2 ∨ . . . ∨ uk

{
(u1 ∨ u2 ∨ x1)

∧ (x1 ∨ u3 ∨ x2)

∧ (x2 ∨ u4 ∨ x3)
. . .
∧ (xk−2 ∨ uk−1 ∨ uk )

Each clause with k variables transformed into equivalent k − 2 3-clauses
with 2k − 2 variables. All xi fresh.
Example. x ∨ y ∨ z ∨ w becomes x ∨ y ∨ q and q ∨ z ∨ w.



Cook-Levin

From CNF to 3CNF

As a last polynomial step, Mf applies the following transformation for each
clause

u1 ∨ u2 ∨ . . . ∨ uk

{
(u1 ∨ u2 ∨ x1)

∧ (x1 ∨ u3 ∨ x2)
∧ (x2 ∨ u4 ∨ x3)

. . .
∧ (xk−2 ∨ uk−1 ∨ uk )

Each clause with k variables transformed into equivalent k − 2 3-clauses
with 2k − 2 variables. All xi fresh.
Example. x ∨ y ∨ z ∨ w becomes x ∨ y ∨ q and q ∨ z ∨ w.



Cook-Levin

From CNF to 3CNF

As a last polynomial step, Mf applies the following transformation for each
clause

u1 ∨ u2 ∨ . . . ∨ uk

{
(u1 ∨ u2 ∨ x1)

∧ (x1 ∨ u3 ∨ x2)
∧ (x2 ∨ u4 ∨ x3)
. . .
∧ (xk−2 ∨ uk−1 ∨ uk )

Each clause with k variables transformed into equivalent k − 2 3-clauses
with 2k − 2 variables. All xi fresh.
Example. x ∨ y ∨ z ∨ w becomes x ∨ y ∨ q and q ∨ z ∨ w.



Cook-Levin

From CNF to 3CNF

As a last polynomial step, Mf applies the following transformation for each
clause

u1 ∨ u2 ∨ . . . ∨ uk

{
(u1 ∨ u2 ∨ x1)

∧ (x1 ∨ u3 ∨ x2)
∧ (x2 ∨ u4 ∨ x3)
. . .
∧ (xk−2 ∨ uk−1 ∨ uk )

Each clause with k variables transformed into equivalent k − 2 3-clauses
with 2k − 2 variables. All xi fresh.

Example. x ∨ y ∨ z ∨ w becomes x ∨ y ∨ q and q ∨ z ∨ w.



Cook-Levin

From CNF to 3CNF

As a last polynomial step, Mf applies the following transformation for each
clause

u1 ∨ u2 ∨ . . . ∨ uk

{
(u1 ∨ u2 ∨ x1)

∧ (x1 ∨ u3 ∨ x2)
∧ (x2 ∨ u4 ∨ x3)
. . .
∧ (xk−2 ∨ uk−1 ∨ uk )

Each clause with k variables transformed into equivalent k − 2 3-clauses
with 2k − 2 variables. All xi fresh.
Example. x ∨ y ∨ z ∨ w becomes x ∨ y ∨ q and q ∨ z ∨ w.



Cook-Levin

What you need to remember

• for each L ∈ NP take TM M deciding L in polynomial time
• define TM Mf computing a reduction to formula ϕx for each input
• due to obliviousness Mf pre-computes head positions and every

computation takes time T(n + p(n)) steps
• and is a sequence of snapshots 〈q, 0, 1〉
• ϕ has four parts

• correct input x, u with u being the certificate
• correct starting snapshot
• correct halting snapshot
• how to go from si to si+1

• finally: CNF transformed to 3CNF



Cook-Levin

Agenda

• Cook-Levin X
• SAT demo
• see old friends

• 0/1−ILP
• Indset
• 3−Coloring



SAT

So 3SAT is intractable?

• if P , NP, no polynomial time algorithm for SAT
• contrapositive: if you find one, you prove P = NP
• every problem in NP solvable by exhaustive search for certificates
• which implies NP ⊆ PSPACE (try each possible re-using space)



SAT

SAT is easy!

• well-researched problem
• has its own conference
• 1000s of tools, academic and commercial
• extremely useful for modelling

• verification
• planning and scheduling
• AI
• games (Sudoku!)

• useful for reductions due to low combinatorial complexity
• satlive.org: solvers, jobs, competitions



SAT

Demo

• www.sat4j.org

• two termination problems from string/term-rewriting
• 10000s of variables, millions of clauses
• solvable in a few seconds!



SAT

Agenda

• Cook-Levin X
• SAT demo X
• see old friends

• 0/1−ILP
• Indset
• 3−Coloring



More NP-complete problems

More reductions from 3SAT

We will now describe reductions from 3SAT to
• 0/1−ILP: the set of satisfiable sets of integer linear programs with

boolean solutions
• Indset = {〈G, k 〉 | G has independent set of size at least k }
• 3−Coloring = {G | G is 3-colorable}

This establishes NP-hardness for all of the problems. Of course, they are
easily in NP as well, hence complete.



More NP-complete problems

3SAT ≤p 0/1−ILP

(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ w) ∧ (x ∨ y ∨ w)

x + (1 − y) + z ≥ 1
x + (1 − y) + (1 − z) ≥ 1
(1 − x) + (1 − y) + w ≥ 1
(1 − x) + y + (1 − w) ≥ 1

• f(x) = x
• f(x) = (1 − x)

• f(u1 ∨ . . . ∨ uk ) = f(u1) + . . . + f(uk ) ≥ 1
• linear reduction
• ϕ satisfiable iff f(ϕ) has boolean solution
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More NP-complete problems

3SAT ≤p Indset

• given: formula ϕ with m clauses of form Ci = ui1 ∨ ui2 ∨ ui3

• reduce to graph G = (V ,E), such that each clause gets a node per
satisfying assignment
• V = {Cai

i | a : vars(Ci)→ {0, 1},Ci holds under assignment ai}

• edges denote conflicting assignments
• E = {{Ca

i ,C
a′
i′ } | i, i

′ ∈ [m],∃x.a(x) , a′(x)}

• G has 7m nodes and O(m2) edges and can be computed in
polynomial time
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More NP-complete problems

3SAT ≤p Indset

• ϕ is satisfiable

⇒ exists assignment a : X → {0, 1} that makes ϕ true

⇒ a makes every clause true

⇒ {Ca |vars(i)
i | 1 ≤ i ≤ m} is an independent set of size m

• G has an independent set of size m

⇒ ind. set covers all clauses

⇒ ind. set yields composable, partial assignments per clause

⇒ ϕ is satisfiable
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More NP-complete problems

3SAT ≤p 3−Coloring

• given: formula ϕ with m clauses of form Ci = ui1 ∨ ui2 ∨ ui3

• reduce to graph G = (V ,E)

• V is the union of
• X ∪ X to capture assignments
• special nodes {u, v}
• one little house per clause with 5 nodes: {vij , ai , bi | i ∈ [m], j ∈ [3]}

• E comprised of
• edge {u, v}
• for each literal in each clause, a connection to the assignment graph:
{{uij , vij} | i ∈ [m], j ∈ [3]}

• house edges:
{{v , ai}, {v , bi}, {vi1, ai}, {vi1, bi}, {vi2, ai}, {vi3, bi}, {vi2, vi3} | i ∈ [m]}

• G has 2n + 5m + 2 nodes and O(m2) edges and can be computed in
polynomial time

• three colors: {red, true, false}
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More NP-complete problems

3SAT ≤p 3−Coloring

• ϕ is satisfiable,

⇒ there is an assignment a : X → {0, 1} that makes every clause true

⇒ coloring u red, v false, and x true iff a(x) = 1 leads to a correct
3-coloring

• G is 3-colorable
• wlog. assume u is red and v is false
• assume there is a clause j such that all literals are colored false

⇒ vj2 and vj3 are colored true and red

⇒ aj and bj are colored true and red

⇒ vj1 colored false, which is a contradiction, because it is connected to a
false literal
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More NP-complete problems

3SAT ≤p 3−Coloring

Alternatively:



Summary

What have you learnt?

• SAT is NP-complete
• SAT is practically feasible
• SAT has lots of academic and industrial applications
• SAT can be reduced to independent set, 3-coloring and boolean ILP,

which makes those NP-hard
• up next: coNP, Ladner
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Lecture 6

coNP



Agenda

• coNP
• the importance of P vs. NP vs. coNP
• neither in P nor NP-complete: Ladner’s theorem
• wrap-up Lecture 1-6



On coNP

coNP

• reminder: L ⊆ {0, 1}∗ ∈ coNP iff {0, 1}∗ \ L ∈ NP
• example: SAT contains

• not well-formed formulas
• unsatisfiable formulas

• does SAT have polynomial certificates?
• not known: open problem whether NP is closed under complement
• note that P is closed under complement, compare with NFA vs DFA

closure
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On coNP

For all certificates

• like for NP there is a characterization in terms of certificates
• for coNP it is dual: for all certificates
• 3SAT: to prove unsatifiability one must check all assignments, for

satisfiability only one

Theorem (coNP certificates)

A language L ⊆ {0, 1}∗ is in coNP iff there exists a polynomial p and a TM
M such that

∀x ∈ {0, 1}∗ x ∈ L ⇔ ∀u ∈ {0, 1}p(|x |) M(x, u) = 1
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On coNP

Completeness

• like for NP one can define coNP-hardness and completeness
• L is coNP-complete iff L ∈ coNP and all problems in coNP are

polynomial-time Karp-reducible to L
• classical example: Tautology = {ϕ |
ϕ is Boolean formula that is true for every assignment}

• example: x ∨ x ∈ Tautology
• proof?

• note that L is coNP-complete, if L is NP-complete
⇒ SAT is coNP-complete
⇒ Tautology is coNP-complete (reduction from SAT by negating formula)
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On coNP

Regular Expression Equivalence

xA regular expression over {0, 1} is defined by

r ::= 0 | 1 | rr | r |r | r ∩ r | r∗

The language defined by r is written L(r).

• let ϕ = C1 ∧ . . . ∧ Cm be a Boolean formula in 3CNF over variables
x1, . . . , xn

• compute from ϕ a regular expression: f(ϕ)=(α1|α2| . . . |αm)

• αi = γi1 . . . γin

• γij =


0 xj ∈ Ci

1 xj ∈ Ci

(0|1) otherwise

• example: (x ∨ y ∨ z) ∧ (y ∨ z ∨ w) transformed to (001(0|1)) |
(0|1)100)

• observe: ϕ is unsatisfiable iff f(ϕ) = {0, 1}n
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1 xj ∈ Ci
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• example: (x ∨ y ∨ z) ∧ (y ∨ z ∨ w) transformed to (001(0|1)) |
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On coNP

Regular expressions and computational complexity

• previous slide establishes: 3SAT≤pRegExpEq0

• that is: regular expression equivalence is coNP-hard

• it is coNP-complete for expressions without ∗,∩
• because one needs to check for all expressions of length n whether

they are included (test polynomial by NFA transformation)
• the problem becomes PSPACE-complete when ∗ is added
• the problem becomes EXP-complete when ∗,∩ is added
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On coNP

Agenda

• coNP X
• the importance of P vs. NP vs. coNP
• neither in P nor NP-complete: Ladner’s theorem
• wrap-up Lecture 1-6



P vs NP vs coNP

Open and known problems

OPEN
• P = NP?
• NP = coNP?

KNOWN
• if an NP-complete problem is in P, then P = NP
• P ⊆ coNP ∩ NP
• if L ∈ coNP and L NP-complete then NP = coNP
• if P = NP then P = NP = coNP
• if NP , coNP then P , NP
• if EXP , NEXP then P , NP (equalities scale up, inequalities scale

down – by padding)



P vs NP vs coNP

Open and known problems

OPEN
• P = NP?
• NP = coNP?

KNOWN
• if an NP-complete problem is in P, then P = NP
• P ⊆ coNP ∩ NP
• if L ∈ coNP and L NP-complete then NP = coNP
• if P = NP then P = NP = coNP
• if NP , coNP then P , NP
• if EXP , NEXP then P , NP (equalities scale up, inequalities scale

down – by padding)



P vs NP vs coNP

What if P = NP?

• one of the most important open problems
• computational utopia
• SAT has polynomial algorithm
• 1000s of other problems, too (due to reductions, completeness)
• finding solutions is as easy as verifying them
• guessing can be done deterministically
• decryption as easy as encryption
• randomization can be de-randomized



P vs NP vs coNP

What if NP = coNP

Problems have short certificates that don’t seem to have any!
• like tautology, unsatisfiability
• like unsatisfiable ILPs
• like regular expression equivalence



P vs NP vs coNP

How to cope with NP-complete problems?

• ignore (see SAT), it may still work
• modify your problem (2SAT, 2Coloring)
• NP-completeness talks about worst cases and exact solutions
→ try average cases
→ try approximations

• randomize
• explore special cases (TSP)



P vs NP vs coNP

In praise of reductions

• reductions help, when lower bounds are hard to come by
• reductions helped to prove NP-completeness for 1000s of natural

problems
• in fact, most natural problems (exceptions are Factoring and Iso) are

either in P or NP-complete
• but, unless P = NP, there exist such problems



P vs NP vs coNP

Agenda

• coNP X
• the importance of P vs. NP vs. coNP X
• neither in P nor NP-complete: Ladner’s theorem
• wrap-up Lecture 1-6



Ladner’s theorem

Ladner’s Theorem

P/NP intermediate languages exist!

Theorem (Ladner)

If P , NP then there exists a language L ⊆ NP \ P that is not NP-complete.



Ladner’s theorem

Proof

• let H : N→ N be a function
• define SATH to be

{ϕ01nH(n)
| ϕ ∈ SAT, n = |ϕ|}

Using the definition of SATH one can show

1. H(n) ∈ O(1)⇒ SATH < P

2. limn→∞ H(n) = ∞⇒ SATH is not NP-complete

For H(n) at most a constant, padding is polynomial and the SATH is
NP-complete, hence not in P.

If SATH is NP-complete, then there is a reduction from SAT to SATH in
time O(ni) for some constant. For large n it maps SAT instances ϕ to
SATH instances ψ01|ψ|

H(|ψ|)
of size |ψ|+ |ψ|H(|ψ|) = O(|ϕ|i). This implies

|ψ| ∈ o(|ϕ|) and by repeated application SAT ∈ P. Contradiction!
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Ladner’s theorem

Proof

Combine the approaches:
• define the function H and fix SATH

• H(n) is
• the smallest i < log log n such that
∀x ∈ {0, 1}∗ with |x | ≤ log n
Mi (the i-th TM) outputs SATH(x)
within i|x |i steps

• if no such i exists then H(n) = log log n

• if SATH(x) ∈ P, say computed in knk

then there is j > k such that Mi computes SATH(x)
hence for n > 22j

we have H(n) ≤ j
• H tends to ∞ since SATH(x) cannot be computed in P and each Mi

must be wrong on a long enough input
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Ladner’s theorem

Agenda

• coNP X
• the importance of P vs. NP vs. coNP X
• neither in P nor NP-complete: Ladner’s theorem X
• wrap-up Lecture 1-6



Wrap-up

What you should know by now

• deterministic TMs capture the inuitive notion of algorithms and
computability

• universal TM ∼ general-purpose computer or an interpreter
• some problems are not computable aka. undecidable, like the halting

problem
• this is proved by diagonalization
• complexity class P captures tractable problems
• P is robust under TM definition tweaks (tapes, alphabet size,

obliviousness, universal simulation)
• non-deterministic TMs can be simulated by TM in exponential time
• NP ∼ non-det. poly. time ∼ polynomially checkable certificates



Wrap-up

What you should know by now

• NP ∼ non-det. poly. time ∼ polynomially checkable certificates
• reductions allow to define hardness and completeness of problems
• complete problems are the hardest within a class, if they can be

solved efficiently the whole class can
• NP complete problems: 3SAT (by Cook-Levin); Indset, 3−Coloring,

ILP (by reduction from 3SAT)
• SAT is practically useful and feasible
• coNP complete problems: Tautology, star-free regular expression

equivalence
• probably there are problems neither in P nor NP-complete (Ladner)



Wrap-up

What’s next?

• space classes
• space and time hierarchy theorems
• generalization of NP and coNP: polynomial hierarchy
• probabilistic TMs, randomization
• complexity and proofs
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Lecture 7

Hierarchies



Agenda

• deterministic time hierarchy theorem
• non-deterministic time hierarchy theorem
• space hierarchy theorem
• relation between space and time



Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let f , g : N→ N be time-constructible such that f · log f ∈ o(g). Then
DTIME(f(n)) ⊂ DTIME(g(n)).

• inclusion is strict
• proof: diagonalization

• TM D simulates Mx on x for g(|x |)/ log(|x |) steps and flips any answer
• D runs in O(g)
• if computable by E = Mi in O(f) then D(i) , Mi(i) = E(i), contradiction

• logarithmic factor due to slowdown in universal simulation
• shows that P does not collapse to level k
• corollary: P ⊂ EXP



Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let f , g : N→ N be time-constructible such that f · log f ∈ o(g). Then
DTIME(f(n)) ⊂ DTIME(g(n)).

• inclusion is strict
• proof: diagonalization

• TM D simulates Mx on x for g(|x |)/ log(|x |) steps and flips any answer
• D runs in O(g)
• if computable by E = Mi in O(f) then D(i) , Mi(i) = E(i), contradiction

• logarithmic factor due to slowdown in universal simulation
• shows that P does not collapse to level k
• corollary: P ⊂ EXP



Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let f , g : N→ N be time-constructible such that f · log f ∈ o(g). Then
DTIME(f(n)) ⊂ DTIME(g(n)).

• inclusion is strict
• proof: diagonalization

• TM D simulates Mx on x for g(|x |)/ log(|x |) steps and flips any answer
• D runs in O(g)
• if computable by E = Mi in O(f) then D(i) , Mi(i) = E(i), contradiction

• logarithmic factor due to slowdown in universal simulation
• shows that P does not collapse to level k
• corollary: P ⊂ EXP



Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Let f , g : N→ N be time-constructible such that f(n + 1) ∈ o(g(n)). Then
NTIME(f(n)) ⊂ NTIME(g(n)).

• inclusion is strict
• proof by lazy diagonalization (see: AB Th. 3.2)
• note: proof of deterministic theorem does not carry over
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Space Hierarchy Theorem

Theorem (Space Hierarchy)

Let f , g : N→ N be space-constructible such that f ∈ o(g). Then
SPACE(f(n)) ⊂ SPACE(g(n)).

• inclusion is strict
• stronger theorem than corresponding time theorem

• universal TM for space-bounded computation incurs only constant
space overhead

• f , g can be logarithmic too

• proof analogous to deterministic time hierarchy
• corollary: L ⊂ PSPACE



Space Hierarchy Theorem

Theorem (Space Hierarchy)

Let f , g : N→ N be space-constructible such that f ∈ o(g). Then
SPACE(f(n)) ⊂ SPACE(g(n)).

• inclusion is strict
• stronger theorem than corresponding time theorem
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Agenda

• deterministic time hierarchy theorem X
• non-deterministic time hierarchy theorem X
• space hierarchy theorem X
• relation between space and time



Relation between time and space

Theorem (Time vs. Space)

Let s : N→ N be space-constructible. Then

DTIME(s(n)) ⊆ SPACE(s(n)) ⊆ NSPACE(s(n)) ⊆ DTIME(2O(s(n)))

• inclusions are non-strict
• first two are obvious
• third inclusion requires notion of configuration graphs

• first inclusion can be strengthened to DTIME(s(n)) ⊆ SPACE(
s(n)
log n )
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Configuration Graphs

Let M be a deterministic or non-deterministic TM using s(n) space. Let x
be some input.

• this induces a configuration graph G(M, x)

• nodes are configuration
• states
• content of work tapes

• edges are transitions (steps) that M can take
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Properties of configuration graph

• outdegree of G(M, x) is 1 if M is deterministic; 2 if M is
non-deterministic

• G(M, x) has at most |Q | · Γc·s(n) nodes (c some constant)
• which is in 2O(s(n))

• G(M, x) can be made to have unique source and sink
• acceptance ∼ existence of path from source to sink
• which can be checked in time O(G(M, x)) using BFS

⇒ NSPACE(s(n)) ⊆ DTIME(2O(s(n)))

⇒ DTIME(s(n)) ⊆ NTIME(s(n)) ⊆ SPACE(s(n))

• configurations include a counter over all possible choices
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Conclusion
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computational complexity of algorithms in Transactions of the
American Mathematical Society 117.

• non-det time hierarchy by Stephen Cook: A hierarchy for
nondeterministic time complexity in 4th annual ACM Symposium on
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Conclusion

Summary

• a lot of diagonalization
• Ladner: NP-intermediate languages exist
• f · log f ∈ o(g) implies DTIME(f(n)) ⊂ DTIME(g(n))

• f ∈ o(g) implies SPACE(f(n)) ⊂ SPACE(g(n))

• DTIME(f(n)) ⊆ SPACE(s(n)) ⊆ NSPACE(s(n)) ⊆ DTIME(2O(s(n)))
• P ⊂ EXP and L ⊂ PSPACE

Next time: PSPACE
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Lecture 8

PSPACE

2



Intro

Agenda

• succinctness

• QBF and GG

• PSPACE completeness

• QBF is PSPACE-complete

• Savitch’s theorem

3



Succinctness

Succinctness vs Expressiveness

Some intuition:

• 5 · 5 is more succinct than 5 + 5 + 5 + 5 + 5

⇒ multiplication allows for more succinct representation of
arithmetic expressions

• but it is not more expressive

regular expressions

• regular expressions with squaring are more succinct than
without

• example: strings over {1} with length divisible by 16
• ((((00)2)2)2)∗ versus
• (0000000000000000)∗

• but obviously squaring does not add expressiveness

4
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Succinctness

More succinct means more difficult to handle

Non-deterministic finite automata

• NFAs can be exponentially more succinct than DFAs

• but equally expressive

• example: k -last symbol is 1

• complementation, equivalence are polynomial for DFAs and
exponential for NFAs

5



Succinctness

Succinct Boolean formulas

Consider the following formula where ψ = x ∨ y ∨ z

(x ∧ y ∧ ψ)
∧ (x ∧ y ∧ ψ)
∧ (x ∧ y ∧ ψ)
∧ (x ∧ y ∧ ψ)

Formula is satisfiable iff ∃z ∀x ∀y.ψ is true, where variables range
over {0, 1}.

⇒ Quantified Boolean Formulas

6
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Problems in PSPACE QBF

Quantified Boolean Formulas

Definition (QBF)

A quantified Boolean formula is a formula of the form

Q1x1Q2x2 . . .Qnxnϕ(x1, . . . , xn)

• where each Qi ∈ {∀,∃}

• each xi ranges over {0, 1}

• ϕ is quantifier-free

• wlog we can assume prenex form
• formulas are closed, i.e. each QBF is true or false
• QBF = {ϕ | ϕ is a true QBF}
• if all Qi = ∃, we obtain SAT as a special case
• if all Qi = ∀, we obtain Tautology as a special case
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Problems in PSPACE QBF

QBF is in PSPACE

Polynomial space algorithm to decide QBF

qbfsolve(ψ)
if ψ is quantifier-free

return evaluation of ψ
if ψ = Qx.ψ′

if Q = ∃
if qbfsolve(ψ′[x 7→ 0]) return true
if qbfsolve(ψ′[x 7→ 1]) return true

if Q = ∀
b1 = qbfsolve(ψ′[x 7→ 0])
b2 = qbfsolve(ψ′[x 7→ 1])
return b1 ∧ b2

return false

• each recursive call can re-use same space!
• qbsolve uses at most O(|ψ|2) space
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Problems in PSPACE GG

Generalized Geography

• children’s game, where people take turn naming cities

• next city must start with previous city’s final letter

• as in München→ Nürnberg

• no repetitions

• lost if no more choices left

Formalization
Given a graph and a node, players take turns choosing an unvisited
adjacent node until no longer possible.

GG = {〈G, u〉 | player 1 has winning strategy from node u in G}
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Problems in PSPACE GG

GG ∈ PSPACE

and here is the algorithm to prove it:

ggsolve(G, u)
if u has no outgoing edge return false
remove u and its adjacent edges from G to obtain G′

for each ui adjacent to u
bi = ggsolve(G′, ui)

return
∨

i bi

• stack depth 1 for recursion implies polynomial space

• QBF ≤p GG
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Problems in PSPACE GG

Agenda

• succinctness X

• QBF and GG X

• PSPACE completeness

• QBF is PSPACE-complete

• Savitch’s theorem

11



PSPACE completeness

PSPACE-completness

Definition (PSPACE-completeness)

Language L is PSPACE-hard if for every L ′ ∈ PSPACE L ′ ≤p L . L
is PSPACE-complete if L ∈ PSPACE and L is PSPACE-hard.

12



PSPACE completeness

QBF is PSPACE-complete

Theorem
QBF is PSPACE-complete.

• have already shown that QBF ∈ PSPACE
• need to show that every problem L ∈ PSPACE is

polynomial-time reducible to QBF
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PSPACE completeness

Proof

• let L ∈ PSPACE arbitrary

• L ∈ SPACE(s(n)) for polynomial s

• m ∈ O(s(n)): bits needed to encode configuration C

• exists Boolean formula ϕM,x with size O(m) such that
ϕM,x(C ,C ′) = 1 iff C ,C ′ ∈ {0, 1}m encode adjacent
configurations; see Cook-Levin

• define QBF ψ such that ψ(C ,C ′) is true iff there is a path in
G(M, x) from C to C ′

• ψ(Cstart ,Caccept) is true iff M accepts x
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PSPACE completeness

Proof – cont’d

Define ψ inductively!

• ψi(C ,C ′): there is a path of length at most 2i from C to C ′

• ψ = ψm and ψ0 = ϕM,x

ψi(C ,C ′) = ∃C ′′.ψi−1(C ,C ′′) ∧ ψi−1(C ′′,C ′)

might be exponential size, therefore use equivalent

ψi(C ,C ′) = ∃C ′′.∀D1.∀D2.

((D1 = C ∧ D2 = C ′′) ∨ (D1 = C ′′ ∧ D2 = C ′))
⇒ ψi−1(D1,D2)
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PSPACE completeness

Size of ψ

ψi(C ,C ′) = ∃C ′′.∀D1.∀D2.

((D1 = C ∧ D2 = C ′′) ∨ (D1 = C ′′ ∧ D2 = C ′))
⇒ ψi−1(D1,D2)

• C ′′ stands for m variables

⇒ |ψi | = |ψi−1|+ O(m)

⇒ |ψ| ∈ O(m2)
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PSPACE completeness

Observations and consequences

• GG is PSPACE-complete

• if PSPACE , NP then QBF and GG have no short certificates

• note: proof does not make use of outdegree of G(M, x)

⇒ QBF is NPSPACE-complete

⇒ NPSPACE = PSPACE!

• in fact, the same reasoning can be used to prove a stronger
result

17



Savitch’s Theorem

Savitch’s Theorem

Theorem (Savitch)

For every space-constructible s : N→ N with s(n) ≥ log n
NSPACE(s(n)) ⊆ SPACE(s(n)2).

18



Savitch’s Theorem

Proof

Let M be a NDTM accepting L . Let G(M, x) be its configuration
graph of size m ∈ O(2s(n));
each node is represented using logm space.

M accepts x iff there is a path of length at most m from Cstart to
Caccept .

Consider the following algorithm reach(u,v,i) to determine whether
there is a path from u to v of length at most 2i .
• for each node z of M

• b1 = reach(u, z, i − 1)
• b2 = reach(z, v , i − 1)
• return b1 ∧ b2

⇒ reach(Cstart ,Caccept ,m) takes space O((logm)2) = O(s(n)2)
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Conclusion

Further Reading

• L. J. Stockmeyer and A. R. Meyer. Word problems requiring
exponential time. STOC, pages 1-9, 1973
• contains the original proof of PSPACE completeness of QBF
• PSPACE-completeness of NFA equivalence

• regular expression equivalence with squaring is
EXPSPACE-complete:
http://people.csail.mit.edu/meyer/rsq.pdf

• Gilbert, Lengauer, Tarjan The Pebbling Problem is Complete in
Polynomial Space. SIAM Journal on Computing, Volume 9,
Issue 3, 1980, pages 513-524.

• http://www.qbflib.org/
• tools (solvers)
• many QBF models from verification, games, planning
• competitions

• PSPACE-completeness of Hex, Atomix, Gobang, Chess
• W.J.Savitch Relationship between nondeterministic and

deterministic tape classes JCSS, 4, pp 177-192, 1970. 20



Conclusion

What have we learnt

• succinctness leads to more difficult problems
• PSPACE: computable in polynomial space (deterministically)
• PSPACE-completeness defined in terms of polynomial Karp

reductions
• canonical PSPACE-complete problem: QBF generalizes SAT
• other complete problems: generalized geography, chess, Hex,

Sokoban, Reversi, NFA equivalence, regular expressions
equivalence

• PSPACE ∼ winning strategies in games rather than short
certificates

• PSPACE = NPSPACE
• Savitch: non-deterministic space can be simulated by

deterministic space with quadratic overhead (by path
enumeration in configuration graph)

Up next: NL
21
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Lecture 9

NL
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Intro

Agenda

• about logarithmic space

• paths . . .

• . . . and the absence thereof

• Immerman-Szelepcsényi and others
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About logarithmic space

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of
• pointers into the input

• for instance node identities (graph problems)
• head positions

• counters up to input length

Examples:

• L: basic arithmetic

• NL: paths in graphs
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About logarithmic space

Technical issues

• space usage refers to work tapes only

• read-only input and write-once output is allowed to use more
than log n cells

• write-once: output head must not move to the left

• logspace reductions (because polynomial time-reductions too
powerful)

5



About logarithmic space

Logspace reductions

Definition (logspace reduction)

Let L , L ′ ⊆ {0, 1}∗ be languages. We say that L is
logspace-reducible to L ′, written L ≤log L ′ if there is a function
f : {0, 1}∗ → {0, 1}∗ computed by a deterministic TM using
logarithmic space such that x ∈ L ⇔ f(x) ∈ L ′ for every x ∈ {0, 1}∗.

• ≤log is transitive
• C ∈ L and B ≤log C implies B ∈ L

• Space does not bound time and output size: possibly
|f(w)| , O(log(|w |))

• Compute f(x) on demand: store only current symbol and its cell
number

• NL-hardness and NL-completeness defined in terms of
logspace reductions
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About logarithmic space

Read-once Certificates

Similar to NP, also NL has a characterization using certificates

Theorem (read-once certificates)

L ⊆ {0, 1}∗ is in NL iff there exists a det. logspace TM M (verifier)
and a polynomial p : N→ N such that for every x ∈ {0, 1}∗

x ∈ L iff ∃u ∈ {0, 1}p(|x |).M(x, u) = 1

Certificate u is written on an additional read-once input tape of M.

• example: path in a graph is a read-once certificate

⇒ certificate is sequence of choices

⇐ certificate is guessed bit-wise (it cannot be stored)
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Paths

Agenda

• about logarithmic space X

• paths . . .

• . . . and the absence thereof

• Immerman-Szelepcsényi and others

8



Paths Paths is NL-complete

NL is all about paths

Recall the language Path in directed graphs defined as

{〈G, s, t〉 | ∃a path from s to t in directed graph G}

We have seen in Lecture 3 that Path ∈ NL by guessing a path:

• non-deterministic walks on graphs of n nodes

• if there is a path, it has length ≤ n

• maintain one pointer to current node

• one counter counting up to n

In fact we even have:

Theorem (Path)

Path is NL-complete.
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Paths Paths is NL-complete

Proof

• let L ∈ NL be arbitrary, decided by NDTM M

• on input x ∈ {0, 1}n reduction f outputs configuration graph
G(M, x) of size 2O(log n) by counting to n

• there exists a path from Cstart to Caccept in G(M, x) iff M
accepts x

• path itself can be used as read-once certificate
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Paths Other path problems

More path problems

• many natural problems correspond to path (reachability)
problems

• the word problem for NFAs: {〈A ,w〉 | w is accepted by NFA A }

• cycle detection/connected components in directed graphs

• 2SAT ∈ NL

• x ∨ y equivalent to ¬x =⇒ y equivalent to ¬y =⇒ x
• yields an implication graph (computable in logspace)
• unsatisfiable iff there exists a path x → x → x in implication

graph for variable x
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Paths Certificates for absence of paths

Certificates for absence of paths?

• recall the open problem NP = coNP?

• equivalent to asking whether unsatisfiability has short
certificates

• possibly not

What about absence of paths from s to t in graph G with n nodes
named 1,. . . ,n?
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Paths Certificates for absence of paths

Absence of path has read-once cert.!

• let Ci be the set of nodes reachable from s in at most i steps
(bounded reachability)

• membership in Ci has read-once certificates (paths)
• non-membership of v in Ci also has read-once certificates if
|Ci | is known

1. list all membership certificates for all u ∈ Ci sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Ci |

• non-membership in Ci is known given |Ci−1| (checking
neighbors in (3) as well)

• |Ci | = c can be certified given |Ci−1| using C0 = {s} as base
case

Certificate is certificate for non-membership in Cn!
Its size is polynomial in number of nodes and read-once!
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Paths Certificates for absence of paths

NL algorithm for PATH
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Paths Certificates for absence of paths

NL = coNL

We have just argued the existence of polynomial read-once
certificates for absence of paths.

Theorem (Immerman-Szelepcsényi)

NL = coNL.
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Conclusion

Further Reading

• paths in undirected graphs is in L
• Omer Reingold Undirected ST-Connectivity in Log-Space,

STOC 2005
• available from

http://www.wisdom.weizmann.ac.il/˜reingold/publications/sl.ps

• an alternative characterization of NL by reachability is at the
heart of descriptive complexity
• NL is first-order logic plus transitive closure
• Neil Immerman, Descriptive Complexity, Springer 1999.
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Conclusion

What have we learnt?

• space classes closed under complement
• so are context-sensitive language (see exercises)

• analogous results for time complexity unlikely

• space classes beyond logarithmic closed under
non-determinism

• NL is all about reachability

• 2SAT is in NL and thus also 2SAT (in fact, hard for NL)

• NL has polynomial read-once certificates

• logarithmic space ∼ constant number of pointers and counters

Up next: the polynomial hierarchy PH
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Jan Křetı́nský
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Lecture 10

The polynomial hierarchy PH

2



Intro

Agenda

• ExactIndset, MinEqDNF, and bounded QBF

• Σp
i , Πp

i , and PH
• properties of the polynomial hierarchy

• more examples

3



Intro

Exact independent set

Recall the independent set problem

Indset = {〈G, k 〉 | G has an independent set of size k }

which was shown to be NP-complete.

What about the variation

ExactIndset = {〈G, k 〉 | the largest independent set of G has size k }

One needs to show

1. there exists an independent set of size k and

2. all other independent set have size at most k

(1) is a ∃ certificate (as in NP) while (2) is a ∀ certificate (as in
coNP)!
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Intro

Minimizing Boolean formulas

Let DNF be disjunctive normal form and ≡ denote logic equivalence.

MinEqDNF = {〈ϕ, k 〉 | there is a DNF formula ψ

of size at most k s.t. ϕ ≡ ψ}

What about certificates for membership?

• there exists a formula ψ such that

• for all assignments ϕ and ψ evaluate to the same

What about MinEqDNF?
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Intro

Σp
2

Recall the certificate-based definitions of NP and coNP, where
q : N→ N is a polynomial, x ∈ {0, 1}∗ and M is a polynomial-time,
det. verifier.

NP x ∈ L iff ∃u ∈ {0, 1}q(|x |). M(x, u) = 1

coNP x ∈ L iff ∀u ∈ {0, 1}q(|x |). M(x, u) = 1

ExactIndset and MinEqDNF are in a class defined by

x ∈ L iff ∃u ∈ {0, 1}q(|x |).∀v ∈ {0, 1}q(|x |). M(x, u, v) = 1

This class is called Σp
2 .
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Intro

Bounded QBF

Another natural problem within Σp
2 is QBF with one alternation!

Σ2SAT = {∃ ~u1∀ ~u2.ϕ( ~u1, ~u2) | formula is true }

where ~ui denotes a finite sequence of Boolean variables.

Remarks

• in fact, Σ2SAT is complete for Σp
2

• more alternations lead to a whole hierarchy

• all of it is contained in PSPACE
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Intro

Agenda

• ExactIndset, MinEqDNF, and bounded QBF X

• Σp
i , Πp

i , and PH
• properties of the polynomial hierarchy

• more examples

8



Definition of PH

Definition

Definition (Polynomial Hierarchy)

For i ≥ 1, a language L ⊆ {0, 1}∗ is in Σp
i if there exists a

polynomial-time TM M and a polynomial q such that

x ∈ L
if and only if
∃u1 ∈ {0, 1}q(|x |).
∀u2 ∈ {0, 1}q(|x |).
. . .

Qiui ∈ {0, 1}q(|x |).
M(x, u1, u2, . . . , ui) = 1

where Qi is ∃ if i is odd and ∀ otherwise.

• the polynomial hierarchy is the set PH =
⋃

i≥1 Σ
p
i

• Πp
i = coΣp

i = {L | L ∈ Σp
i }
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Properties

Generalization of NP and coNP

• NP = Σp
1 and coNP = Πp

1

• Σp
i ⊆ Π

p
i+1 ⊆ Σ

p
i+2

• hence PH =
⋃

i≥1 Π
p
i

• PH ⊆ PSPACE
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Properties

Collapse

It is an open problem whether there is an i such that Σp
i = Σp

i+1.

This would imply that Σp
i = PH: the hierarchy collapses to the i-th

level.

Most researchers believe that the hierarchy does not collapse.

Theorem (Collapse)

• For every i ≥ 1, if Σp
i = Πp

i then PH = Σp
i

• If P = NP then PH = P, i.e. the hierarchy collapses to P.
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Properties

Completeness

For each level of the hierarchy completeness is defined in terms of
polynomial Karp reductions.

• if there exists a PH-complete language, then the hierarchy
collapses

• PH , PSPACE unless the hierarchy collapses

Theorem (bounded QBF)

For each i ≥ 1, ΣiSAT is Σp
i -complete, where ΣiSAT is the language

of true quantified Boolean formulas of the form

∃ ~u1∀ ~u2 . . .Qi ~ui .ϕ( ~u1, ~u1, . . . , ~ui)

12



Properties

Completeness

For each level of the hierarchy completeness is defined in terms of
polynomial Karp reductions.

• if there exists a PH-complete language, then the hierarchy
collapses

• PH , PSPACE unless the hierarchy collapses

Theorem (bounded QBF)

For each i ≥ 1, ΣiSAT is Σp
i -complete, where ΣiSAT is the language

of true quantified Boolean formulas of the form

∃ ~u1∀ ~u2 . . .Qi ~ui .ϕ( ~u1, ~u1, . . . , ~ui)

12



Properties

Completeness

For each level of the hierarchy completeness is defined in terms of
polynomial Karp reductions.

• if there exists a PH-complete language, then the hierarchy
collapses

• PH , PSPACE unless the hierarchy collapses

Theorem (bounded QBF)

For each i ≥ 1, ΣiSAT is Σp
i -complete, where ΣiSAT is the language

of true quantified Boolean formulas of the form

∃ ~u1∀ ~u2 . . .Qi ~ui .ϕ( ~u1, ~u1, . . . , ~ui)

12



Properties

Agenda

• ExactIndset, MinEqDNF, and bounded QBF X

• Σp
i , Πp

i , and PH X
• properties of the polynomial hierarchy X

• more examples
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Examples

Integer Expressions

An integer expression I is defined by the following BNF for binary
numbers ~b:

I ::= ~b | I + I | I ∪ I

The language L(I) ⊆ N is defined by

• L(~b) = {n} where n is the natural number represented by ~b

• L(I1 + I2) = {n1 + n2 | ni ∈ L(Ii)}

• L(I1 ∪ I2) = L(I1) ∪ L(I2)

Example: L(1 + (2 ∪ (3 + 4))) = {3, 8}

A set M ⊆ N is connected if for all x, z ∈ M and every x < y < z also
y ∈ M.

A component of M is a maximal connected subset of M.
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Examples

Integer Expressions

• membership of a number in the language of an integer
expression: NP-complete

• integer expression inequivalence: Σp
2-complete

• Does L(I) have a component of size at least k?: Σp
3-complete
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Examples

Regular Expressions

Consider regular expressions with union and concatentation only. In
addition, we define an interleaving operator on words

x1x2 . . . xk | y1y2 . . . yk

=
x1y1x2y2 . . . xk yk

where yi can be strings of arbitrary length.

Regular expression equivalence for star-free expressions with
interleaving is Πp

2-complete.
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Examples

Context-free languages

Consider context-free grammars defining unary languages.

• {〈G1,G2〉 | L(G1) , L(G2)} is Σp
2-complete

• note that for non-unary languages this problem is undecidable

17



Conclusion

Further Reading

Survey on complete problems for various levels of the hierarchy:

• Schaefer and Umans Completeness in the Polynomial-Time
Hierarchy — A Compendium

18



Conclusion

What have we learnt?

• the polynomial hierarchy is a natural generalization of NP and
coNP

• bounded alternation QBFs are complete problems for each
level of the hierarchy

• in the limit – unbounded alternations – the hierarchy
approaches PSPACE

• the hierarchy is widely believed not to collapse to any level
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Lecture 10–Part II

PH & co.

2



Oracles

Agenda

• oracles

• oracles and PH
• relativization and P vs. NP
• alternation and PH
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Oracles

Minimizing Boolean formulas

Let DNF be disjunctive normal form and ≡ denote logic equivalence.

MinEqDNF = {〈ϕ, k 〉 | there is a DNF formula ψ

of size at most k s.t. ϕ ≡ ψ}

Certificate for membership:

• there exists a formula ψ such that

• for all assignments ϕ and ψ evaluate to the same

Thus MinEqDNF ∈ Σp
2 .

What if we can check equivalence of formulae for free?
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Oracles

Oracle

Definition
An oracle is a language A .
An oracle Turing machine MA is a Turing machine that

1. has an extra oracle tape, and

2. can ask whther the string currently written on the oracle tape
belongs to A and in a single computation step gets the answer.

PA is a class of languages decidable by a polynomial-time oracle
Turing machine with an oracle A ; similarly NPA etc.

5



Oracles

Examples

• MinEqDNF ∈ NPSAT

• NP ⊆ PSAT

• coNP ⊆ PSAT since P and PSAT are deterministic classes and
thus closed under complement

• We often write classes instead of the complete languages, e.g.,
PNP = PSAT = PcoNP
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Oracles

Oracles and PH

Recall that

ΣiSAT = {∃ ~u1∀ ~u2 · · ·Q ~ui .ϕ( ~u1, . . . , ~ui) | formula is true }

is Σp
i -complete.

Theorem
For every i, Σp

i = NPΣi−1SAT = NPΣ
p
i−1 .

e.g. Σp
3 = NPNPNP

Proof
⊆: easy
⊇ (here for i=2, i.e. Σp

2 ⊇ NPSAT): Let ϕi denote the ith query
x ∈ L ⇐⇒ ∃c1, . . . , cm, a1, . . . , ak , u1, . . . , uk∀v1, . . . , vk such that
TM accepts x using choices c1, . . . , cm and answers a1, . . . , ak AND
∀i ∈ [k ] if ai = 1 then ϕi(ui) = 1 AND
∀i ∈ [k ] if ai = 0 then ϕi(vi) = 0

7
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p
i−1 .

e.g. Σp
3 = NPNPNP

Proof
⊆: easy
⊇ (here for i=2, i.e. Σp

2 ⊇ NPSAT): Let ϕi denote the ith query
x ∈ L ⇐⇒ ∃c1, . . . , cm, a1, . . . , ak , u1, . . . , uk∀v1, . . . , vk such that
TM accepts x using choices c1, . . . , cm and answers a1, . . . , ak AND
∀i ∈ [k ] if ai = 1 then ϕi(ui) = 1 AND
∀i ∈ [k ] if ai = 0 then ϕi(vi) = 0
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Oracles

Relativization and limits of diagonalization

• Diagonalization is based on simulation.

• Simulation-based proofs about TMs can be copied for oracle
TMs.

• If we can prove P = NP using only simulation,
we can also prove PA = NPA for all A .

• If we can prove P , NP using only simulation,
we can also prove PA , NPA for all A .

• But there exist oracles X and Y :
• PX , NPX (See Sipser p.378)
• PY = NPY (Proof: NPQBF ⊆ NPSPACE ⊆ PSPACE ⊆ PQBF)

• Diagonalization has its limits!
It is not sufficent to simulate computation,
we must analyze them→ e.g. cicuit complexity.
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Oracles

Agenda

• oracles X

• oracles and PH X
• relativization and P vs. NP X
• alternation and PH

9



Oracles

Alternation

Recall that

• Σ2SAT = {∃ ~u1∀ ~u2.ϕ( ~u1, ~u2) | formula is true } is
NPcoNP-complete

• SAT = {∃ ~u1.ϕ( ~u1) | formula is true } is NP-complete

• VAL = {∀ ~u1.ϕ( ~u1) | formula is true } is coNP-complete

• ∃ ∼ existential certificate ∼ there is an accepting computation

• ∀ ∼ universal certificate ∼ all computations are accepting
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Oracles

Alternation

Definition
An alternating Turing machine is a Turing machine where

• states are partitioned into existential (denoted ∃ or ∨) and
universal (denoted ∀ or ∧),

• configurations are labelled by the type of the current state,
• a configuration in the computation tree is accepting iff

• it is ∃ and some of its successors is accepting,
• it is ∀ and all its successors are accepting.

We define ATIME,ASPACE,AP,APSPACE etc. accordingly.
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Oracles

Alternation and PH

Let ΣiP denote the set of languages decidable by ATM

• running in polynomial time,

• with initial state being existential, and

• such that on every run there are at most i maximal blocks of
existential and of universal configurations.

Theorem
For all i, Σp

i = ΣiP.
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Oracles

Power of alternation

Theorem
For f(n) ≥ n, we have
ATIME(f(n)) ⊆ SPACE(f(n)) ⊆ ATIME(f2(n)).

For f(n) ≥ log n, we have
ASPACE(f(n)) = TIME(2O(f(n))).

Corollary:
L ⊆ AL = P ⊆ AP = PSPACE ⊆ APSPACE = EXP ⊆ AEXP · · ·

13



Oracles

Power of alternation

Theorem
For f(n) ≥ n, we have
ATIME(f(n)) ⊆ SPACE(f(n)) ⊆ ATIME(f2(n)).

For f(n) ≥ log n, we have
ASPACE(f(n)) = TIME(2O(f(n))).

Corollary:
L ⊆ AL = P ⊆ AP = PSPACE ⊆ APSPACE = EXP ⊆ AEXP · · ·

13



Oracles

Power of alternation: Proofs

• ATIME(f(n)) ⊆ SPACE(f(n))

DFS on the tree + remember only decisions (not configurations)

• SPACE(f(n)) ⊆ ATIME(f2(n))
like Savitch’s theorem

• ASPACE(f(n)) ⊆ TIME(2O(f(n)))
configuration graph + “attractor” construction

• ASPACE(f(n)) ⊇ TIME(2O(f(n)))
guess and check the tableaux of the computation
(+ halting state on the left)
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Oracles

Further Reading

Alternation

• for a survey on alternation see Chandra, Kozen, Stockmeyer
Alternation in Journal of the ACM 28(1), 1981.

• http://portal.acm.org/citation.cfm?id=322243
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Oracles

What have we learnt?

• the polynomial hierarchy can be defined in terms of certificates,
recursively by oracles, or by bounded alternation

• diagonalization/simulation proof techniques have their limits

• alternation seems to add power:
it moves us to the “next higher” class

Up next: time/space tradeoffs, TISP(f , g)
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Lecture 11

Lower Bounds for SAT

2



Intro

Agenda

• big picture

• TISP
• lower bound for satisfiability
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Intro

What is complexity all about?

• formalize the notion of computation

• resource consumption of computations

• depending on input size

• in the worst-case

• computing precise solutions

complexity classes
separation

lower bounds
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Intro

Satisfiability

We cannot rule out that SAT could be solved in

• linear time or

• logarithmic space

Situation similar for many NP-complete problems.

What about restricting time and space simultaneously?
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TISP

TISP

Definition (TISP)

Let S,T : N→ N be constructible functions. A language L ⊆ {0, 1}∗

is in the complexity class TISP(T(n),S(n)) if there exists a TM M
deciding L in time T(n) and space S(n).

Note: TISP(T(n),S(n)) , DTIME(T(n)) ∩ SPACE(S(n))

6



TISP

Agenda

• big picture X

• TISP X
• lower bound for satisfiability

• big picture
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TISP

Lower Bound for Satisfiability

Theorem
SAT < TISP(n1.1, n0.1).

In order to decide SAT we need

• either more than linear time

• or more than logarithmic space

• due to completeness this translates to any other problem in NP
• stronger results known (see further reading)
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TISP

Proof – Big Picture

Proof is by contradiction. So assume

0. SAT ∈ TISP(n1.1, n0.1)

1. This implies NTIME(n) ⊆ TISP(n1.2, n0.2)

2. This implies NTIME(n10) ⊆ TISP(n12, n02) by padding

3. 1. also implies NTIME(n) ⊆ DTIME(n1.2)

4. which implies Σ2TIME(n8) ⊆ NTIME(n9.6)

5. separately we can show TISP(n12, n2) ⊆ Σ2TIME(n8)

6. (2,4,5) together establish NTIME(n10) ⊆ NTIME(n9.6)
contradicting the non-deterministic time hierarchy theorem

9



TISP

Proof – Part 1

• can be proven by careful observation of the Cook-Levin
reduction.

• problem decided in NTIME(T(n)) can be formulated as
satisfiability problem of size T(n) log(T(n))

• every output bit of reduction computable in polylogarithmic time
and space

• hence if SAT ∈ TISP(n1.1, n0.1) then
NTIME(n) ⊆ TISP(n1.2, n0.2)

10



TISP

Proof – Part 2 (padding)

• let L ∈ NTIME(n10)

• define L ′ = {x1|x |
10
| x ∈ L}

• then L ′ ∈ NTIME(n)
• by part 1 of proof: L ′ ∈ TISP(n1.2, n0.2)

• thus L ∈ TISP(n12, n2)
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TISP

Proof – Part 3

By definition of TISP.
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TISP

Proof – Part 4

Definition
A language L is in Σ2TIME(n8) iff there exists a TM M running in
time O(n8) and constants c, d such that

x ∈ L iff ∃u ∈ {0, 1}c |x |
8
. ∀v ∈ {0, 1}d|x |

8
. M(x, u, v) = 1

• let L ∈ Σ2TIME(n8)

• define L ′ = {(x, u) | ∀v ∈ {0, 1}d|x |
8
. M(x, u, v) = 1}

• hence L ′ ∈ NTIME(n8)

• by premise we obtain L ′ ∈ DTIME(n1.2∗8) and also L ′

• since L = {x | ∃u ∈ {0, 1}c |x |
8
, (x, u) ∈ L ′} we obtain

L ∈ NTIME(n9.6)
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TISP

Proof – Part 5

• let L ∈ TISP(n12, n2)

• then there exists a TM M such that x ∈ {0, 1}n is accepted iff
there is a path of length n12 in the configuration graph from
Cstart to Caccept

• where each configuration takes space O(n2)

• this is the case iff
• there exist configurations C0, . . . ,Cn6 such that
• C0 = Cstart , Cn6 = Caccept
• for all 1 ≤ i ≤ n6 Ci+1 is reachable from Ci in n6 steps

• this implies L ∈ Σ2TIME(n8)

• which can be equivalently characterized using alternating TMs
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TISP

Agenda

• big picture X

• TISP X
• lower bound for satisfiability X
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Conclusion

Summary of today’s result

• SAT cannot be decided in linear time and, simultaneously,
logarithmic space

• neither can any other problem in NP
• lower bounds are hard
• nice combination of proof techniques

• padding
• reductions
• splitting paths in the configuration graph
• diagonalization
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Conclusion

Further Reading

• AB, Theorem 5.11

• original lower bound by Fortnow, Time-space tradeoffs for
satisfiability, CCC 1997.

• current record: SAT < TISP(nc , no(1)) for any c < 2 cos(π/7)

• by R. Williams Time-space tradeoffs for counting NP solutions
modulo integers, CCC 2007.
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Lecture 12–13

Randomization and Polynomial Time

“Realistic computation somewhere between P and NP”

2



Agenda

• Motivation: From NP to a more realistic class by randomization
• Choosing the certificate at random
• Error reduction by rerunning

• Randomized poly-time with one-sided error: RP, coRP,ZPP
• Power of randomization with two-sided error: PP,BPP

3



Recap P

Definition (P)

For every L ⊆ {0, 1}∗:
L ∈ P if there is a poly-time TM M such that for every x ∈ {0, 1}∗:

x ∈ L ⇔ M(x) = 1.

• “poly-time TM M”:
• M deterministic
• M outputs {0, 1}
• There is a polynomial T(n) s.t. M halts on every x within T(|x |) steps.

• Problems in P are deemed “tractable”.
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Recap NP

Theorem (Certificates)

For every L ⊆ {0, 1}∗:
L ∈ NP if and only if there exists a polynomial p : N→ N and a poly-time
TM M such that for every x ∈ {0, 1}∗

x ∈ L ⇔ ∃u ∈ {0, 1}p(|x |) : M(x, u) = 1

• Certificate u: satisfying assignment, independent set, 3-coloring, etc.
• NP captures the class of possibly (not) tractable computations:

• Don’t know how to compute u in poly-time, but
• if there is a u, then |u| is polynomial in |x |, and
• we can check in poly-time if a u is a certificate/solution.

• NDTMs can check all 2p(|x |) possible us in parallel.
• Seems unrealistic. Common conjecture: P , NP.
• Goal: Obtain from NP a more realistic class by randomization:

Choose u uniformly at random from {0, 1}p(|x |).
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Randomizing NP

Definition (Accept/Reject certificates and probabilities)

Fix some L ∈ NP decided by M using certificates u of length p(·):

AM,x := {u ∈ {0, 1}p(|x |) | M(x, u) = 1} and RM,x := {0, 1}p(|x |) \ AM,x .

• If we choose u ∈ {0, 1}p(|x |) uniformly at random:
• AM,x is the event that u “says accept x”.
• RM,x is the event that u “says reject x”.

Definition (Accept/Reject certificates and probabilities (cont’d))

Pr [AM,x ] :=
|AM,x |

2p(|x |)
and Pr [RM,x ] :=

|RM,x |

2p(|x |)
= 1 − Pr [AM,x ] .

L ∈ NP iff ∀x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [AM,x ] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x ] = 0.

6
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Randomizing NP: Example SAT

• Input: CNF-formula φ with n variables.
• Output: Choose truth assignment u ∈ {0, 1}n uniformly at random.

• If u satisfies φ, output yes, φ ∈ SAT.
• Else, output probably, φ < SAT.

• If output is yes, φ ∈ SAT, then we know φ ∈ SAT for sure.
• But what if output is probably, φ < SAT?

• Consider φ = x1 ∧ x2 ∧ . . . ∧ xn ∈ SAT:
• Probability of probably, φ < SAT: Pr [RM,x ] = 1 − 2−n

• Called false negative.

• If we run this algorithm r-times,
prob. of false negative decreases to: (1 − 2−n)r ≈ e−r/2n

.
• Exponential number r ∼ 2n required to reduce this to any tolerable

error bound like 1/4 or 1/10.
• Not that helpful as SAT ∈ EXP (zero prob. of false negative).
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Randomizing NP: Conclusion

• Not enough to only choose certificate u at random,
we need to require that Pr [AM,x ] is significantly larger than 2−p(|x |);
otherwise we’ll stay in NP.

• Goal:
Polynomial number r(|x |) of reruns should make prob. of false
negatives arbitrary small.

• This holds if Pr [AM,x ] ≥ n−k for some k > 0:

(1 − Pr [AM,x ])c |x |k+d

≥
(
1 − 1/|x |k

)c |x |k+d

≈ e−c |x |d

as limm→∞(1 − 1/m)m = e−1.
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Choosing the certificate at random X
• Error reduction by rerunning X

• Randomized poly-time with one-sided error: RP, coRP,ZPP
• Definitions
• Monte Carlo and Las Vegas algorithms
• Examples: ZEROP and perfect matchings

• Power of randomization with two-sided error: PP,BPP
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Definition of RP

Definition (Randomized P (RP))

L ∈ RP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [AM,x ] = 0.

• P ⊆ RP ⊆ NP
• coRP := {L | L ∈ RP}
• RP unchanged if we replace ≥ 3/4 by ≥ n−k or ≥ 1 − 2−nk

(k > 0).

• Realistic model of computation? How to obtain random bits?
• “Slightly random sources”: see e.g. Papadimitriou p. 261

• One-sided error probabiliy for RP:
• False negatives: if x ∈ L , then Pr [RM,x ] ≤ 1/4.
• If M(x, u) = 1, output x ∈ L ; else output probably, x < L
• Error reduction by rerunning a polynomial number of times.
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coRP, ZPP

Lemma (coRP)

L ∈ coRP if and only if there exists a polynomial p : N→ N and a
polynomial-time TM M(x, u) using certificates u of length |u| = p(|x |)
such that for every x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x ] = 1 and x < L ⇒ Pr [AM,x ] ≤ 1/4.

• One-sided error probability for coRP:
• False positives: if x < L , then Pr [AM,x ] ≤ 1/4.
• If M(x, u) = 1, output probably, x ∈ L ; else output x < L

Definition (“Zero Probability of Error”-P (ZPP))

ZPP := RP ∩ coRP

• If L ∈ ZPP, then we have both an RP- and a coRP-TM for L .
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP

• Definitions X
• Monte Carlo and Las Vegas algorithms
• Examples: ZEROP and perfect matchings

• Power of randomization with two-sided error: PP,BPP
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RP-algorithms

• Assume L ∈ RP decided by TM M(·, ·).
• Given input x:

• Choose u ∈ {0, 1}p(|x |) uniformly at random.
• Run M(x, u).
• If M(x, u) = 1, output: yes, x ∈ L .
• If M(x, u) = 0, output: probably, x < L .

• Called Monte Carlo algorithm.

• If we rerun this algorithm exactly k -times:
• If x ∈ L , probability that at least once yes, x ∈ L

≥ 1 − (1 − 3/4)k = 1 − 4−k

• but if x < L , we will never know for sure.
• Expected running time if we rerun till output yes, x ∈ L :

• If x ∈ L :
• Number of reruns geometrically distributed with success prob. ≥ 3/4, i.e.,
• the expected number of reruns is at most 4/3.
• Expected running time also polynomial.

• If x < L :
• We run forever.
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ZPP-algorithms

• Assume L ∈ ZPP.
• Then we have Monte Carlo algorithms for both x ∈ L and x ∈ L .
• Given x:

• Run both algorithms once.
• If both reply probably, then output don’t know.
• Otherwise forward the (unique) yes-reply.

• Called Las Vegas algorithm

• If we rerun this algorithm exactly k -times:
• If x ∈ L (x ∈ L ), probability that at least once yes, x ∈ L (yes, x ∈ L )

≥ 1 − (1 − 3/4)k = 1 − 4−k

• Expected running time if we rerun till output yes:
• In both cases expected number of reruns at most 4/3.
• So, randomized algorithm which decides L in expected polynomial

time.

• More on expected running time vs. exact running time later on.
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP

• Definitions X
• Monte Carlo and Las Vegas algorithms X
• Examples: ZEROP and perfect matchings

• Power of randomization with two-sided error: PP,BPP
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ZEROP

• Given: Multivariate polynomial p(x1, . . . , xk ), not necessarily
expanded, but evaluable in polynomial time.

• Wanted: Decide if p(x1, . . . , xk ) is the zero polynomial.

∣∣∣∣∣∣∣∣
0 y2 xy
z 0 y
0 yz xz


∣∣∣∣∣∣∣∣ = −y2(z · xz − 0) + xy(z · yz − 0) = −xy2z2 + xy2z2 = 0

• ZEROP := “All zero polynomials evaluable in polynomial time”.
• E.g. determinant: substitute values for variables, then use

Gauß-elemination.
• Not known to be in P.
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ZEROP

Lemma (cf. Papadimitriou p. 243)

Let p(x1, . . . , xk ) be a nonzero polynomial with each variable xi of degree
at most d. Then for M ∈ N:∣∣∣{(x1, . . . , xk ) ∈ {0, 1, . . . ,M − 1}k | p(x1, . . . , xk ) = 0}

∣∣∣ ≤ kdMk−1.

Let X1, . . . ,Xk be independent random variables, each uniformly
distributed on {0, 1, . . . ,M − 1}. Then for M = 4kd:

p < ZEROP⇒ Pr [p(X1, . . . ,Xk ) = 0] ≤
kdMk−1

Mk
=

kd
M

=
1
4
.

• So we can decide p ∈ ZEROP in coRP if
• we can evaluate p(·) in polynomial time, and
• d is polynomial in the representation of p.

• See Arora p. 130 for work around if d is exponential
• E.g. p(x) = (. . . ((x − 1)2)2 . . .)2.
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Perfect Matchings in Bipartite Graphs

• Given: bipartite graph G = (U,V ,E) with

|U| = |V | = n and E ⊆ U × V

• Wanted: M ⊆ E such that

∀(u, v), (u′, v ′) ∈ M : u , u′ ∧ v , v ′ (matching)

|M| = n (perfect)

• Problem is known to be solvable in time O(n5) (and better).
• So it is in RP.
• Still, some “easy” randomized algorithm relying on ZEROP.
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Perfect Matchings in Bipartite Graphs

• For bipartite graph G = (U,V ,E) define square matrix M:

Mij =

{
xij if (ui , vj) ∈ E
0 else .

• Output:
• “has perfect matching” if det(M) < ZEROP
• “might not have perfect matching” if det(M) ∈ ZEROP

u1

u2

u3

v1

v2

v3

∣∣∣∣∣∣∣∣
 0 x1,2 x1,3

x2,1 0 x2,3

0 x3,2 0


∣∣∣∣∣∣∣∣ = x1,3x2,1x3,2

• Relies on Leibniz formula: det M =
∑
σ∈Sn

sgn(σ)
∏n

i=1 Mi,σ(i).
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• “might not have perfect matching” if det(M) ∈ ZEROP

u1

u2

u3

v1

v2

v3

∣∣∣∣∣∣∣∣
 0 x1,2 x1,3

x2,1 0 x2,3

0 x3,2 0


∣∣∣∣∣∣∣∣ = x1,3x2,1x3,2

• Relies on Leibniz formula: det M =
∑
σ∈Sn

sgn(σ)
∏n

i=1 Mi,σ(i).
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• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X

• Definitions X
• Monte Carlo and Las Vegas algorithms X
• Examples: ZEROP and perfect matchings X

• Power of randomization with two-sided error: PP,BPP
• Enlarging RP by false negatives and false positives
• Comparison: NP,RP, coRP,ZPP,BPP,PP
• Probabilistic Turing machines
• Expected running time
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy
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Probability of error for both x ∈ L and x < L

• RP obtained from NP by
• choosing certificate u uniformly at random
• requiring a fixed fraction of accept-certificates if x ∈ L

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [AM,x ] = 0.

• RP-algorithms can only make errors for x ∈ L .

• By allowing both errors for both cases, can we obtain a class that is
• larger than RP,
• but still more realistic than NP?

• Assume we change the definition of RP to:

x ∈ L ⇔ Pr [AM,x ] ≥ 3/4.

• Two-sided error probabilities:
• False negatives: If x ∈ L : Pr [RM,x ] ≤ 1/4
• False positives: If x < L : Pr [AM,x ] < 3/4
• Outputs: probably, x ∈ L and probably, x < L
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Probabilistic Polynomial Time (PP)

Definition (PP)

L ∈ PP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇔ Pr [AM,x ] ≥ 3/4.

• RP ⊆ PP ⊆ EXP
• One can show:

• May replace ≥ by >.
• May replace 3/4 by 1/2.
• PP = coPP

• PP: “x ∈ L iff x is accepted by a majority”
• If x < L , then x is not accepted by a majority (, a majority rejects x!)

• Next: PP is at least as untractable as NP.
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NP ⊆ PP

Theorem

NP ⊆ PP

• Assume TM M(x, u) for L ∈ NP uses certificates u of length p(|x |).
• Consider TM N(x,w) with |w | = p(|x |) + 2:

• If w = 00u, define N(x,w) := M(x, u).
• Else N(x,w) = 1 iff w , 11 . . . 1.

• Choose w uniformly on {0, 1}p(|x |)+2 at random:
• If x ∈ L : Pr [AN,x ] ≥

3/4 − 2−p(|x |)−2 + 2−p(|x |)−2 = 3/4

• If x < L : Pr [AN,x ] =

3/4 − 2−p(|x |)−2 < 3/4
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“Bounded probability of error”-P (BPP)

• By the previous result:
• PP does not seem to capture realistic computation.

• Proof relied on the dependency of the two error bounds:
• We traded one-sided error probability

x ∈ L ⇒ Pr [AM,x ] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x ] = 0

for two-sided error probability

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [AM,x ] < 3/4

by adding enough accept-certificates, i.e.,

• we increased the probability for false positives,
• while decreasing the probability for false negatives.

• Possible fix:
• Require bounds on both error probabilities.
• “Bounded error probability of error”-P
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BPP

Definition (BPP)

L ∈ BPP if there exists a polynomial p : N→ N and a polynomial-time
TM M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [RM,x ] ≥ 3/4.

• RP ⊆ BPP = coBPP ⊆ PP
• Reminder: if L ∈ PP, then x < L ⇒ Pr [AM,x ] < 3/4.

• Two-sided error probabilities:
• False negatives: If x ∈ L , then Pr [RM,x ] ≤ 1/4.
• False positives: If x < L , then Pr [AM,x ] ≤ 1/4.
• Outputs: probably, x ∈ L and probably, x < L .
• Error reduction to 2−n by rerunning (later).

• It is unknown whether BPP = NP or even BPP = P!
• Under some non-trivial but “very reasonable” assumptions: BPP = P!

• BPP = “most comprehensive, yet plausible notion of realistic
computation” (Papadimitriou p. 259)
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PP
• Probabilistic Turing machines
• Expected running time
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy
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NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ NP:
• if x ∈ L : at least one
• if x < L : all
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• if x ∈ L : no
• if x < L : no
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PP X
• Probabilistic Turing machines
• Expected running time
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy
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Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM M = (Γ,Q , δ1, δ2) a probabilistic TM (PTM) by
choosing in every computation step the transition function uniformly at
random, i.e., any given run of M on x of length exactly l occurs with
probability 2−l .
A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.
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A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.

Corollary

L ∈ RP iff there is a poly-time PTM M s.t. for all x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 1] = 0.
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A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.

Corollary

L ∈ coRP iff there is a poly-time PTM M s.t. for all x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] = 1 and x < L ⇒ Pr [M(x) = 1] ≤ 1/4.
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Expected vs. Exact Running Time

• Recall: if L ∈ ZPP
• RP-algorithms for L and L .
• Rerun both algorithms on x until one outputs yes.
• This decides L in expected polynomial time.
• But might run infinitely long in the worst case.

• So, is expected time more powerful than exact time?
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Expected Running Time

Definition (Expected running time of a PTM)

For a PTM M let TM,x be the random variable that counts the steps of a
computation of M on x, i.e., Pr [TM,x ≤ t] is the probability that M halts on
x within at most t steps.
We say that M runs in expected time T(n) if E [TM,x ] ≤ T(|x |) for every x.

• Possibly infinite runs.
• So, certificates would need to be unbounded.

Definition (BPeP)

A language L is in BPeP if there is a polynomial T : N→ N and a PTM
M such that for every x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 0] ≥ 3/4

and E [TM,x ] ≤ T(|x |).
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We say that M runs in expected time T(n) if E [TM,x ] ≤ T(|x |) for every x.

• Possibly infinite runs.

• So, certificates would need to be unbounded.
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A language L is in BPeP if there is a polynomial T : N→ N and a PTM
M such that for every x ∈ {0, 1}∗:
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Expected Running Time

• Assume L ∈ BPeP.
• PTM M deciding L within expected running time T(n).

• Probability that M does more than k steps on input x:

Pr [TM,x ≥ k ] ≤
E [TM,x ]

k
≤

T(|x |)
k

by Markov’s inequality.
• So, for k = 10T(|x |) (polynomial in |x |):

Pr [TM,x ≥ 10T(|x |)] ≤ 0.1

for every input x.
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Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation terminates, forward the reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts:
• Otherwise:

• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸                    ︷︷                    ︸
≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸                            ︷︷                            ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PPX
• Probabilistic Turing machinesX
• Expected running timeX
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy

35



Error reduction

• Consider: L ∈ RP:
• Probability for error after r reruns:
• if x < L : = 0
• if x ∈ L : ≤ 4−r , i.e., r-times probably, x < L .

• Similarly for L ∈ coRP and L ∈ ZPP.
• What if L ∈ BPP?

• We cannot wait for a yes
• Instead use the majority.
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Error reduction for BPP

Definition (BPP(f))

Let f : N→ Q be a function.
L ∈ BPP(f) if there exists a polynomial p : N→ N and a polynomial-time
TM M such that for every x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x ] ≥ f(|x |) and x < L ⇒ Pr [RM,x ] ≥ f(|x |).

Theorem (Error reduction for BPP)

For any c > 0:
BPP = BPP(1/2 + n−c)

• The longer the input, the less dominant the “majority” has to be.
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Error reduction for BPP (Proof)

• Assume L ∈ BPP, and
• Choose any c > 0.

• There exists certainly an n0 s.t. for all n ≥ n0:

1/2 + n−c ≤ 3/4.

• So: L ∩ {0, 1}≥n0 ∈ BPP(1/2 + n−c).
• Thus, BPP(1/2 + n−c)-algorithm for L :

• If |x | < n0, decide x ∈ L in P (error prob. = 0)
• Else run BPP-algorithm (error prob. ≤ 1/4)
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Error reduction for BPP (Proof)

• Let L ∈ BPP(1/2 + n−c) for some c > 0.

• Run 1/2 + n−c-algorithm r-times on input x:
• Outputs: y = y1y2y3 . . . yr

• with yi ∈ {0, 1} and yi = 1 if output probably, x ∈ L
• Y1 =

∑r
i=1 yi number of 1s

• Y0 = r − Y1 number of 0s

• Probability of yi = 1 if x ∈ L , resp. yi = 0 if x < L :

x ∈ L : Pr [yi = 1] ≥ 1/2+|x |−c resp. x < L : Pr [yi = 0] ≥ 1/2+|x |−c

(yi indepedent, Bernoulli distributed RVs)
• Expected number of 1s for x ∈ L , resp. of 0s if x < L :

x ∈ L : E [Y1] ≥ r/2 + r |x |−c resp. x < L : E [Y0] ≥ r/2 + r |x |−c

• Intuitively, for e.g. r = |x |c+d for some d ∈ N we get:

x ∈ L : E [Y1 − Y0] ≥ 2|x |d resp. x < L : E [Y0 − Y1] ≥ 2|x |d

i.e., expect significant majority in favor of correct answer.
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Error reduction for BPP (Proof)

• Idea: let majority decide, i.e., output x ∈ L iff Y1 > Y0.

• Assume x ∈ L in the following
• Case x < L symmetric:
• set zi := 1 − yi and consider Y0 instead of Y1

• Probability that “majority” wrongly says x < L :

Pr [Y1 ≤ Y0] = Pr [Y1 ≤ r/2]

• Chernoff bound: for X ∼ Bin(n; p) with µ := E [X ] and δ ∈ (0, 1)

Pr [X ≤ (1 − δ)µ] ≤ e−µδ
2/2

• Thus:

Pr [Y1 ≤ r/2] = Pr [Y1 ≤ (1 − (1 − r/(2µ)))µ] ≤ e−µδ
2/2

as long as δ := 1 − r/(2µ) ∈ (0, 1).
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Error reduction for BPP (Proof)

• Bounds on δ = 1 − r/(2µ):

0 < δ < 1⇔ 0 < r/2 < µ⇐ r/2 + r |x |−c ≤ µ

• Thus, choose r s.t.

Pr [Y1 ≤ r/2] ≤ e−µδ
2/2 ≤ 1/4.

i.e.,
µδ2 ≥ 2 loge 4.

• With
µ ≥ r/2 + r |x |−c

we obtain:

µδ2 = (µ−r/2)(1−(r/2)/µ)2 ≥ r |x |−c
(
1 −

r/2
r/2 + r |x |−c

)2

= r ·
|x |−3c

(1/2 + |x |−c)2

• So, choose r ≥ (loge 4) · (|x |3c/2 + 2|x |2c + 2|x |c).
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Error reduction for BPP (Proof)

• For x < L we obtain analogously:

Pr [Y0 ≤ Y1] ≤ 1/4 if r ≥ (|x |3c/2 + 2|x |2c + 2|x |c).

• So, a polynomial number of rounds suffices to reduce error
probability to at most 1/4.

• Proof also yields:

Theorem (Error reduction for BPP)

For any d > 0:
BPP = BPP(1 − 2−nd

)

• Ex.: Show the theorem.
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PPX
• Probabilistic Turing machinesX
• Expected running timeX
• Error reduction for BPPX
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy
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Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.
• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx ] ≤

• Pr
[⋃
|x |=n Bx

]
≤

• Pr
[⋂
|x |=n Bx

]
≥

• Seems unlikely for NP.
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PPX
• Probabilistic Turing machinesX
• Expected running timeX
• Error reduction for BPPX
• Some kind of derandomization for BPPX
• BPP in the polynomial hierarchy
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BPP in the Polynomial Hierarchy PH

Theorem

BPP ⊆ Σp
2 ∩ Π

p
2

• Reminder:
• Definition of L ∈ Σp

2 :

x ∈ L iff ∃u ∈ {0, 1}p(|x |)∀v ∈ {0, 1}p(|x |) : M(x, u, v) = 1.

• Definition of L ∈ Πp
2 :

x ∈ L iff ∀u ∈ {0, 1}p(|x |)∃v ∈ {0, 1}p(|x |) : M(x, u, v) = 1.

• As BPP = coBPP it suffices to show BPP ⊆ Σp
2 :

L ∈ BPP⇒ L ∈ BPP⇒ L ∈ Σp
2 ⇒ L ∈ Πp

2
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BPP in the Polynomial Hierarchy PH

• We use again that BPP = BPP(1 − 4−n).
• Let p(·) be the polynomial bounding the certificate length.
• Recall AM,x : “accept-certificates”

AM,x := {u ∈ {0, 1}p(|x |) | M(x, u) = 1}

• Then

x ∈ L ⇒ |AM,x | ≥ (1 − 4−|x |)2p(|x |) and x < L ⇒ |AM,x | ≤ 4−n · 2p(|x |)

• Need a formula to distinguish the two cases.
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BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111
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BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume |x | = 1 and p(|x |) = 3,
• i.e., possible certificates in {0, 1}3.
• If x ∈ L , then |AM,x | ≥ 3/4 · 23 = 6.
• If x < L , then |AM,x | ≤ 1/4 · 23 = 2.

48



BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume x < L , i.e., |AM,x | ≤ 1/4 · 8 = 2

• Choose any u1, u2 ∈ {0, 1}3.
• By chance, we might hit AM,x .
• Claim: But there is some r ∈ {0, 1}3 s.t.

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x = ∅.

(⊕: bitwise xor)
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BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Note:
ui ⊕ r ∈ AM,x iff r ∈ AM,x ⊕ ui .

• So, choose

r ∈ AM,x ⊕ u1 ∪ AM,x ⊕ u2 = {000, 011} ∪ {101, 110}.

• E.g. r = 001.
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BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume x ∈ L , i.e., |AM,x | ≥ 6.

• Claim: We can choose u1, u2 s.t. for any r ∈ {0, 1}3

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x , ∅.

• Note: this is exactly the negation of the previous claim.
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• Claim: We can choose u1, u2 s.t. for any r ∈ {0, 1}3

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x , ∅.

• Note: this is exactly the negation of the previous claim.

48



BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• E.g., take u1 = 000.

• Then u1 ⊕ r ∈ RM,x iff r ∈ u1 ⊕ RM,x = {100, 110}.
• So, take u2 < 100 ⊕ RM,x ∪ 110 ⊕ RM,x .
• E.g., u2 = 011.
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BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Summary:

x ∈ L ∩ {0, 1}1 iff ∃u1, u2 ∈ {0, 1}3∀r ∈ {0, 1}3 :
∨

i=1,2

ui ⊕ r ∈ AM,x .

Reminder: ui ⊕ r ∈ AM,x iff M(x, ui ⊕ r) = 1.

• So, this is in Σp
2 .

• And works also for |x | > 1 and arbitrary p(|x |).
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BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Note, the certificate u1u2 . . . uk has length polynomial in |x |.
• So, this formula represents a computation in Σp

2 .
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BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x < L : To show there is always an r s.t.

k∧
i=1

r ⊕ ui < AM,x ≡ r <
k⋃

i=1

ui ⊕ AM,x .

• Size of the complement of this set:∣∣∣∣∣∣∣
k⋃

i=1

ui ⊕ AM,x

∣∣∣∣∣∣∣ ≤
k∑

i=1

∣∣∣ui ⊕ AM,x

∣∣∣ = k
∣∣∣AM,x

∣∣∣ ≤ k4−|x |2p(|x |) < 2p(|x |).

• So, this set cannot be empty no matter how we choose u1, . . . , uk .
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BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x ∈ L : To show there are u1, . . . , uk s.t.

∀r :
k∨

i=1

ui ⊕ r ∈ AM,x ≡ ¬∃r :
k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x ] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x ]k ≤ 4−kn.

• Pr
[
∃r :

∧k
i=1 Ui ∈ r ⊕ RM,x

]
≤

∑
r∈{0,1}∗ 4−kn = 2p(|x |)−2kn < 1.

49



BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x ∈ L : To show there are u1, . . . , uk s.t.

∀r :
k∨

i=1

ui ⊕ r ∈ AM,x ≡ ¬∃r :
k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x ] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x ]k ≤ 4−kn.

• Pr
[
∃r :

∧k
i=1 Ui ∈ r ⊕ RM,x

]
≤

∑
r∈{0,1}∗ 4−kn = 2p(|x |)−2kn < 1.

49



BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x ∈ L : To show there are u1, . . . , uk s.t.

∀r :
k∨

i=1

ui ⊕ r ∈ AM,x ≡ ¬∃r :
k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x ] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x ]k ≤ 4−kn.

• Pr
[
∃r :

∧k
i=1 Ui ∈ r ⊕ RM,x

]
≤

∑
r∈{0,1}∗ 4−kn = 2p(|x |)−2kn < 1.

49



BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x ∈ L : To show there are u1, . . . , uk s.t.

∀r :
k∨

i=1

ui ⊕ r ∈ AM,x ≡ ¬∃r :
k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x ] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x ]k ≤ 4−kn.

• Pr
[
∃r :

∧k
i=1 Ui ∈ r ⊕ RM,x

]
≤

∑
r∈{0,1}∗ 4−kn = 2p(|x |)−2kn < 1.

49



BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x ∈ L : To show there are u1, . . . , uk s.t.

∀r :
k∨

i=1

ui ⊕ r ∈ AM,x ≡ ¬∃r :
k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x ] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x ]k ≤ 4−kn.
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k∨

i=1

M(x, ui ⊕ r) = 1.

• For both cases there is an n0 s.t. the bounds hold for all x with
|x | > n0.

• L ∩ {0, 1}≤n0 can be decided trivially in P.
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Summary

• Obtain RP from NP by
• choosing the certificate (transition function) uniformaly at random
• requiring a bound on Pr [AM,x ] if x ∈ L s.t.
• error prob. can be reduced within a polynomial number of reruns.

• One-sided probability of error:
• RP: false negatives
• coRP: false postives
• Monte Carlo algorithms: ZEROP ∈ coRP, perfect matchings ∈ RP

• ZPP := RP ∩ coRP can be decided in expected polynomial time
• Zero probability of error (if we wait for the definitive answer)
• Las Vegas algorithms
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Summary

• Obtained PP from RP by
• allowing also for false positives
• Error probabilities depend on each other: ≤ 1/4 and < 1 − 1/4
• NP ⊆ PP: “PP allows for trading one error prob. for the other”

• Obtained BPP from PP by
• bounding both error prob. independently of each other.
• Papadimitriou: “most comprehensive, yet plausible notion of realistic

computation”
• Conjecture: BPP = P
• Expected running time as powerful as exact running time.
• One certificate un for all x with |x | = n.
• Error reduction to 2−nk

within a polynomial number of reruns.
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Summary

P ZPP

RP

coRP

NP

BPP = coBPP

coNP

Πp
2 ∩ Σ

p
2

PP = coPP

PSPACE

• Πp
2 ∩ Σ

p
2 ⊆ PP unknown.

• NP ∪ coNP ⊆ PP known.
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Summary

P ZPP

RP

coRP

NP

BPP = coBPP

coNP

Πp
2 ∩ Σ

p
2

PP = coPP

PSPACE

• Gödel Prize (1998) for Toda’s theorem (1989): PH ⊆ PPP

• PPP: poly-time TMs having access to a PP-oracle.
• If PP ⊆ Σp

k for some k , then PH = Σp
k .

• If PP ⊆ PH, then PH collapses at some finite level as PP has complete
problems (see exercises).

52



Syntactic and Semantic Complexity Classes

• Just mentioned: PP has complete probems
• φ ∈ MAJSAT iff at least 2n−1 + 1 satisfying assignments of 2n possible

(see exercises).

• Unknown if there are complete problems for ZPP,RP,BPP.

• Reason to believe that there are none:
• P,NP, coNP are syntatic complexity classes (complete problems).
• ZPP,RP, coRP,BPP are semantic complexity classes.

• Example:
• NP:

x ∈ L ⇔ Pr [AM,x ] > 0.

Every poly-time TM M(x, u) defines a language in NP.
• BPP:

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [RM,x ] ≥ 3/4.

Not every poly-time TM M(x, u) defines a language in BPP.

• Ex.: What about PP?
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Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7
Definition
For a poly-time M(x, u) using certificates u ∈ {0, 1}p(|x |) set

LM(x) := y0y1 . . . y2p(|x |)−1 with yi = M(x, ui) and (ui)2 = i

The leaf-language of M is then LM := {LM(x) | x ∈ {0, 1}∗}.
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Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7
Definition (cont’d)

For A ,R ⊆ {0, 1}∗ with A ∩ R = ∅ the class C[A ,R] consists of all
language L for which there is a TM M(x, u) s.t. ∀x ∈ {0, 1}∗:

x ∈ L ⇒ LM(x) ∈ A and x < L ⇒ LM(x) ∈ R .
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Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7
Definition (cont’d)

C[A ,R] is called syntactic if A ∪ R = {0, 1}∗, otherwise it is called
semantic.
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Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• NP = C[(0 + 1)∗1(0 + 1)∗, 0∗]

• RP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, 0∗]

• PP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, {w ∈ {0, 1}∗ | #1w

#0w < 3}]
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Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• What about P?

• P = C[1(0 + 1)∗, 0(0 + 1)∗].
• Certificate 0 . . . 0 can always be used (compare this to BPP)
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Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• What about P?
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Lecture 14

Interactive Proofs

2



Intro

Overview

NP certificates or proof of membership

↓

RP proofs chosen at random
↓

IP interactive proofs
between a prover and a verifier

Example: job interview, interactive vs. fixed questions
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Intro

Overview

NP certificates or proof of membership
↓

RP proofs chosen at random
↓

IP interactive proofs
between a prover and a verifier

Example: job interview, interactive vs. fixed questions
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Intro

Agenda

• interactive proof examples
• socks
• graph coloring
• graph non-isomorphism

• definition of interactive proof complexity
• IP
• public coins: AM

4



Examples Socks

Different socks

Example

P wants to convince V that she has a red sock and a yellow sock.
V is blind and has a coin.
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Examples Socks

Interactive Proof

1. P tells V which sock is red

2. V holds red sock in her right hand, left sock in her yellow hand

3. P turns away from V
4. V tosses a coin

4.1 heads: keep socks
4.2 tails: switch socks

5. V asks P where the red sock is

6



Examples Socks

Observations

• If P tells the truth (different colors), she will always answer
correctly

• If P lies

• she can only answer correctly with probability 1/2
• after k rounds, she gets caught lying with probability 1 − 2−k

• random choices are crucial

• P has more computational power (vision) than V

• P must not see V’s coin (private coin)
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Examples Coloring

Graph 3-Coloring

• P claims: G is 3-colorable
• How can she prove it to V?

• provide certificate (since 3−Col ∈ NP), V checks it
• possible for all L ∈ NP with one round if P has NP power
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Examples Coloring

What if actual coloring should be secret?

• given a graph (V ,E) with |V | = n

• P claims 3-colorability

• P wants to convince V of coloring c : V → C (= {R ,G,B})

1. P randomly picks a permutation π : C → C and puts π(c(vi)) in
envelope i for each 1 ≤ i ≤ n

2. V randomly picks edge (ui , uj) and opens envelopes i and j to
find colors ci and cj

3. V accepts iff ci , cj
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Examples Coloring

Observations

• the protocol has two rounds

• a round is an uninterrupted sequence of messages from one
party

• if G is not 3-colorable, P will be caught lying after O(n3) rounds
with probability 1 − 2−n

• V learns nothing about the actual coloring

⇒ zero-knowledge protocol

• by reductions, all NP languages have ZK protocols

• private coins
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Examples Graph Non-Isomorphism

Graph Non-Isomorphism

• NP languages have succinct, deterministic proofs

• coNP languages possibly don’t

• graph isomorphism, GI, is in NP
• hence GNI = {〈G1,G2〉 | G1 � G2} is in coNP
• GNI has a succinct interactive proof
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Examples Graph Non-Isomorphism

Interactive Proof for GNI

given: graphs G1,G2

V pick i ∈R {1, 2}, random permutation π

V use π to permute nodes of Gi to obtain graph H

V send H to P

P check which of G1,G2 was used to obtain H

P let Gj be that graph and send j to V

V accept iff i = j

12



Examples Graph Non-Isomorphism

Intuition

• same idea as for socks protocol

• P has unlimited computational power

• if G1 � G2 then P answers correctly with probability at most 1/2

• probability can be improved by sequential or parallel repetition

• if G1 � G2 then P answers correctly with probability 1

• privacy of coins crucial
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Examples Graph Non-Isomorphism

Agenda

• interactive proof examples X
• socks X
• graph coloring X
• graph non-isomorphism X

• definition of interactive proof complexity
• IP
• public coins: AM

14



Definitions

Interaction

Definition (Interaction)

Let f , g : {0, 1}∗ → {0, 1}∗ be functions and k ≥ 0 an integer that may
depend on the input size. A k -round interaction of f and g on input
x ∈ {0, 1}∗ is the sequence 〈f , g〉(x) of strings a1, . . . , ak ∈ {0, 1}∗

defined by

a1 = f(x)
a2 = g(x, a1)

. . .

a2i+1 = f(x, a1, . . . , a2i) for 2i < k
a2i+2 = g(x, a1, . . . , a2i+1) for 2i + 1 < k

The output of f at the end of the interaction is defined by
outf 〈f , g〉(x) = f(x, a1, . . . , ak ) and assumed to be in {0, 1}.

This is a deterministic interaction, we need to add randomness.
15



Definitions

Adding Randomness
Definition (IP)

For an integer k ≥ 1 that may depend on the input size, a language
L is in IP[k ], if there is a probabilistic polynomial-time TM V that can
have a k -round interaction with a function P : {0, 1}∗ → {0, 1}∗ such
that

• Completeness
x ∈ L =⇒ ∃P.Pr[outV 〈V ,P〉(x) = 1] ≥ 2/3

• Soundness
x < L =⇒ ∀P.Pr[outV 〈V ,P〉(x) = 1] ≤ 1/3

We define IP =
⋃

c≥1 IP[nc ].

• V has access to a random variable r ∈R {0, 1}m

• e.g. a1 = f(x, r) and a3 = f(x, a1, r)
• g cannot see r
⇒ outV 〈V ,P〉(x) is a random variable where all probabilities are

over the choice of r 16



Definitions

Arthur-Merlin Protocols

Definition (AM)

• For every k the complexity class AM[k ] is defined as the
subset of IP[k ] obtained when the verfier’s messages are
random bits only and also the only random bits used by V.

• AM = AM[2]

Such an interactive proof is called an Arthur-Merlin proof or a public
coin proof.
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Definitions

Agenda

• interactive proof examples X
• socks X
• graph coloring X
• graph non-isomorphism X

• definition of interactive proof complexity
• IP X
• public coins: AM X
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Basic Properties

Basic Properties

• NP ⊆ IP
• for every polynomial p(n) the acceptance bounds in the

definition of IP can be changes to
• 2−p(n)for soundness
• 1 − 2−p(n) for completeness

• the requirement for completeness can be changed to require
probability 1 yielding perfect completeness

• perfect soundness collapses IP to NP
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Conclusion

What have we learnt?

• IP[k ]: languages that have k -round interactive proofs
• interaction and randomization possibly add power

• randomization alone: BPP (possibly equals P)
• deterministic interaction: NP
⇒ interactive proofs more succinct

• prover has unlimited computational power

• verifier is a BPP machine (poly-time with coins)

• coins can be private or public

• zero-knowledge protocols do exist for all NP languages

• soundness and completeness thresholds can be adapted

20



Conclusion

What’s next?

• AM[2] = AM[k ] AM hierarchy collapses

• AM[k + 2] = IP[k ] private coins don’t help

• if graph isomorphism is NP-complete, the polynomial hierarchy
collapses

• IP = PSPACE
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Technical University of Munich

Summer 2019

May 28, 2019

1



Lecture 15

Public Coins and Graph (Non)Isomorphism

2



Intro

Goal and Plan

Goal
• understand public coins and their relation to private coins

• get a reason why graph isomorphism might not be
NP-complete

Plan
• show that graph non-isomorphism has a two round

Arthur-Merlin proof; formally: GNI ∈ AM[2]

• show that this implies GI is not NP-complete unless Σp
2 = Πp

2
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Intro

Agenda

• IP and AM – recap

• graph non-isomorphism as a problem about set sizes

• tool: pairwise independent hash functions

• an AM[2] protocol for GNI

• improbability of NP-completeness of GI
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Definition Recap

IP

Definition (IP)

For an integer k ≥ 1 that may depend on the input size, a language
L is in IP[k ], if there is a probabilistic polynomial-time TM V that can
have a k -round interaction with a function P : {0, 1}∗ → {0, 1}∗ such
that

• Completeness
x ∈ L =⇒ ∃P.Pr[outV 〈V ,P〉(x) = 1] ≥ 2/3

• Soundness
x < L =⇒ ∀P.Pr[outV 〈V ,P〉(x) = 1] ≤ 1/3

We define IP =
⋃

c≥1 IP[nc ].

• V has access to a random variable r ∈R {0, 1}m

• e.g. a1 = f(x, r) and a3 = f(x, a1, r)
• g cannot see r
⇒ outV 〈V ,P〉(x) is a random variable where all probabilities are

over the choice of r
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Definition Recap

AM

Definition (AM)

• For every k the complexity class AM[k ] is defined as the
subset of IP[k ] obtained when the verfier’s messages are
random bits only and also the only random bits used by V.

• AM = AM[2]

Such an interactive proof is called an Arthur-Merlin proof or a public
coin proof.
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Definition Recap

Agenda

• IP and AM – recap X

• graph non-isomorphism as a problem about set sizes

• tool: pairwise independent hash functions

• an AM[2] protocol for GNI

• improbability of NP-completeness of GI
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GNI is an AM

Recasting GNI

• let G1,G2 be graphs with nodes {1, . . . , n} each
• we define a set S such that

• if G1 � G2 then |S | = n!
• if G1 � G2 then |S | = 2n!

• idea: S is the set of graphs that are isomorphic to G1 OR to G2

• if G1 � G2, this set is small, otherwise not
• problem: automorphisms

• an automorphism of G1 is a permutation
π : {1, . . . , n} → {1, . . . , n} such that π(G) = G

• all automorphisms of graph G written aut(G)
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GNI is an AM

The infamous set S

S = {(H, π) | H � G1 or H � G2, π ∈ aut(H)}

• to convince the verifier that G1 � G2 the prover has to convince
the verifier that |S | = 2n! rather than n!

• that is the verifier should accept with high probability if |S | ≥ K
for some K

• it should reject if |S | ≤ K
2
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GNI is an AM

Agenda

• IP and AM – recap X

• graph non-isomorphism as a problem about set sizes X

• tool: pairwise independent hash functions

• an AM[2] protocol for GNI

• improbability of NP-completeness of GI
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GNI is an AM Hashing

Hash functions

• goal: store a set S ⊆ {0, 1}m to efficiently answer membership
x ∈ S

• S could change dynamically

• |S | much smaller than 2m, possibly around 2k for k ≤ m

• to create a hash table of size 2k

• select a hash function h : {0, 1}m → {0, 1}k

• store x at h(x)

• collision: h(x) = h(y) for x , y

• choosing hash functions randomly from a collection, one can
expect h to be almost bijective if |S | ≈ 2k

11



GNI is an AM Hashing

Hash functions

• goal: store a set S ⊆ {0, 1}m to efficiently answer membership
x ∈ S

• S could change dynamically

• |S | much smaller than 2m, possibly around 2k for k ≤ m
• to create a hash table of size 2k

• select a hash function h : {0, 1}m → {0, 1}k

• store x at h(x)

• collision: h(x) = h(y) for x , y

• choosing hash functions randomly from a collection, one can
expect h to be almost bijective if |S | ≈ 2k

11



GNI is an AM Hashing

Pairwise independent hash functions

Definition
Let Hm,k be a collection of functions from {0, 1}m to {0, 1}k . We say
that Hm,k is pairwise independent if

• for every x , x′ ∈ {0, 1}m and

• for every y, y′ ∈ {0, 1}k and

Prh∈RHm,k [h(x) = y ∧ h(x′) = y′] = 2−2k

• when h is choosen randomly (h(x), h(x′)) is distributed
uniformly over {0, 1}k × {0, 1}k

• such collections exist

• here: we only assume the existence

12



GNI is an AM Hashing

Agenda

• IP and AM – recap X

• graph non-isomorphism as a problem about set sizes X

• tool: pairwise independent hash functions X

• an AM[2] protocol for GNI

• improbability of NP-completeness of GI
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GNI is an AM Public coins for GNI

Goldwasser-Sipser Set Lower Bound Protocol

• S ⊆ {0, 1}m

• both parties know a K

• prover wants to convince verifier that |S | ≥ K

• verifier rejects with high probability if |S | ≤ K
2

• let k be an integer such that 2k−2 < K ≤ 2k−1

14



GNI is an AM Public coins for GNI

Goldwasser-Sipser Set Lower Bound Protocol

The following protocol has two rounds and uses public coins!

V • randomly choose h : {0, 1}m → {0, 1}k from a pairwise
independent collection of hash functions Hm,k

• randomly choose y ∈ {0, 1}k

• send h and y to prover

P • find an x ∈ S such that h(x) = y
• send x to V together with a certificate of membership of x in S

V if h(x) = y and x ∈ S accept; otherwise reject

15



GNI is an AM Public coins for GNI

Why the protocol works?

Intuition: If S is big enough (non-isomorphic case) then the prover
has a good chance to find a pre-image.

Formally:
• show that there exists a p̂ such that

• if |S | ≥ K then Pr[∃x ∈ S.h(x) = y] is greater than 3
4 p̂

• if |S | ≤ K
2 then Pr[∃x ∈ S.h(x) = y] is lower than p̂

2

• this is a probability gap which can be amplified by repetition
• one can choose p̂ = K

2k

• soundness: easy (not enough elements even if injective)
• completeness: by inclusion-exclusion principle
≥
∑

x Pr[h(x) = y] − 1
2

∑
x,x Pr[h(x) = y, h(x′) = y]

by pairwise independence |S |
2k −

|S |2

22k+1 ≥
3
4 p̂
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GNI is an AM Public coins for GNI

Putting it together

AM[2] public coin protocol for GNI

• compute S (automorphisms) as above

• prover and verifier run set lower bound protocol several times

• verifier accepts by majority vote

• using Chernoff bounds, this gives the desired completeness
and soundness probabilities

• observe: only a constant number of iterations necessary which
can be executed in parallel

⇒ number of rounds stays at 2

Details: Arora-Barak, section 8.2
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GNI is an AM Public coins for GNI

Agenda

• IP and AM – recap X

• graph non-isomorphism as a problem about set sizes X

• tool: pairwise independent hash functions X

• an AM[2] protocol for GNI X

• improbability of NP-completeness of GI
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On Graph Isomorphism

Graph Isomorphism

Theorem
If GI = {〈G1,G2〉 | G1 � G2} is NP-complete then Σp

2 = Πp
2 .

Proof idea (Σp
2 ⊆ Π

p
2):

• ∃~x∀~y ϕ(x, y) equivalent to

• ∃~x g(x) ∈ GNI equivalent to (GNI ∈ AM)

• ∃~x∀~r∃~m A(g(x), r ,m) = 1 equivalent to

• ∀~r∃~x∃~m A(g(x), r ,m) = 1
(perfect completeness =⇒ satisfiable
soundness with 2−n =⇒ single string r)
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Conclusion

What have we learnt?

• graph isomorphism is not NP-complete unless the (polynomial)
hierarchy collapses

• public coins are as expressive as private coins
• proof of GNI ∈ AM[2] generalizes to IP[k ] = AM[k + 2] (without

proof)
• one can also show AM[k ] = AM[k + 1] for k ≥ 2 (collapse)

intuitively AM more powerful than MA, because in AM Merlin
gets to look at the random bits before deciding on his answer

• also not shown: perfect completeness for AM

• Goldwasser-Sipser set lower bound protocol (in AM[2])

• hash functions as a useful tool

Up next: IP = PSPACE
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Technical University of Munich

Summer 2019

May 28, 2019

1



Lecture 16

IP = PSPACE

2



Goal and Plan

Goal
• IP = PSPACE

Plan
1. PSPACE ⊆ IP by showing QBF ∈ IP

2. IP ⊆ PSPACE by computing optimal prover strategies in
polynomial space

3



Agenda

• arithmetization of Boolean formulas

• arithmetization of quantified formulas by linearization

• interactive protocol for QBF

Afternoon

• optimal prover strategy to show IP ⊆ PSPACE
• a note on graph isomorphism

• summary: interactive proofs incl. further reading and context

• outlook: approximation and PCP theorem
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Proof Idea

Show that QBF ∈ IP.

This implies PSPACE ⊆ IP because

• QBF is PSPACE-complete

• IP closed under polynomial reductions

Technique
Turn formulas into polynomials, similar to reduction from 3SAT to
ILP: arithmetization.
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Setting

• let Φ = Q1x1 . . .Qnxnϕ(x1, . . . , xn) be a quantified boolean
formula, where ϕ is in 3CNF with m clauses

• Φ is either true or false

• running example: Φ= = ∀x∃y (x ∨ y) ∧ (x ∨ y), where the
body is written ϕ=

• deciding truth value of Φ is PSPACE-complete

6



Observation

• x ∧ y is satisfied iff x · y = 1 for x, y ∈ {0, 1}

• x is satisfied iff 1 − x = 1

• x ∨ y is satisfied iff x + y ≥ 1

• note that x ∨ y ≡ x ∧ y ∨ x ∧ y ∨ x ∧ y

⇒ x ∨ y is satisfied iff x + y − xy = 1
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Arithmetization of Boolean formulas

For Boolean formula ϕ(x1, . . . , xn) we define ariϕ(x1, . . . , xn) such
that ϕ(x1, . . . , xn) is satisfied iff ariϕ(x1, . . . , xn) is 1 for satisfying
assignment of xi to true/false and the corresponding xi .

8



Arithmetization of Boolean formulas

arixi (x1, . . . , xn) = xi

ariϕ(x1, . . . , xn) = 1 − ariϕ(x1, . . . , xn)
ariϕ1∧ϕ2(x1, . . . , xn) = ariϕ1(x1, . . . , xn) · ariϕ2(x1, . . . , xn)
ariϕ1∨ϕ2(x1, . . . , xn) = ariϕ1(x1, . . . , xn) + ariϕ2(x1, . . . , xn)

−ariϕ1(x1, . . . , xn) · ariϕ2(x1, . . . , xn)

Example

ϕ= = (x ∨ y) ∧ (x ∨ y)

ariϕ=(x, y) = (x + (1 − y) − x(1 − y)) · ((1 − x) + y − (1 − x)y)
= (1 − y + xy) · (1 − x + xy)
= 1 − x − y + 3xy − xy2 − x2y + x2y2

=: f=(x, y)
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Observation

• degree of arithmetization is ≤ 3m

• crucial for polynomial representation of formulas
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What about quantification?

Intuition

• universal quantification corresponds to conjunction
corresponds to multiplication

• existential quantification corresponds to disjunction
corresponds to addition

• ari∀xi .ϕ(x1, . . . , xi , . . . , xn) equals
ariϕ(x1, . . . , 0, . . . , xn) · ariϕ(x1, . . . , 1, . . . , xn)

• ari∃xi .ϕ(x1, . . . , xi , . . . , xn) equals
ariϕ(x1, . . . , 0, . . . , xn) + ariϕ(x1, . . . , 1, . . . , xn) −
ariϕ(x1, . . . , 0, . . . , xn) · ariϕ(x1, . . . , 1, . . . , xn)
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Running Example

Example

ariΦ=(x, y) = ari∃y.ϕ=(0, y) · ari∃y.ϕ=(1, y)
= (f=(0, 0) + f=(0, 1) − f=(0, 0)f=(0, 1)) · . . .
= . . .

= 1
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Lessons learnt

• Φ= is true

• degree of polynomial might get exponential in n

• coefficients too

Rescue

• over {0, 1} we have xc = x

• gives rise to linearization

• to get rid of large coefficients: compute over some sufficiently
small finite field

13



Lessons learnt

• Φ= is true

• degree of polynomial might get exponential in n

• coefficients too

Rescue

• over {0, 1} we have xc = x

• gives rise to linearization

• to get rid of large coefficients: compute over some sufficiently
small finite field

13



Agenda

• arithmetization of Boolean formulas X

• arithmetization of quantified formulas by linearization

• interactive protocol for QBF
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Linearization

Linearization means reducing all exponents in polynomial to 1.

• Ly(f(x, y)) = f(x, 1) · y + f(x, 0) · (1 − y)

• Ly(f(x, y) is linear in y

• Ly(f(x, y)) is equivalent to f(x, y) over {0, 1}2

Example

Ly(f=(x, y)) = Ly(1 − x − y + 3xy − xy2 − x2y + x2y2)
= (1 − y)(1 − x) + y · (−x + 3x − x − x2 + x2)
= 1 − x − y + 2xy

15



General form

Lj(f(x1, . . . , xj , . . . , xn)) = f(x1, . . . , 1, . . . , xk )xj

+ f(x1, . . . , 0, . . . , xk )(1 − xj)

Arithmetization

1. arithmetize Boolean body of formula

2. linearize all variables

3. for innermost quantifier apply ari∀x (resp. ari∃x)

4. repeat from 2.
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Recursive definition of general arithmetization

fn,n(x1, . . . , xn) := ariϕ(x1, . . . , xn)

f i,j(x1, . . . , xi) = Lj+1(f i,j+1(x1, . . . , xi))

f i,i(x1, . . . , xi) := f i+1,0(x1, . . . , xi , 0)f i+1,0(x1, . . . , xi , 1)
if xi+1 universal

f i,i(x1, . . . , xi) := f i+1,0(x1, . . . , xi , 0) + f i+1,0(x1, . . . , xi , 1)
−f i+1,0(x1, . . . , xi , 0)f i+1,0(x1, . . . , xi , 1)
if xi+1 existential
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Observations

• there are O(n2) functions f·,·
• functions fn,· have degree at most 3m

• all other functions have degree of each variable at most 2

• f0,0 = 1 iff Φ ∈ QBF

18



Agenda

• arithmetization of Boolean formulas X

• arithmetization of quantified formulas by linearization X

• interactive protocol for QBF
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Protocol intuition

• V accepts if f0,0 = 1

• P needs to convince V of that fact by iterating over all fi,j
• V challenges P by choosing random values from a finite field

• P inserts these values into polynomials and return linear
function

• V checks that functions adhere to recursive scheme

20



Initialization

• verifier and prover agree on prime p such that
12|Φ|2 < p ∈ O(|Φ|2)

• all polynomials will be computed in Z/pZ

• this is a range, where linear functions can be polynomially
represented and evaluated

• start: P sends f0,0, the prime and the primality proof

• if f0,0 = 1 then iterate from i = 1 and j = 0 until both reach n;
otherwise reject

⇒ O(n2) rounds

21



Quantor case j = 0

• V asks for fi,0(r1, . . . , ri−1, xi)

• P sends fi,0(r1, . . . , ri−1, xi)

• if xi is universally quantified, V checks whether

fi,0(r1, . . . , ri−1, 0)fi,0(r1, . . . , ri−1, 1)
≡p

fi−1,i−1(r1, . . . , ri−1)

• if xi is existentially quantified, V checks

fi,0(r1, . . . , ri−1, 0) + fi,0(r1, . . . , ri−1, 1)
−fi,0(r1, . . . , ri−1, 0)fi,0(r1, . . . , ri−1, 1)

≡p

fi−1,i−1(r1, . . . , ri−1)

• V picks random number ri ∈ Z/pZ and set j to 1

22



Linearization case j > 0

• V asks for fi,j(r1, . . . , xj , . . . , ri)

• P sends fi,j(r1, . . . , xj , . . . , ri)

• V checks
(1 − rj)fi,j(r1, . . . , 0, . . . , ri)+

rj fi,j(r1, . . . , 1, . . . , ri)
≡p

fi,j−1(r1, . . . , ri)

• V picks rj at random and increases j (or sets j to 0 and
increases i)

23



Finally . . .

P tests whether

ariϕ(r1, . . . , rn) ≡p fn,n(r1, . . . , rn)

24



Observations

• P only sends linear functions

• total message length still polynomial

• V can compute linear functions in Z/pZ

• if Φ ∈ QBF P can always convince V by sending correct
polynomials

⇒ perfect completeness

• we have public coins

25



What if Φ < QBF?

An honest prover admits this fact.

A cheating prover can try to send forged polynomials gi,j(x) instead
of fi,j(x1, . . . , x, . . . , xi).

For soundness P must fail to convince V with high probability.

26



Soundness

• P can cheat in round (i,j) iff fi,j(x1, . . . , x, . . . , xi) − gi,j(x) ≡p 0
• that is: iff V by chance picks a root rk of a polynomial

• probability to do so in round (i, j) is qi,j ≤ deg(fi,j)/p since
polynomials of degree n have at most n roots

• fn,· have degree at most 3m
• fi<n,· have degree at most 2
• there are (n + 1)(n + 2)/2 polynomials, n + 1 large ones

Pr[P cheats] ≤ Σn
i=1Σi

j=0qi,j

≤
3m(n+1)

p +
2n(n+1)

2p

≤
4|Φ|2

p

≤ 1/3
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Agenda

• arithmetization of Boolean formulas X

• arithmetization of quantified formulas by linearization X

• interactive protocol for QBF X

Afternoon

• optimal prover strategy to show IP ⊆ PSPACE
• a note on grpah isomorphism

• summary: interactive proofs incl further reading and context

• outlook: approximation and PCP theorem

• evaluation
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Lecture 17

IP = PSPACE (2)
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Intro

Goal and Plan

Goal
• IP = PSPACE

Plan
1. PSPACE ⊆ IP by showing QBF ∈ IP X

2. IP ⊆ PSPACE by computing optimal prover strategies in
polynomial space
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Intro

Agenda

• optimal prover strategy to show IP ⊆ PSPACE
• summary and further reading

• outlook: approximation and PCP theorem
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PSPACE contains IP

Definition recap

L is in IP iff

1. there exists a polynomial p and

2. there exists a poly-time, randomized verifier V

such that for all words x ∈ {0, 1}∗ holds

• if x ∈ L then there exists a prover P such that
Pr[outV 〈P,V〉(x) = 1] ≥ 2/3

• if x < L then for all provers P holds that
Pr[outV 〈P,V〉(x) = 1] ≤ 1/3

Moreover, the following is bounded by p(|x |)

• the number of random bits chosen by V

• the number of rounds

• the length of each message
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PSPACE contains IP

Optimal Prover

Let L ∈ IP be arbitrary, we need to show that L ∈ PSPACE.

We know that there exist V and p according to definition on previous
slide.
For x ∈ {0, 1}n, we need to compute in polynomial space whether
x ∈ L or x < L .

z := max
P
{Pr[outV 〈P,V〉(x) = 1] | P is any prover for L}

z is acceptance probability of optimal prover, inducing the error
probability.

• if z ≤ 1/3 then x < L

• if z ≥ 2/3 then x ∈ L

• since L ∈ IP other z cannot occur

• maximum taken over finitely many provers for a given x
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PSPACE contains IP

Recursive computation of z

If we can compute z in polynomial space, we are done.

Recursive algorithm:
• simulate V branching on

• each random choice of V
• each possible response of P

• count
• accepting branches produced by P’s optimal response
• total number of branches

• ratio is z
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PSPACE contains IP

Doable in polynomial space?

• recursion depth: p(n)

• total number of branches: p(n)p(n)

⇒ requires polynomially many bits only

• can manage both counters and current branch with a PSPACE
machine
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PSPACE contains IP

Agenda

• optimal prover strategy to show IP ⊆ PSPACE X
• summary and further reading

• outlook: approximation and PCP theorem
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Summary

Summary

• IP = PSPACE
• PSPACE has short interactive proofs (certificates)
• proof of IP ⊇ PSPACE also showed that we can have

• public coins
• perfect completeness

for each L ∈ IP
• interaction plus randomization seem to add power, whereas

each in isolation seemingly does not
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Summary

Further Reading

• interactive proofs defined in 1985 by Goldwasser, Micali,
Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing archive. Volume 18
(1)(1989).

• public coins: L. Babai Trading group theory for randomness.
STOC 1985.

• survey book: Oded
Goldreich Computational Complexity. A Conceptual Perspective.
http://www.wisdom.weizmann.ac.il/˜oded/cc-drafts.html
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Summary

Further Reading

• Adi Shamir. IP=PSPACE. Journal of the ACM v.39 n.4,
p.878-880.

• outline here followed lecture notes from Brown university: A
detailed proof that IP=PSPACE.
http://www.cs.brown.edu/courses/gs019/papers/ip.pdf

• also nice: Michael Sipser’s book Introduction to the Theory of
Computation

• essentially covered 8.1 and 8.2 from Arora-Barak book

• an entertaining survey about the development in the beginning
of the 90s by L. Babai. Transparent proofs and limits to
approximations. First European Congress of Mathematicians.
1994.
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Summary

Outlook

In the beginning of the 90s a lot of things happened quickly. . .

• Shamir proved that IP = PSPACE
• one can also allow multiple provers which leads to the

complexity class MIP
• one accepts only if provers agree

• MIP = NEXP
• lead to the notion of PCP[q, r], where one checks only r entries

in a table of answer/query pairs of size 2q

• it was then shown that PCP[poly, poly] = NEXP and
PCP[log n,O(1)] = NP

• which yields strong results about approximation of
NP-complete problems

• for instance: consider a 7/8 approximation of 3SAT
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Summary

Block structure of lecture

• basic complexity classes

• probabilistic TMs and randomization

• interactive proofs

• approximations and PCP
• parallelization

• NC
• circuits
• descriptive complexity
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Lecture 18

Approximation

2



Intro

Approximations

Goal

• decision→ optimization

• formal definition of approximation

• hardness of approximation

Plan

• vertex cover: VC

• set cover: SC

• travelling salesman problem: TSP

3



Vertex Cover

Planes

Example

Given a set of airports, S, assign gas stations to a smallest subset,
C, where planes can cover at most two legs without re-filling.

Formal model

• airports ∼ nodes in a graph

• legs ∼ undirected edges

• find a smallest set of nodes that covers all edges

• important problem in networks
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Vertex Cover

Vertex Cover

Definition (Cover)

Let G = (V ,E) be an undirected graph. A set C ⊆ V is a cover of S
if

∀(u, v) ∈ E. u ∈ C ∨ v ∈ C

Decision problem

VC = {〈G, k 〉 | G has a cover C and |C | ≤ k }

Optimization problem Min − VC

• given: G = (V ,E) undirected

• find: a minimal cover C
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Vertex Cover

MinVC is NP-hard

Observation

• C is a cover iff V \ C is an independent set.

• C is a minimal cover iff V \ C is a maximal independent set.

Proof

• ∀(u, v). u ∈ C ∨ v ∈ C

⇔ ∀(u, v). u < V \ C ∨ v < V \ C

⇔ ¬∃(u, v). u ∈ V \ C ∧ v ∈ V \ C
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Vertex Cover

Some optimization problems

• many decision problems we have seen have optimization
versions

• both minimization and maximization

• algorithms return best solution with respect to optimization
parameter ρ

Examples

problem min/max parameter
3SAT max number of satisfiable clauses
Indset max size of independent set
VC min size of cover
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Vertex Cover

Approximation

Computing precise solutions is often NP-hard for decision and
optimization.

Instead of optimal solutions, in practice it often suffices to come up
with approximations.

Definition (ρ-approximation)

A ρ-approximation for a minimization (maximization) problem with
optimal solution O , returns a solution that is ≤ ρO (≥ ρO).

Note: ρ may depend on input size.
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Vertex Cover

VC approximation algorithm

1. C ← ∅

2. while C not a cover

3. pick (u, v) ∈ E s.t. u, v < C

4. C ← C ∪ {u, v}

5. return C

Theorem
Algorithm runs in polynomial time and returns a 2-approximation.

Proof Edges picked contain no common vertices. Optimal vertex
cover must contain at least one of the nodes, where the algorithm
adds both.
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Set Cover

Teams

Example

All your friends belong to one or several teams. You want to invite all
of them but team-wise. What is the least number of invitations
necessary?

Set Cover

• given: finite set U and a family F of subsets that covers U:⋃
F ⊇ U

• find: a smallest family C ⊆ F that covers U
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Set Cover

Set Cover is NP-hard

Proof by reduction from vertex cover.

• let G = (V ,E) be an undirected graph

• f(G) = (E,F )

• F = {Ev | v ∈ V}

• Ev = {{u, v} ∈ E}
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Set Cover

Greedy algorithm for SC

1. C ← ∅, U′ ← U

2. while U′ , ∅

3. pick S ∈ F maximizing |S ∩ U′|

4. C ← C ∪ {S}

5. U′ ← U′ \ S

6. return C

• greedy algorithms pick the best local options

• algorithm runs in polynomial time
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Set Cover

Roadmap

Just seen

• vertex cover

• 2-approximation algorithm for VC

• set cover

• approximation algorithm

Up next

• show that algorithm is a ln n approximation

• show that algorithm is a ln |S | approximation for largest set S

• TSP
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Set Cover

What is the approximation ratio?

Need to compare result returned by algorithm with the unknown
optimal solution

Observation If U has a k cover, then every subset of U has a k
cover too!

Consequence Each step of greedy algorihm covers at least 1/k of
the uncovered elements!
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Set Cover

First bound: ln n

• let S1, . . . ,St be the sequence of sets picked by algorithm

• let Ui be U′ after i stages (uncovered)

• observe: |Ui+1| = |Ui \ Si+1| ≤ |Ui |(1 − 1/k)

• hence: |Uik | ≤ |U0|(1 − 1/k)ik ≤
|U|
e i

• thus e
t−1
k ≤

|U|
|Ut−1 |

≤ n

• therefore: t ≤ k ln(n) + 1

Note: The bound depends on the input length. We say that the
greedy algorithm approximates SC to within a logarithmic factor.
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Set Cover

Better bound: ln |S |

Theorem
Greedy algorithm approximates the optimal set cover to within a
factor of H(max{|S | | S ∈ F }) where H(n) = Σn

i=1
1
i

Proof

• imagine a price to be paid by each team

• at each stage 1 euro has to be paid by newly invited team
members, split evenly

• t ≤ total amount paid

X for each S ∈ F selected by the greedy algorithm the total
amount paid by its members is at most ln |S |

⇒ the total amount paid (hence t) is less than k · ln |S | for the
largest S selected
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Set Cover

Proof of (X)

For an arbitrary set S at any stage of the algorithm holds:

• if m members are uncovered, the algorithm chooses a subset
covering at least m elements

⇒ each will pay ≤ 1/m

• members pay the most, if they are covered one by one

⇒ harmonic series
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TSP

Travelling Salesman Problem

Example (TSP)

Given a complete, weighted, undirected graph G = (V ,E) with
non-negative weights. Find a Hamiltonian cycle of minimal cost.

Theorem
TSP is NP-hard.

Proof: Reduce from Hamilton cycle (HC) by giving a large weight to
non-edges.

18



TSP

Roadmap

Just seen

• NP-hard optimization problems

• approximation to within a certain factor

• complexity of approximation for any factor?

Up next

• approximation algorithm for special case of TSP

• Inapproximability results
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TSP

Triangle Equality Instance

In practice, TSP is applied on graphs that satisfy the triangle
inequality:

∀u, v ,w ∈ V .c(u, v) ≤ c(u,w) + c(w, v)

Approximation algorithm for such geographical graphs

1. find minimum spanning tree TG for G = (V ,E)

2. traverse along depth-first search of TG , jump over visited nodes

• algorithm is polynomial
• 2-approximation

• c(TG) ≤ minimal tour
• algorithm traversal costs 2 · c(TG) since jumping over costs at

most the sum of traversed edges
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TSP

Roadmap

Just seen

• special TSP instance with polynomial 2-approximation

Up next

• show it is NP-hard to approximate general TSP to within any
factor ρ ≥ 1

• introduce gap version of TSP
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TSP

gap-TSP

Given a complete, weighted, undirected graph G = (V ,E) and
some constant h ≥ 1.

Definition (gap-TSP)

A solution to the gap problem, gap − TSP[|V |, h|V |], is an algorithm
that return

YES if there exists a Hamiltonian cycle of cost < |V |

NO if all Hamiltonian cycles have cost > h|V |

For all other cases, it may return either yes or no.

Observation: An efficient h-approximation for TSP decides
gap − TSP[C , hC] for any C.
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TSP

gap-TSP is NP-hard

Theorem
For any h ≥ 1, HC ≤p gap − TSP[|V |, h|V |]

Proof: Like HC ≤P TSP, where non-edge weights are h|V |.

⇒ Approximating TSP to within any factor is NP-hard.
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TSP

What have we learnt?

• some NP-hard decision problems have optimization problems
that can be efficiently approximated
• vertex cover within factor 2
• set cover within a logarithmic factor
• geographical travelling salesman problem within factor 2

• some other problems are even NP-hard to approximate, for
instance, general TSP

• gap problems are a useful tool to establish inapproximablity
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TSP

Further Reading

Two books on approximation algorithms

• Dorit Hochbaum, Approximation Algorithms for NP-Hard
Problems, PWS Publishing.

• Vijay Vazirani, Approximation algorithms, Springer.

Lecture Notes
Slides are adapted from a CC course by Muli Safra:
http://www.cs.tau.ac.il/˜safra/Complexity/Complexity.htm
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Lecture 19

Hardness of Approximation

2



Recap

Recap: optimization

• many decision problems we have seen have optimization versions
• both minimization and maximization
• algorithms return best solution with respect to optimization parameter
ρ

Examples

problem min/max parameter
3SAT max fraction of satisfiable clauses
Indset max size of independent set
VC min size of cover
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Recap

Recap: approximation results

• vertex cover has a 2-approximation
• possibly NP-hard to approximate to within 2 − ε for all ε > 0
• currently known: NP-hard to approximate to within 10

√
5 − 21;

• I. Dinur, S. Safra, The importance of being biased, STOC 2002.

• set cover has a ln n approximation
• this is optimal; it is NP-hard to approximate to within (1 − ε) ln n
• U. Feige, A threshold of ln n for approximating set cover, STOC 1996.

• TSP also hard to approximate to within any 1 + ε
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Recap

Polynomial time approximation schemes

A problem has a polynomial time approximation scheme if for all ε > 0 it
can be efficiently approximated to within a factor of 1 − ε for maximization
and 1 + ε for minimization.

Examples
• knapsack
• bin packing
• subset sum
• a number of other scheduling problems

Which NP-complete problems do have PTAS? Which don’t? How to prove
results on previous slide?
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Recap

Recap: gap − TSP[|V |, h|V |]

An algorithm to solve the gap problem needs to:
• if G has a shortest tour of length < |V | then G is accepted by the gap

algorithm
• if the shortest tour of G is > h|V | then G is rejected
• otherwise: don’t care

Theorem: For any h ≥ 1 gap − TSP[|V |, h|V |] is NP-hard by reduction from
Hamiltonian cycle

⇒ It is NP-hard to approximate TSP to within any factor h ≥ 1.

The reduction is called gap-producing.
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Recap

Agenda

• gap − 3SAT[ρ, 1]

• 7/8 approximation for max3SAT
• PCP theorem: hardness of approximation view
• gap-preserving reductions
• hardness of approximating Indset and VC
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gap-3SAT

gap-3SAT[ρ, 1]

• gap − 3SAT[ρ, 1] is the gap version of max3SAT which computes the
largest fraction of satisfiable clauses

• a 3CNF with m clauses is accepted if it is satisfiable
• it is rejected if < ρ ·m clauses are satisfiable
• until 1992 it was an open problem whether max3SAT could be

approximated to within any factor > 7/8
• why 7/8?
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gap-3SAT

A 7/8 approximation of max3SAT

Theorem
For all 3CNF with exactly three independent literals per clause, there exists
an assignment that satisfies ≥ 7/8 of the clauses.

Proof

• for a random assignment let Yi be the random variable that is true if
clause Ci is true under the assignment

• then N = Σm
i=1Yi is the number of satisfied clauses

• E[Yi] = 7/8 for all i

⇒ E[N] = 7/8 ·m
• by the law of average (probabilistic method basic principle) there must

exist an assignment that makes 7/8 of the clauses true

Can we do any better than 7/8?
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PCP: hardness of approximation

No!

Theorem
For every ε > 0 gap − 3SAT[7/8 + ε, 1] is NP-hard.

• this is a PCP theorem by J. Håstad, Some optimal inapproximability
results, STOC 1997.

• as a consequence, if there exists a 7/8 + ε approximation of
max3SAT then P = NP

• we will later prove a much weaker PCP theorem
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PCP: hardness of approximation

Agenda

• gap − 3SAT[ρ, 1] X

• 7/8 approximation for max3SAT X
• PCP theorem: hardness of approximation view
• gap-preserving reductions
• hardness of approximating Indset and VC
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PCP: hardness of approximation

THE PCP theorem

Håstads result is one in a series of inapproximability results based on the
PCP theorem.

Theorem (PCP: hardness of approximation)

There exists a ρ < 1 such that gap − 3SAT[ρ, 1] is NP-hard.

• Safra: One of the deepest and most complicated proofs in computer
science with a matching impact.

• original proof in two papers:
• Arora, Safra, Probabilistic checking of proofs, FOCS 92
• Arora, Lund, Motwani, Sudan, Szegedy, Proof verification and the

hardness of approximations, FOCS 92.

• virtually all inapproximability results depend on the PCP theorem and
the notion of gap preserving reductions by Papadimitriou and
Yannakakis
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PCP: hardness of approximation

Probabilistically checkable proofs

• the PCP theorem is equivalent to the statement NP = PCP[log n, 1]

• PCP stands for probabilistically checkable proofs and is related to
interactive proofs and MIP = NEXP

• equivalence of two views shown in next lecture
• NP = PCP[poly(n), 1] shown after that
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PCP: hardness of approximation

Agenda

• gap − 3SAT[ρ, 1] X

• 7/8 approximation for max3SAT X
• PCP theorem: hardness of approximation view X
• gap-preserving reductions
• hardness of approximating Indset and VC
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PCP Application

Gap-producing and preserving reductions

PCP theorem states that for every L ∈ NP there exists a gap-producing
reduction f to gap − 3SAT[ρ, 1]:
• x ∈ L =⇒ f(x) is satisfiable
• x < L =⇒ less than ρ of the f(x)’s clauses can be satisfied at the

same time

Observation
• in order to show inapproximability of other problems, we want to

preserve gaps by reductions
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PCP Application

gap − 3SAT[ρ, 1] ≤gap gap − IS[ρ, 1]

Consider the proof of 3SAT ≤p Indset (nodes are satisfying assignments
for each clause, edges between incompatible ones).

The reduction f used there is actually gap-preserving, we write

gap − 3SAT[ρ, 1] ≤gap gap − IS[ρ, 1]

• if 3CNF ψ with m clauses is satisfiable then graph f(ψ) has an
independent set of size m

• if less than ρ of ψ’s clauses can be satisfied, the largest independent
set has less than ρ ·m nodes

• hence: if we can approximate Indest to within ρ, then we can
approximate max3SAT to within ρ, then we can decide any L ∈ NP

16



PCP Application

What about vertex cover?

The same reduction f from independent set can be used to show hardness
of approximating vertex cover to within (7 − ρ)/6 for the same ρ used in
max3SAT and Indset.

• ψ satisfiable

⇒ f(ψ) has i.s. of size m

⇒ f(ψ) has a v.c. of size 6m

• only ρ ·m of ψ’s clauses satisfiable

⇒ f(ψ) has largest i.s. smaller than ρm

⇒ f(ψ) has smallest v.c. of size larger than (7 − ρ)m

17



PCP Application

What about vertex cover?

The same reduction f from independent set can be used to show hardness
of approximating vertex cover to within (7 − ρ)/6 for the same ρ used in
max3SAT and Indset.

• ψ satisfiable

⇒ f(ψ) has i.s. of size m

⇒ f(ψ) has a v.c. of size 6m

• only ρ ·m of ψ’s clauses satisfiable

⇒ f(ψ) has largest i.s. smaller than ρm

⇒ f(ψ) has smallest v.c. of size larger than (7 − ρ)m

17



PCP Application

What about vertex cover?

The same reduction f from independent set can be used to show hardness
of approximating vertex cover to within (7 − ρ)/6 for the same ρ used in
max3SAT and Indset.

• ψ satisfiable

⇒ f(ψ) has i.s. of size m

⇒ f(ψ) has a v.c. of size 6m

• only ρ ·m of ψ’s clauses satisfiable

⇒ f(ψ) has largest i.s. smaller than ρm

⇒ f(ψ) has smallest v.c. of size larger than (7 − ρ)m

17



PCP Application

Independent set vs. vertex cover

• For both independent set and vertex cover, we know that there exist a
ρ < 1 such that neither can be approximated to within ρ (resp. 1/ρ)

• optimal solutions are intimately related: if vc is the smallest vertex
cover and is the largest independent set then vc = is − n

• but: approximation is different; using the ρ app. for independent set,
yields a n−ρ·is

n−is approximation for set cover
• for independent set we can show NP-hardness of approximation to

within any factor ρ < 1 by gap amplification
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PCP Application

Gap amplification

• given instance G = (V ,E)

• construct G′ = (V × V ,E′) where

E′ = {(u, v), (u′, v ′) | (u, u′) ∈ E ∨ (v , v ′) ∈ E}

• if I ⊆ V is an i.s. of G then I × I is an i.s. of G′; hence
opt(G′) ≥ opt(G)2

• if I′ is an optimal i.s. in G′ with vertices (u1, v1), . . . , (uj , vj) then the ui

and the vi are each i.s. in G with at most opt(G) vertices; hence
opt(G′) ≤ opt(G)2

• hence i.s. is also hard to approximate within ρ2

• this can be done any constant k times to obtain the result
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PCP Application

What have we learnt?

• 7/8 approximation for max3SAT
• PCP theorem: hardness of approximating max3SAT
• gap-preserving reductions to obtain more inapproximability results
• NP-hardness of approximating Indset to within any ρ < 1
• NP-hardness of approximating VC to within some ρ > 1 (yet

unknown)
• but: many NP-complete problems can still be approximated to within

any factor 1 + ε

Up next
• PCP: hardness of approximation vs. prob. checkable proofs
• proof of a weaker PCP theorem
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Lecture 20

Probabilistically checkable proofs

2



Intro

Goal and plan

Goal
• understand probabilistically checkable proofs,
• know some examples, and
• see the relation (in fact, equivalence) between PCP and hardness of

approximation

Plan
• PCP for GNI
• definition: intuition and formalization
• PCP theorem and some obvious consequences
• tool: a more general 3SAT, constraint satisfaction CSP
• PCP theorem =⇒ gapCSP[ρ, 1] is NP-hard
• gapCSP[ρ, 1] is NP-hard =⇒ PCP theorem

3



Intuition

PCP: an intuition

What does probabilistically checkable mean?

• you want to verify correctness of a proof by only looking at a few bits
of it

Which proofs?
• typically membership in a language

Why should I care?
• because it gives you a tool to prove hardness of approximation

4



Intuition

PCP: an intuition

What does probabilistically checkable mean?
• you want to verify correctness of a proof by only looking at a few bits

of it

Which proofs?
• typically membership in a language

Why should I care?
• because it gives you a tool to prove hardness of approximation

4



Intuition

PCP: an intuition

What does probabilistically checkable mean?
• you want to verify correctness of a proof by only looking at a few bits

of it

Which proofs?

• typically membership in a language

Why should I care?
• because it gives you a tool to prove hardness of approximation

4



Intuition

PCP: an intuition

What does probabilistically checkable mean?
• you want to verify correctness of a proof by only looking at a few bits

of it

Which proofs?
• typically membership in a language

Why should I care?
• because it gives you a tool to prove hardness of approximation

4



Intuition

PCP: an intuition

What does probabilistically checkable mean?
• you want to verify correctness of a proof by only looking at a few bits

of it

Which proofs?
• typically membership in a language

Why should I care?

• because it gives you a tool to prove hardness of approximation

4



Intuition

PCP: an intuition

What does probabilistically checkable mean?
• you want to verify correctness of a proof by only looking at a few bits

of it

Which proofs?
• typically membership in a language

Why should I care?
• because it gives you a tool to prove hardness of approximation

4



Intuition

How can it be done?

Example
• Susan picks some 0 ≤ n ≤ 10, Matt wants to know which n
• problem: his vision is blurred, he only sees up to ±5

Solution
• Matt: Hey, Susan, why don’t you show me 100 · n instead?
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Intuition

Can you say this more formally?

• blurred vision ∼ we cannot see all bits of a proof

⇒ we can check only a few bits
• proofs can be spread out such that wrong proofs are wrong

everywhere
• the definition of PCP will require existence of a proof only
• a correct proof must always be accepted (completeness 1)
• a wrong proof must be rejected with high probability (soundness ρ)

6



Intuition

Does it work for real problems?

• yes, here is a PCP for graph non-isomorphism
• we use our familiar notion of verifier and prover
• albeit both face some limitations (later)

7
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Intuition

PCP for GNI

Input: graphs G0,G1 with n nodes

Verifier Proof π

• picks b ∈ {0, 1} at
random

• picks random
permutation
σ : [n]→ [n]

• asks for b ′ = π[σ(Gb)]

• accepts iff b ′ = b

• an array π indexed by all
graphs with n nodes

• π[H] contains a if
H � Ga

• otherwise 0 or 1
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Intuition

Analysis

• |π| is exponential in n
• verifier asks for only one bit
• verifier needs O(n) random bits
• verifier is a polynomial time TM
• if π is correct, the verifier always accepts
• if π is wrong (e.g. because G0 � G1, then verifier accepts with

probability 1/2

9



Intuition

Agenda

• PCP for GNI X
• definition: intuition and formalization
• PCP theorem and some obvious consequences
• tool: a more general 3SAT, constraint satisfaction CSP
• PCP theorem =⇒ gapCSP[ρ, 1] is NP-hard
• gapCSP[ρ, 1] is NP-hard =⇒ PCP theorem

10



PCP: def and theorem

PCP system for L ⊆ {0, 1}∗

Input: word x ∈ {0, 1}n

Verifier Prover

1. pick r(n) random bits

2. pick q(n) positions/bits
in π

3. based on x and random
bits, compute
Φ : {0, 1}q(n) → {0, 1}

4. after receiving proof bits
π1, . . . , πq(n) output
Φ(π1, . . . , πq(n))

• creates a proof π that
x ∈ L

• |π| ∈ 2r(n)q(n)

• on request, sends bits of
π

• V is a polynomial-time TM
• if x ∈ L then there exists a proof π s.t. V always accepts
• if x < L then V accepts with probability ≤ 1/2 for all proofs π

11



PCP: def and theorem

PCP[r(n), q(n)]

Definition
A language L ∈ {0, 1}∗ is in PCP[r(n), q(n)] iff there exists a PCP system
with c · r(n) random bits and d · q(n) queries for constants c, d > 0.

Theorem (THE PCP theorem)

PCP[log n, 1] = NP.
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PCP: def and theorem

Observations

• GNI ∈ PCP[poly(n), 1]

• the soundness parameter is arbitrary and can be amplified by
repetition

• PCP[0, 0]

= P
• PCP[0, log(n)] = P
• PCP[0, poly(n)] = NP
• PCP[r(n), q(n)] ⊆ NTIME(2O(r(n))q(n))

⇒ PCP[log n, 1] ⊆ NP
• every problem in NP has a polynomial sized proof (certificate), of

which we need to check only a constant number of bits
• for 3SAT (and hence for all!) as low as 3!
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PCP: def and theorem

More remarks

• the Cook-Levin reduction does not suffice to prove the PCP theorem
• because of soundness
• even for x < L , almost all clauses are satisfiable
• because they describe acceptable computations

• PCP is inherently different from IP
• proofs can be exponential in PCP
• PCP: restrictions on queries and random bits
• IP: restrictions on total message length
⇒ PCP[poly(n), poly(n)] ⊇ IP = PSPACE (in fact equal to NEXP)
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PCP: def and theorem

Agenda

• PCP for GNI X
• definition: intuition and formalization X
• PCP theorem and some obvious consequences X
• tool: a more general 3SAT, constraint satisfaction CSP
• PCP theorem =⇒ gapCSP[ρ, 1] is NP-hard
• gapCSP[ρ, 1] is NP-hard =⇒ PCP theorem
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Constraint satisfaction

Constraint satisfaction

3SAT qCSP

• n Boolean variables
• m clauses
• each clause has 3

variables

• n Boolean variables
• m general constraints
• each constraint is over q

variables

16



Constraint satisfaction

CSP remarks

• one can define the fraction of simultaneously satisfiable clauses just
as for max3SAT

• each constraint represents a function {0, 1}q → {0, 1}
• we may assume that all variables are used: n ≤ qm

⇒ a qCSP instance can be represented using mq log(n)2q bits
(polynomial in n,m)
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Constraint satisfaction

gap-CSP

Definition
gap − qCSP[ρ, 1] is NP-hard if for every L ∈ NP there is a gap-producing
reduction f such that
• x ∈ L =⇒ f(x) is satisfiable
• x < L =⇒ at most ρ constraints of f(x) are satisfiable (at the same

time)
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Constraint satisfaction

Agenda

• PCP for GNI X
• definition: intuition and formalization X
• PCP theorem and some obvious consequences X
• tool: a more general 3SAT, constraint satisfaction CSP X
• PCP theorem =⇒ gapCSP[ρ, 1] is NP-hard
• gapCSP[ρ, 1] is NP-hard =⇒ PCP theorem
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PCP vs hardness of approximation

PCP⇔ Hardness of approximation

Theorem
The following two statements are equivalent.
• NP = PCP[log n, 1]

• there exist 0 < ρ < 1 and q ∈ N such that gap − qCSP[ρ, 1] is
NP-hard.

• this formalizes the equivalence of probabilistically checkable proofs
and hardness of approximation

• this is why the PCP theorem was a breakthrough in inapproximability
• gap preservation from CSP to 3SAT is not hard but omitted
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PCP vs hardness of approximation

⇒

• show that there is a gap-producing reduction f from 3SAT to
gap − qCSP[1/2, 1]

• by PCP, 3SAT has PCP system with poly. time verifier V , a constant q
queries, using c log n random bits

• define f(x) = {ψr : {0, 1}q → {0, 1} | r ∈ {0, 1}c log n} such that
• ψr (b1, . . . , bq) = 1 if V accepts the bits from proof π given by r
• f(x) is a qCSP of size 2c log n ∈ O(n), representable and computable

in poly time
• if x ∈ 3SAT then there exists proof π s.t. f(x) is satisfiable
• if x < 3SAT then all proofs π satisfy at most 1/2 of f(x)’s constraints

⇒ f is gap-producing
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PCP vs hardness of approximation

⇐

• show that for L ∈ NP, there exists a PCP system

• by assumption there is a gap-producing reduction f from L to
gap − qCSP[ρ, 1] for some q and ρ
• for x ∈ L : f(x) is satisfiable qCSP {ψi}

m
i=1

• for x < L at most ρm constraints satisfiable

• on input x the PCP verifier
• computes f(x)
• expects proof π to be assignment to f(x)’s n variables
• picks 1 ≤ j ≤ m at random (needs log m bits!)
• sets Φ = ψj

• asks for value of q variables of ψj

• if x ∈ L then V accepts with prob. 1
• if x < L then V accepts with prob. ρ
• ρ can be amplified to soundness error at most 1/2 by constant

number of repetitions
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PCP vs hardness of approximation
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PCP vs hardness of approximation

Recap: Two views of the PCP theorem

prob. checkable proofs hardness of approximation

PCP verifier V ↔ CSP instance

proof π ↔ variable assignment

|π| ↔ number of variables in CSP

number of random bits ↔ log m, where
m is number of clauses

number of queries ↔ arity of constraints
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PCP vs hardness of approximation

What have we learnt?

• probabilistically checkable proofs are proofs with restrictions on the
verifier’s number of random bits and the number of proof bits queried

• yields a new, robust characterization of NP
• is equivalent to NP-hardness of gap − qCSP[ρ, 1]

• hence to NP-hardness of gap − 3SAT[ρ, 1]

• hence to NP-hardness of approximation for many problems in NP
(previous lecture)

Up next: Prove that NP ⊆ PCP[poly(n), 1]
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Lecture 21

NP ⊆ PCP[poly(n), 1]

2



Recap: Two views of the PCP theorem

prob. checkable proofs hardness of approximation

PCP verifier V ↔ CSP instance

proof π ↔ variable assignment

|π| ↔ number of variables in CSP

number of random bits ↔ log m, where
m is number of clauses

number of queries ↔ arity of constraints
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Goal and plan

Goal
• proof a weaker PCP theorem
• learn interesing encoding/decoding schemes useful in such proofs

Plan
• proof

• an NP-complete language: Quadeq
• Walsh-Hadamard encodings
• a PCP[poly, 1] system for Quadeq

• summary: PCP and hardness of approximation

4



Weak PCP

Theorem
NP ⊆ PCP[poly, 1]

Proof: It suffices to come up with a PCP system for one NP-complete
language, where the verifier
• uses polynomially many random bits (exponentially long proofs)
• makes a constant number of queries to that proof

Plan:
• an NP-complete language: Quadeq
• Walsh-Hadamard encodings
• a PCP[poly, 1] system for Quadeq

5



Disclaimer

All arithmetic today will be modulo 2, that is, over the field {0, 1}!

• 1 + 1 = 0
• x2 = x
• x + y = x − y

6



Quadeq

• satisfiable quadratic equations over {0, 1}
• n variables/m equations
• no purely linear terms
• NP-complete (exercise!)

Example (Running example)

xy + xz = 1
y2 + yz + z2 = 1
x2 + yx + z2 = 0

Solution: x = 1, y = 0, z = 1
as a vector: s = (1 0 1)

7
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Be smart, use vector notation

xy + xz = 1
y2 + yz + z2 = 1
x2 + yx + z2 = 0

s = (1 0 1)

vector notation: for a given m × n2 matrix A and m vector b find solution
u = (x y z) such that

A(u ⊗ u) = b

u ⊗ u x2 xy xz yx y2 yz zx zy z2

s ⊗ s 1 0 1 0 0 0 1 0 1 b
A 0 1 1 0 0 0 0 0 0 1

0 0 0 0 1 1 0 0 1 1
1 0 0 1 0 0 0 0 1 0
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Overview

• Quadeq is the language of satisfiable systems of quadratic equations
over {0, 1}

• natural PCP system expects a solution u and checks whether it is
valid

• but this yields superconstant number of queries!
• how can we encode a solution such that a constant number of

queries suffices?

• use longer proofs!

• an NP-complete language: Quadeq X
• Walsh-Hadamard encodings
• a PCP[poly, 1] system for Quadeq

9
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PCP for Quadeq

Input: m × n2 matrix A , m vector b

Verifier Proof π

1. check that f , g are linear
functions

2. check that
g = WH(u ⊗ u) where
f = WH(u)

3. check that g encodes a
satisfying assignment

• π ∈ {0, 1}2
n+2n2

• π is a pair of linear
functions 〈f , g〉, i.e.
strings from {0, 1}2

n
and

{0, 1}2
n2

, resp.
• if u satisfies

A(u ⊗ u) = b then
f = WH(u) and
g = WH(u ⊗ u) are
Walsh-Hadamard
encodings

10



Walsh-Hadamard encoding

Definition (WH)

Let u ∈ {0, 1}n be a vector. The Walsh-Hadamard encoding of u written
WH(u) is the truth table of the linear function f : {0, 1}n → {0, 1} with
f(x) = u � x where (u1 . . . un) � (x1 . . . xn) = Σn

i=1uixi .

Example
The solution to our running example is s = (1 0 1). We have

WH(s) = (0 1 0 1 1 0 1 0)

Note: |WH(u)| = 2|u|
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Properties (without proof)

Random subsum principle
• if u , v then for 1/2 of the choices of x we have u � x , v � x
• if u , v then WH(u) and WH(v) differ on at least half their bits

Local linearity testing
• we say that f , g : {0, 1}n → {0, 1} are ρ-close if

Prx∈R {0,1}n [f(x) = g(x)] ≥ ρ

• if there exists a ρ > 1/2 s.t.

Prx,y∈R {0,1}n [f(x + y) = f(x) + f(y)]≥ ρ

then f is ρ-close to a linear function
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Local linearity testing

• we test the linearity condition (f(x + y) = f(x) + f(y)) independently
1/δ > 2 times, and accept if all tests pass

• we accept a linear function with probability 1
• if f is not 1 − δ-close to a linear function

• all tests are passed with probability at most (1 − δ)(1/δ)

⇒ such a function is rejected with probability at least 1 − 1/e > 1/2

• for instance, we could make a 0.999 linearity test using 1000 trials

14



Local decoding

• it might happen, that we accept non-linear functions that are very
close to linear functions

• in this case we treat them as if they were linear
• if we want to query f(x)

1. we choose x′ ∈ {0, 1}n at random
2. set x′′ = x + x′

3. let y′ = f(x′) and y′′ = f(x′′)
4. output y′ + y′′

• this makes two queries instead of one
• and recovers the value of the closest linear function with high

probability
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PCP for Quadeq

Input: m × n2 matrix A , m vector b

Verifier Proof π

1. check that f , g are linear
functions X

2. check that
g = WH(u ⊗ u) where
f = WH(u)

3. check that g encodes a
satisfying assignment

• π ∈ {0, 1}2
n+2n2

• π is a pair of linear
functions 〈f , g〉, i.e.
strings from {0, 1}2

n
and

{0, 1}2
n2

, resp.
• if u satisfies

A(u ⊗ u) = b then
f = WH(u) and
g = WH(u ⊗ u) are
Walsh-Hadamard
encodings
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Check WH encodings

Test 10 times for random r, r′ ∈ {0, 1}n

f(r)f(r′) = g(r ⊗ r′)

If the proof is correct we always accept:

f(r)f(r′) =
(
Σi∈[n]uiri

)(
Σj∈[n]ujr ′j

)
= Σi,j∈[n]uiujrir ′j
= ((u ⊗ u) � (r ⊗ r′))
= g(r ⊗ r′)

If the proof is wrong we reject with probability at least 1/4 by applying the
random subsum principle twice, because in esence we compute rUr′ and
rWr′ for different matrices U and W .
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PCP for Quadeq

Input: m × n2 matrix A , m vector b

Verifier Proof π

1. check that f , g are linear
functions X

2. check that
g = WH(u ⊗ u) where
f = WH(u) X

3. check that g encodes a
satisfying assignment

• π ∈ {0, 1}2
n+2n2

• π is a pair of linear
functions 〈f , g〉, i.e.
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, resp.
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Walsh-Hadamard
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Is the assignment satisfying?

• for each of m equations we can check g(z) at some place z
corresponding to the coefficients in matrix A

• but this is not constant queries!

• instead multiply each equation by a random bit and take the sum of all
equations

• if g encodes a solution, we will always have a solution to the sum
• otherwise, we have a solution with probability 1/2 only
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Is the system in PCP[poly(n), 1]?

1. π ∈ {0, 1}2
n+2n2

2. check that f , g are linear functions
• 2(1 − δ) · n random bits, 2(1 − δ) queries

3. check that g = WH(u ⊗ u) where f = WH(u)
• 20n random bits, 20 queries

4. check that g encodes a satisfying assignment
• m random bits (one per equation), 1 query

Yes!
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Conclusion

PCP and hardness of approximation
• computing approximate solutions to NP-hard problems is important
• the classical Cook-Levin reduction does not rule out efficient

approximations
• many nontrivial approximation algorithms exist (2-app for metric TSP,

knapsack, 2-app for vertex cover)
• PCP theorem shows hardness of approximating max3SAT to within

any constant factor if P , NP
• we showed hardness of approximation for Indset as well
• this is equivalent to having a probabilistically checkable proof system

with logarithmic randomness and constant queries
• PCP proofs involve intricate encoding schemes like Walsh-Hadamard

Further Reading Luca Trevisan, Inapproximability of Combinatorial
Optimization Problems, available from
http://www.cs.berkeley.edu/˜luca/pubs/inapprox.pdf

Next and final topic: Parallelism
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Lecture 22

Models of Parallel Computation

2



Goal and plan

Goal

• introduce two models of parallel computation

• understand why they are equivalent

Plan

• PRAM: parallel random access machine

• circuits

• some complexity class definitions

3



Random access machine

RAM: more realistic model of sequential computation, which can be
simulated by standard TMs with polynomial overhead.

• computation unit with user-defined program

• read-only input tape, write-only output tape, unbounded
number of local memory cells

• memory cells can hold unbounded integers
• instructions include

• moving data between memory cells
• comparisons and branches
• simple arithmetic operations

• all operations take unit time

4



Parallel random access machine

PRAM: parallel extension of RAM

• unbounded collection of RAM processors without tapes:
P0,P1,P2, . . .

• unbounded collection of shared memory cells:
M[0],M[1],M[2], . . .

• each Pi has its own local memory (registers)

• input: n items stored in M[0], . . . ,M[n − 1]

• output stored on some designated part of memory
• instructions execute in 3-phase cycles

• read from shared memory
• local computation
• write to shared memory

• processors execute cycles synchronously

• P0 starts and halts execution
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Read/write conflicts

It may happen that several processors want to read from or write to
the same memory cell in one cycle.

Three policies:

EREW : exclusive read/exclusive write

CREW : concurrent read/exclusive write allows for
simultaneous reads

CRCW : simultaneous read and write allowed
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Practical concerns

• idealized: PRAMs are an abstract, idealized formalism
• unbounded integers
• communication between any two processors in constant time

due to shared memory (in reality: interconnection networks)
• too many processors

• CRCW and CREW hard to build technically but easier to
design algorithms

• still useful as benchmark
• if there is no good PRAM algorithm, probably the problem is

hard to parallelize

7



Time and space complexity

• time complexity: number of steps of P0

• space complexity: number of shared memory cells accessed

• one can show that the weakest PRAM (EREW) can simulate
the strongest with logarithmic overhead; cf. search-example

• efficient parallel computation
• polynomially many processors
• polylogarithmic time, where polylog(n) =

⋃
k≥1 log

k n

• problems with efficient parallel algorithms are said to be in NC
• NC is robust wrt different PRAM models (and circuits)
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Example: Search

Example

Given n items on the shared memory tape and p + 1 < n
processors. For some x ∈ N P0 wants to know, whether there exists
an 0 ≤ i < n such that M[i] = x.

Solution (high level):

1. P0 publishes x

2. for 1 ≤ i ≤ p each Pi searches through
M[d n

p e(i − 1)], . . . ,M[d n
p ei − 1]

3. each Pi announces its search result

9
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Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

• needs O(1) time in CRCW and CREW since P0 can simply
write x on the shared tape which everybody can read
simultaneously

• needs log p steps in EREW by binary broadcast tree

Step 3

• needs O(1) time in CRCW only, where all successful
processors indicate success in the same memory cell

• otherwise, we need log p time to perform a parallel reduction
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Other problems in NC

Many practical problems are known to be in NC, for details, take
some class on parallel algorithms.

• sorting

• matrix multiplication

• expression evaluation

• connected components of graphs

• string matching

11



Signpost

Just seen:

• RAMs and PRAMs

• CRCW, CREW, EREW

• simulations between models have at most logarithmic overhead

• efficient parallel ∼ polylogarithmic (stable under different PRAM
models)

Next:

• Boolean circuits as parallel model of computation

• equivalence with respect to efficient parallel algorithms of
PRAM and circuits
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Boolean Circuits
Definition
A Boolean circuit, C , is a directed acyclic graph with labeled nodes.

• the input nodes are labeled with a variable xi or with a constant
0 or 1

• the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
• ∧ (fan-in k )
• ∨ (fan-in k )
• ¬ (fan-in 1)

• the output nodes are labeled output and have fan-out 0

Given an assignment σ : {0, 1}m → {0, 1} to the m variables, C(σ)
denotes the value of the o output nodes. We denote by size(C) the
number of gates and by depth(C) the maximum distance from an
input to an output.
We distinguish circuits with and without a-priori bounds on fan-in.
Wlog we assume that all negations appear in the input layer only.
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denotes the value of the o output nodes. We denote by size(C) the
number of gates and by depth(C) the maximum distance from an
input to an output.
We distinguish circuits with and without a-priori bounds on fan-in.
Wlog we assume that all negations appear in the input layer only.
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Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2n → {0, 1}n+1

Ripple carry adder

• n sequential full adder

• depth: O(n)

• size: O(n)

Conditional sum adder

• depth: O(log n)

• size: O(n log n)

Carry lookahead adder

• depth: O(log n)

• size: O(n)
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Deciding languages with circuits

Definition
A language L ⊆ {0, 1}∗ is said to be decided by a family of circuits
{Cn}, where Ci takes i input variables, iff for all i holds:
Ci(x) = 1 iff x ∈ L .

Definition
Let d, s : N→ N be functions. We say that a family {Cn} has depth
d and size s if for all n

• depth(Cn) ≤ d(n)

• size(Cn) ≤ s(n)
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Examples

Example (Parity)

Parity = {x ∈ {0, 1}∗ | x has an odd number of 1s}

• circuits are binary trees of xor gates
• each xor-gate has depth 3
⇒ logarithmic depth

Example (UHalt)

UHalt = {1n |

n’s binary expansion encodes a pair 〈M, x〉 such that M halts on x}

• circuit family of linear size decides UHalt even though it is
undecidable

• for each n with 1n ∈ UHalt is a tree of and-gates
• otherwise, constant 0 circuit
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On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, {Cn} is logspace-uniform if
there exists a logspace TM M such that for every n,
M(1n) = desc(Cn), where desc(Cn) is the description of Cn.

Remarks

• a description could be a list of gates along with type and
predecessors

• the circuit family for Parity is logspace-uniform
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Signpost

Just seen:

• circuit definition

• families of circuits decide languages

• there exist families of polynomial size deciding undecidable
languages

⇒ require logspace-uniformity

Next:

• circuits vs PRAMs

18



Circuits vs PRAMs

For efficient parallel computations only:
parallel time on PRAM ∼ circuit depth
number of processors ∼ circuit size

circuits→ PRAM
• suppose L decided by family {Cn} of polynomial size N and

depth O(logd n)
• a PRAM with N processors decides L :
• compute a description of Cn

• each circuit node→ one processor
• each processor computes its output and sends it to all other

processors that need it (might require logarithmic overhead for
non-CR models)

• parallel time ∼ circuit depth
• circuit size ∼ number of processors

19



Circuits vs PRAMs

For efficient parallel computations only:
parallel time on PRAM ∼ circuit depth
number of processors ∼ circuit size

PRAM→ circuits
• circuit with N · D nodes in D layers
• the i-th node in the t-th layer performs computation of

processor i at time t

20



NC and AC

Obviously, variations of PRAMs and circuits are robust wrt.
polynomial size/number of processors and polylogarithmic
depth/parallel run time motivating the following definition.

Definition (NC and AC)

Let k ≥ 0. L ∈ ACk iff L is decided by a logspace-uniform family of
circuits with polynomial size and depth O(logk n). If the family of
circuits is of bounded fan-in, then L ∈ NCk.

• NC =
⋃

k≥0 NCk

• AC =
⋃

k≥0 ACk

• NC is the class of problems with efficient parallel solutions
• AC circuits cannot be build easily in hardware
• it is an open problem whether P = NC, that is, whether all

problems in P are efficiently parallelizable (conjecture: no)
• Parity ∈ NC1 (but not in AC0)
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Summary

• three variations of a PRAM

• uniform and non-uniform circuit families can decide languages

• efficiently parallelizable: NC
• circuits and PRAM are equivalent wrt NC problems

Up next: small depth circuits (AC and NC)

• their relation to well-known (space) complexity classes

• some lower bounds

22
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Jan Křetı́nský
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Lecture 23

NC and AC scrutinized

2



Intro

Recap

Efficient parallel computation

• computable by some PRAM with

• polynomially many processors in

• polylogarithmic time

• robust wrt to underlying PRAM model

corresponds to

small depth circuits

• of polynomial size

• polylogarithmic depth

• logspace uniform
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Intro

Recap – NC and AC

If L ⊆ {0, 1}∗ is decided by a logspace-uniform family {Cn} of
polynomially sized circuits with bounded fan-in

• and depth logk n then L ∈ NCk for k ≥ 0

• NC =
⋃

k≥0 NCk

If the fan-in is unbounded we obtain the corresponding AC
hierarchy.
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Intro

Goal

Find the places of NC and AC among other complexity classes!
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Intro

Agenda

• NC versus AC
• NC versus P
• NC1 versus L
• NC2 versus NL

6



NC vs AC

Unbounded→ bounded fan-in

Theorem
For all k ≥ 0

NCk ⊆ ACk ⊆ NCk+1

Proof

• first inclusion trivial

• for the second, assume L ∈ ACk by family {Cn}

• there exists a polynomial p(n) such that
• Cn has p(n) gates with
• maximal fan-in of at most p(n)

• each such gate can be simulated by a binary tree of gates of
the same kind with depth log(p(n)) = O(log n)

⇒ the resulting circuit has size at most size p(n)2, depth at most
logk+1 n and maximal fan-in 2
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NC vs AC

Corollary

Theorem
AC = NC

Remarks

• the inclusions in the theorem on the previous slide are strict for
k = 0

• one strict inclusion is trivial, the other one is subject of the next
lecture

• for practical relevance, we focus on bounded fan-in, ie. NC

8
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NC vs AC

Agenda

• NC versus AC X
• NC versus P
• NC1 versus L
• NC2 versus NL
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NC vs P

NC versus P

Theorem
NC ⊆ P

Proof

• let L ∈ NC by circuit family {Cn}

⇒ there exists a logspace TM M that computes
M(1n) = desc(Cn)

• the following P machine decides L
• on input x ∈ {0, 1}n simulate M to obtain desc(Cn)
• Cn has input variables z1, . . . , zn
• evaluate Cn under the assignment σ that maps zi to the i − th

bit of x
• output Cn(σ)

• all steps take polynomial time (evaluation takes time
proportional to circuit size)
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NC vs P

Remarks

• P equals the set of languages with logspace-uniform circuits of
polynomial size and polynomial depth (exercise)

• it is an open problem whether the previous inclusion is strict

• in fact it is open whether NC1 ⊂ PH
• problem is important, since it answers whether all problems in

P have fast parallel algorithms

• conjecture: strict
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NC vs P

Agenda

• NC versus AC X
• NC versus P X
• NC1 versus L
• NC2 versus NL
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NC1 vs L

Proof Steps

1. logspace reductions are transitive

2. if L ∈ NC1 then there exists a logspace uniform family of
circuits {Cn} of depth log n

3. circuit evaluation of a circuit of depth d and bounded fan-in can
be done in space O(d)

What is the theorem?

13



NC1 vs L

What is the theorem?

Theorem
NC1 ⊆ L.

Proof

• for a language L ∈ NC1, we can compute its circuits (step 2) in
logspace

• we can evaluate circuits in logspace (step 3)

• the composition of these two algorithms is still logspace
(step 1)

• steps 1 and 2 already proven
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NC1 vs L

Proof of Step 3

• evaluate the circuit recursively
• identify gates with paths from output to input node

• output node: ε
• left predecessor of gate π: π.0
• right predecessor of gate π: π.1

• 1. if π is an input return value
2. if π denotes an op gate, compute value of π.0, value of π.1 and

combine

• recursive depth log n, only one global variable holding current
path: total log n space

• note that the naive recursion takes log2 n space!
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NC1 vs L

Agenda

• NC versus AC X
• NC versus P X
• NC1 versus L X
• NC2 versus NL
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NC2 vs NL

The theorem

Theorem
NL ⊆ NC2

Proof outline

• show that Path ∈ NC2

• let L ∈ NL and NL machine M deciding it; for a given input
x ∈ {0, 1}∗

• build a circuit C1 computing the adjacency matrix of M’s
configuration graph on input x

• build a second circuit C2 that takes this output and decides
whether there is an accepting run

• the composition of C1 and C2 decides L

• observe: the composition can be computed in logspace

17



NC2 vs NL

Path ∈ NC2

• let A be the n × n adjacency matrix of a graph

• let B = A + I (add self loops)

• compute the square product B2

B2
i,j =
∨

k

Bi,k ∧ Bk ,j

• contains 1 iff there is a path of length at most 2

• can be done in AC0 ⊆ NC1

• log n times repeated squaring

⇒ paths can be computed in NC2
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NC2 vs NL

Agenda

• NC versus AC X
• NC versus P X
• NC1 versus L X
• NC2 versus NL X

19



Summary

Criticism of NC

The notion of NC as efficient parallel computation may be criticized.
• polynomially many processors

• in the NC hierarchy a log n algorithm with n2 processors is
favored over one with n processors and time log2 n

• expensive
• polylogarithmic depth

• for many practical inputs, sublinear algorithms might be as good
or better

• e.g. n0.1 is at most log2 n for values up to 2100
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Summary

Summary

• AC = NC
• NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ P
• up next: AC0 ⊂ NC1
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Lecture 24

AC0 ⊂ NC1



Agenda

• lower bounds for circuits
• AC0 ⊂ NC1

• tool: random restrictions and switching lemma



Circuit lower bounds

• n is trivial
• 5n − o(n) for NP-complete problems
• special cases: bounded depth
• any Boolean formula by circuit of depth 2 and exponential size
• some proven to require exponential size, not valid for depth 3 any

more
• do NP-complete problems have polynomial circuits with constant

depth, i.e., AC0?



AC0 ⊂ NC1

No!

Theorem⊕
< AC0

•
⊕
∈ NC1 by binary “⊕-tree”

• hence AC0 ⊂ NC1
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Agenda

• lower bounds for circuits X
• AC0 ⊂ NC1 X

• tool: random restrictions and switching lemma



Main idea: random restrictions

• every function with AC0 satisfies:
• if vast majority of inputs fixed (randomly) to 0’s and 1’s
• then with positive probability the resulting function is constant
• but

⊕
is not!



Håstad’s switching lemma

Function f under a partial assignment ρ is denoted f |ρ.
Expressibility of f in k-CNF (or k-DNF) is denoted by
f ∈ k -CNF (or f ∈ k -DNF).

Theorem (Håstad’s lemma, 1986)

Let f ∈ k-DNF and ρ random partial assignment to t random input bits.

Then Prρ[f |ρ < s-CNF] ≤
(
(n−t)

n k 10
)s/2

for every s ≥ 2.

• similarly for CNF
• restriction allows for switching between DNF and CNF without much

blowup
• proof idea: 1-to-1 mapping of “bad” partial assignments (non-constant

results) to “good” partial completions (constant results)
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Proof sketch of
⊕
< AC0

• start with any AC0 circuit (in alternating form)
• in ith round:
• fix ni −

√
ni input bits (n0 = n)

• switch the two bottom layers into the other normal form
• collapse with the layer one above

• finally, obtain two-layer DNF
• and make it constant (by fixing ≤ k variables in the first clause)
• but

⊕
cannot be made constant for any partial assignment
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• in ith round:
• fix ni −

√
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⊕
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What have we learnt?

• lower bounds are hard
• in special simple cases possible
• tool: random partial assignments



Complexity Theory

Mikhail Raskin, Jan Křetı́nský
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Lecture 24’

AC0 ⊂ NC1: original proof

(Furst-Saxe-Sipser 1984)



Agenda

Tool: still random assignments

Separate arguments for wide and narrow conjunctions/disjunctions

• circuits to trees
• make bottom layer fan-in bounded
• make bottom two-layer subtrees bounded
• reduce depth
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Circuits to trees

Poly-size fixed-depth circuits (Cn).

Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,
conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Paths from root: just a polynomial number (depth is fixed)
Copy subgraphs as needed until we get trees
Same depth, still polynomial size
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Agenda

• circuits to trees X
• make bottom layer fan-in bounded
• make bottom two-layer subtrees bounded
• reduce depth



Bounded bottom layer fan-in

Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all bottom operations have fan-in < c (c will be 8k )

The restricted circuit still calculates parity.

Estimate for a single operation
Separately wide (> c log n) and narrow cases



Bounded bottom layer fan-in

Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all bottom operations have fan-in < c (c will be 8k )

The restricted circuit still calculates parity.

Estimate for a single operation
Separately wide (> c log n) and narrow cases



Bounded bottom layer fan-in

Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all bottom operations have fan-in < c (c will be 8k )

The restricted circuit still calculates parity.

Estimate for a single operation
Separately wide (> c log n) and narrow cases



Bottom layer: cases

Wide:
> 1/3 probability per assignment to become constant
Avoiding: (2/3)c log n = o(n−c/4)

Narrow:
Having > c rare ∗ entries
Pr 6 (c log n

c )
√

n−c 6 (c log n)cn−c/2 = o(n−c/4)

c = 8k , only nk sources of problems, union bound
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Bottom layer: result

Probability of <
√

n/2 assignments of ∗ is also small
By union bound: we still have optimal depth, worse polynomial size



Agenda

• circuits to trees X
• make bottom layer fan-in bounded X
• make bottom two-layer subtrees bounded
• reduce depth



Bottom two layers

Reassign k
We have minimal-depth nk -sized tree circuits for parity with fan-in c in the
bottom layer
Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all layer-two operations depend on b(c) variables

The restricted circuit still calculates parity.



Bottom two layers

Reassign k
We have minimal-depth nk -sized tree circuits for parity with fan-in c in the
bottom layer
Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all layer-two operations depend on b(c) variables

The restricted circuit still calculates parity.



Bottom two layers: proof

Induction on c, c = 1 is the previous case
b(c) = k × 4c

Wide: > b log n disjoint bottom-level argument nodes
Probability of constant: (1 − 4−c)b log n = nb log 1−4−c

6 n−b4−c
= o(n−k )

Narrow: Maximal collection of input-disjoint argument nodes
Set of their inputs: H
H hits each argument node
Fixing values of ∗ in H: by induction, dependency on b(c − 1) inputs
|H| 6 b(c)c log n; Probably < 4k entries of ∗; dependency on
4k + 24k b(c − 1) is OK.
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• circuits to trees X
• make bottom layer fan-in bounded X
• make bottom two-layer subtrees bounded X
• reduce depth



Depth reduction

Second layer elements depend on fixed number of inputs — brute force
CNF/DNF, polynomial blowup, lower depth
Contradiction!



Agenda

• circuits to trees X
• make bottom layer fan-in bounded X
• make bottom two-layer subtrees bounded X
• reduce depth X
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Lecture 25

Counting



Agenda

• examples of counting problems
• definition
• how hard are they?



Examples

Deciding is easy, counting is hard

Example (#CYCLE)

Number of simple cycles

• cycle detection in linear time
• if #CYCLE has a polynomial algorithm then P = NP

Example (GraphReliability)
1
2n · number of subgraphs with a path from s to t

Example (Maximum likelyhood in Bayes nets)

Visible variables are ∨’s of ≤ 3 hidden variables.
What is the fraction of satisfying assignments with x1 = 1?

• equivalent to #SAT
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Definition

Definition (#P)

A function f : {0, 1}∗ → N is in #P if there is a polynomial-time TM M and a
polynomial p such that ∀x ∈ {0, 1}∗

f(x) =
∣∣∣∣{y ∈ {0, 1}p(|x |) : M(x, y) = 1

}∣∣∣∣
• counting certificates
• or accepting paths

Definition (FP)

A function f : {0, 1}∗ → N is in FP if there is a deterministic polynomial-time
TM computing f .

• efficeintly solvable counting



Decision analog

Theorem
FP = #P

⇐⇒ P = PP
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Completeness

Definition
A function f is #P-complete if f ∈ #P and for every g ∈ #P we have
g ∈ FPf

• #SAT is #P-complete

Example (Determinant)

det(A) =
∑
σ∈Sn

sgn(σ)
∏n

i=1 Ai,σ(i)

• computable in polynomial time

Example (Permanent)

perm(A) =
∑
σ∈Sn

∏n
i=1 Ai,σ(i)

• #P-complete (for 0,1 matrices) [Valiant’79]
• hence perm ∈ FP =⇒ P = NP
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Toda’s theorem

Theorem (Toda’91)

PH ⊆ P#SAT

Proof idea
• randomized reduction from PH to ⊕SAT

(odd number of satisfying assignments; ⊕P-complete problem)
• derandomization



What have we learnt?

• counting seems harder than deciding
• #P-complete problems arise from NP-complete problems as well as

from those in P
• more powerful than alternating quantifiers
• classes PP and ⊕P: most and least significant bits of #P function
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