Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science Technical University of Munich Summer 2019

Partially based on slides by Jörg Kreiker

Lecture 1 Introduction

- computational complexity and two problems
- your background and expectations
- organization
- basic concepts
- teaser
- summary

Computational Complexity

- quantifying the efficiency of computations
- not: computability, descriptive complexity, ...
- computation: computing a function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$
 - everything else matter of encoding
 - model of computation?
- efficiency: how many resources used by computation
 - time: number of basic operations with respect to input size
 - space: memory usage

Example (Dinner Party)

You want to throw a dinner party. You have a list of pairs of friends who do not get along. What is the largest party you can throw such that you do not invite any two who don't get along?

Example (Dinner Party)

You want to throw a dinner party. You have a list of pairs of friends who do not get along. What is the largest party you can throw such that you do not invite any two who don't get along?

person	does not get along with
Jack	James, John, Kate
James	Jack, Hugo, Sayid
John	Jack, Juliet, Sun
Kate	Jack, Claire, Jin
Hugo	James, Claire, Sun
Claire	Hugo, Kate, Juliet
Juliet	John, Sayid, Claire
Sun	John, Hugo, Jin
Sayid	James, Juliet, Jin
Jin	Sayid, Sun, Kate

Example (Dinner Party)

You want to throw a dinner party. You have a list of pairs of friends who do not get along. What is the largest party you can throw such that you do not invite any two who don't get along?

person	does not get along with
Jack	James, John, Kate
James	Jack, Hugo, Sayid
John	Jack, Juliet, Sun
Kate	Jack, Claire, Jin
Hugo	James, Claire, Sun
Claire	Hugo, Kate, Juliet
Juliet	John, Sayid, Claire
Sun	John, Hugo, Jin
Sayid	James, Juliet, Jin
Jin	Sayid, Sun, Kate

- Iargest party?
- naive computation
 - check all sets of people for compatibility
 - number of subsets of n element set is 2ⁿ
 - intractable
- can we do better?
- observation: for a given set compatibility checking is easy

Example (Map Coloring)

Can you color a map with three different colors, such that no pair of adjacent countries has the same color. Countries are adjacent if they have a non-zero length, shared border.

Example (Map Coloring)

Can you color a map with three different colors, such that no pair of adjacent countries has the same color. Countries are adjacent if they have a non-zero length, shared border.

- naive algorithm: try all colorings and check
- number of 3-colorings for n countries: 3ⁿ
- can we do better?
- observation: for a given coloring compatibility checking is easy

What about you?

- What do you expect?
- What do you already know about complexity?
- Immediate feedback

Organization

- lecture in English
- course website:

http://www7.in.tum.de/um/courses/complexity/SS19/

- concentrated into the first part of the semester, in 03.09.014
 - (reserved slot Monday 14-16)
 - Tuesday 10:05-11:35 and 12:25-13:55
 - Wednesday 8:25-9:55
 - Friday 12:05-13:35 and 14:00-15:30
- tutor: Mikhail Raskin
- weekly exercise sheets, not mandatory
- · written or oral exam, depending on number of students
- bonus
 - several mini-tests during lectures (un-announced, cover 2-4 lectures)
 - self-assessment and feedback to us
 - if C is ratio of correct answers, exam bonus computed by

Literature

- lecture based on Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak
- book website:

http://www.cs.princeton.edu/theory/complexity/

- useful links plus freely available draft
- lecture is self-contained
- more recommended reading on course website, e.g. Introduction to the Theory of Computation by Michael Sipser

Agenda

- computational complexity and two problems \checkmark
- your background and expectations \checkmark
- organization \checkmark
- basic concepts
- teaser
- summary

Prerequisites

- sets, relations, functions
- formal languages
- Turing machines
- graphs and algorithms on graphs
- little probability theory
- · Landau symbols

- characterize asymptotic behavior of functions (on integers, reals)
- ignore constant factors
- useful to talk about resource usage

Landau symbols

- characterize asymptotic behavior of functions (on integers, reals)
- ignore constant factors
- useful to talk about resource usage
- upper bound: $f \in O(g)$ defined by $\exists c > 0. \exists n_0 > 0. \forall n > n_0. f(n) \le c \cdot g(n)$
- dominated by: $f \in o(g)$ defined by $\forall \varepsilon > 0$. $\exists n_0 > 0$. $\forall n > n_0$. $\frac{f(n)}{g(n)} < \varepsilon$
- lower bound: $f \in \Omega(g)$ iff $g \in O(f)$
- tight bound: $f \in \Theta(g)$ iff $f \in O(g)$ and $f \in \Omega(g)$
- dominating: $f \in \omega(g)$ iff $g \in o(f)$

Intractability

POLYNOMIAL

versus

EXPONENTIAL

- computations using exponential time or space intractable for all but the smallest inputs
- for a map with 200 countries: app. 2.66 · 10⁹⁵ 3-colorings
- atoms in the universe (wikipedia): $8 \cdot 10^{80}$
- computational complexity: tractable vs. intractable
- tractable: problems with runtimes $\bigcup_{p>0} O(n^p)$
- intractable: problems with worse runtimes, e.g. $2^{\Omega(n)}$
- independent of hardware

What about our examples?

- dinner party problem tractable?
- map coloring problem tractable?
- lower bounds on time/space consumption
- upper bounds on time/space consumption
- which is harder?

person	does not get along with
Jack	James, John, Kate
James	Jack, Hugo, Sayid
John	Jack, Juliet, Sun
Kate	Jack, Claire, Jin
Hugo	James, Claire, Sun
Claire	Hugo, Kate, Juliet
Juliet	John, Sayid, Claire
Sun	John, Hugo, Jin
Sayid	James, Juliet, Jin
Jin	Sayid, Sun, Kate

person	does not get along with
Jack	James, John, Kate
James	Jack, Hugo, Sayid
John	Jack, Juliet, Sun
Kate	Jack, Claire, Jin
Hugo	James, Claire, Sun
Claire	Hugo, Kate, Juliet
Juliet	John, Sayid, Claire
Sun	John, Hugo, Jin
Sayid	James, Juliet, Jin
Jin	Sayid, Sun, Kate

- really a graph problem
- each person a node, each relation an edge
- find a maximal set of nodes, such that no two nodes are adjacent

person	does not get along with
Jack	James, John, Kate
James	Jack, Hugo, Sayid
John	Jack, Juliet, Sun
Kate	Jack, Claire, Jin
Hugo	James, Claire, Sun
Claire	Hugo, Kate, Juliet
Juliet	John, Sayid, Claire
Sun	John, Hugo, Jin
Sayid	James, Juliet, Jin
Jin	Sayid, Sun, Kate

- really a graph problem
- each person a node, each relation an edge
- find a maximal set of nodes, such that no two nodes are adjacent

person	does not get along with
Jack	James, John, Kate
James	Jack, Hugo, Sayid
John	Jack, Juliet, Sun
Kate	Jack, Claire, Jin
Hugo	James, Claire, Sun
Claire	Hugo, Kate, Juliet
Juliet	John, Sayid, Claire
Sun	John, Hugo, Jin
Sayid	James, Juliet, Jin
Jin	Sayid, Sun, Kate

- really a graph problem
- each person a node, each relation an edge
- · find a maximal set of nodes, such that no two nodes are adjacent
- the independent set problem: Indset
- probably not tractable, no algorithm better than naive one known

person	does not get along with
Jack	James, John, Kate
James	Jack, Hugo, Sayid
John	Jack, Juliet, Sun
Kate	Jack, Claire, Jin
Hugo	James, Claire, Sun
Claire	Hugo, Kate, Juliet
Juliet	John, Sayid, Claire
Sun	John, Hugo, Jin
Sayid	James, Juliet, Jin
Jin	Sayid, Sun, Kate

- really a graph problem
- each person a node, each relation an edge
- find a maximal set of nodes, such that no two nodes are adjacent
- the independent set problem: Indset
- probably not tractable, no algorithm better than naive one known
- here: maximal independent set of size 4

- really a graph problem
- each country a node, each border an edge
- · color each node such that no two adjacent nodes have same color

- really a graph problem
- each country a node, each border an edge
- · color each node such that no two adjacent nodes have same color
- the three coloring problem: 3-Coloring
- probably not tractable, no algorithm better than naive one known

- really a graph problem
- each country a node, each border an edge
- · color each node such that no two adjacent nodes have same color
- the three coloring problem: 3-Coloring
- probably not tractable, no algorithm better than naive one known
- here: answer is yes

Bounds

• upper bounds

- time (naive algorithm): $2^{O(n)}$ for *n* persons/countries
- space (naive algorith): $O(n^p)$ for *n* persons/countries and a small *p*

Bounds

• upper bounds

- time (naive algorithm): 2^{O(n)} for *n* persons/countries
- space (naive algorith): O(n^p) for n persons/countries and a small p
- lower bounds
 - very little known
 - difficult because of infinitely many algorithms
 - both problems could have a linear time and a logarithmic space algorithm
 - but not simultaneously

Which is harder?

- instead of tight bounds say which problem is harder
- \Rightarrow reductions

Which is harder?

- instead of tight bounds say which problem is harder
- \Rightarrow reductions

IF there is an efficient procedure for *B* using a procedure for *A* THEN *B* cannot be radically harder than *A* notation: $B \le A$

Which is harder?

- instead of tight bounds say which problem is harder
- ⇒ reductions

IF there is an efficient procedure for *B* using a procedure for *A* THEN *B* cannot be radically harder than *A* notation: $B \le A$

Applications:

- IF there is an efficient procedure for problem A and
 B ≤ A
 THEN there is an efficient procedure for problem B
 - IF there is no efficient procedure for problem *B* and *B* ≤ *A*

THEN there is no efficient procedure for problem A

How can we solve 3-Coloring using an algorithm to solve Indset?

How can we solve 3-Coloring using an algorithm to solve Indset?

• triplicate the original graph (V, E) into $(V \times \{1, 2, 3\}, E')$ where

$$E' = \{ ((v, i), (w, i)) \mid (v, w) \in E, i \in \{1, 2, 3\} \} \cup \{ ((v, i), (v, j)) \mid v \in V, i \neq j \in \{1, 2, 3\} \}$$

efficient

How can we solve 3-Coloring using an algorithm to solve Indset?

• triplicate the original graph (V, E) into $(V \times \{1, 2, 3\}, E')$ where

$$E' = \{ ((v, i), (w, i)) \mid (v, w) \in E, i \in \{1, 2, 3\} \} \cup \{ ((v, i), (v, j)) \mid v \in V, i \neq j \in \{1, 2, 3\} \}$$

efficient

check whether there is an independent set of size |V|
 assumed efficient

How can we solve 3-Coloring using an algorithm to solve Indset?

• triplicate the original graph (V, E) into $(V \times \{1, 2, 3\}, E')$ where

$$E' = \{ ((v, i), (w, i)) \mid (v, w) \in E, i \in \{1, 2, 3\} \} \cup \{ ((v, i), (v, j)) \mid v \in V, i \neq j \in \{1, 2, 3\} \}$$

efficient

check whether there is an independent set of size |V|
 assumed efficient

Need to ensure: procedure returns **yes** if and only if the graph is 3-colorable.
Polynomial certificates: NP

- whole class of problems can be reduced to Indset
- all of them have polynomially checkable certificates
- characterizes (in)famous class NP
- all problems in NP reducible to Indset makes Indset NP-hard.
- 3-Coloring also NP-hard
- no polynomial-time algorithms known for NP-hard problems
- not all problems have polynomial certificates, e.g. winning strategy in chess

Agenda

- computational complexity and two problems \checkmark
- your background and expectations \checkmark
- organization \checkmark
- basic concepts \checkmark
- teaser
- summary

Lots of things to explore

- precise definition of computational model and resources
- · problems with polynomial time checkable certificates
- space classes
- approximations
- hierarchies (polynomial, time/space tradeoffs)
- randomization
- parallelism
- average case complexities
- probabilistically checkable proofs
- (quantum computing)
- (logical characterizations of complexity classes)
- a bag of proof techniques

What have we learnt?

- polynomial ~ tractable; exponential ~ intractable
- lower bounds hard to come by
- reductions key to establish relations among (classes of problems)
- NP: polynomially checkable certificates
- Indset ∈ NP, 3−Coloring ∈ NP

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 9, 2019

Lecture 2 Turing Machines

Formalize a model of computation!

- k-tape Turing machines
- robustness
- universal Turing machine
- computability, halting problem
- P

- programming languages
- hardware
- biological/chemical systems
- primitive/ μ -recursive functions/ λ -calculus
- logic
- automata
- quantum computers
- paper and pencil

- programming languages
- hardware
- biological/chemical systems
- primitive/μ-recursive functions/λ-calculus
- logic
- automata
- quantum computers
- paper and pencil

Turing machines!

- programming languages
- hardware
- biological/chemical systems
- primitive/μ-recursive functions/λ-calculus
- logic
- automata
- quantum computers
- · paper and pencil

Turing machines!

Church-Turing Thesis: all models equally expressive

TMs – illustrated

k-tape Turing machines

- k scratchpad tapes, infinitely long, contain cells
 - one input tape, read-only
 - one output tape
 - working tapes
 - k heads positioned on individual cells for reading and writing
- finite control (finite set of rules)
- vocabulary, alphabet to write in cells
- actions: depending on
 - symbols under heads
 - control state

one can

- move heads (right, left, stay)
- write symbols into current cells

TMs – reading palindromes

TM for function $pal : \{0, 1\}^* \rightarrow \{0, 1\}$ which outputs 1 for palindromes.

TMs – reading palindromes

TM for function $pal : \{0, 1\}^* \rightarrow \{0, 1\}$ which outputs 1 for palindromes.

- · copy input to work tape
- · move input head to front, work tape head to end
- · in each step
 - compare input and work tape
 - move input head right
 - move work head left
- if whole input processed, output 1

TMs – formally

Definition (*k***-tape Turing machine (syntax))**

Turing machine is a triple (Γ, Q, δ) where

- Γ is a finite alphabet (tape symbols) comprising 0, 1, □ (empty cell), and ▷ (start symbol)
- Q is finite set of states (control) containing q_{start} and q_{halt}
- $\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{l, s, r\}^k$, transition function such that $\delta(q_{halt}, \vec{\sigma}) = (q_{halt}, \vec{\sigma}_{2..k}, \vec{s}).$

TMs – formally

Definition (Computing a function and running time)

Let *M* be a *k*-tape TM and $x \in (\Gamma \setminus \{\Box, \triangleright\})^*$ an input. Let $T : \mathbb{N} \to \mathbb{N}$ and $f : \{0, 1\}^* \to \{0, 1\}^*$ be functions.

- 1. the start configuration of *M* on input *x* is $\triangleright x \Box^{\omega}$ on the input tape and $\triangleright \Box^{\omega}$ on the *k* 1 other tapes; all heads are on \triangleright ; and *M* is in state q_{start}
- **2.** if *M* is in state *q* and $(\sigma_1, \ldots, \sigma_k)$ are symbols being read, and $\delta(q, (\sigma_1, \ldots, \sigma_k)) = (q', (\sigma'_2, \ldots, \sigma'_k), \vec{z})$, then at the next step *M* is in state q', σ_i has been replaced by σ'_i for i = 2..k and the heads have moved left, stayed, or *r*ight according to \vec{z}
- 3. *M* has halted if it gets to state q_{halt}
- 4. *M* computes *f* in time *T* if it halts on input *x* with f(x) on its output tape and every $x \in \{0, 1\}^*$ requires at most T(|x|) steps.

Remarks on TM definition

- TMs are deterministic
- going left from ▷ means staying
- item 4: consider time-constructible functions T only
 - $T(n) \ge n$ and
 - exists TM *M* computing *T* in time *T*
- TM define total functions

- k-tape Turing machines √
- robustness
- universal Turing machine
- computability, halting problem
- P

Robustness

Definition of TM is robust, most choices do not change complexity classes.

- alphabet size (two is enough)
- number of tapes (one is enough)
- tape dimensions (one-directional tapes, bi-directional tapes, two-dimensional tapes)
- random access TMs
- oblivious TMs
 - see exercises
 - head positions at *i*-th step of execution on input x depend only on |x| and *i*

All variations can simulate each other with at most polynomial overhead in running time.

- k-tape Turing machines √
- robustness \checkmark
- universal Turing machine
- computability, halting problem
- P

Universal TM

- TMs can be represented as strings (over {0, 1}) by encoding their transition function (can you?)
 - write M_{α} for TM represented by string α
 - every string α represents some TM
 - every TM has infinitely many representations
- if TM *M* computes *f*, universal TM *U* takes representation *α* of TM *M* and input *x* and computes *f*(*x*)
- like general purpose computer loaded with software
- like interpreter for a language written in same language
- *U* has bounded alphabet, rules, tapes; simulates much larger machines efficiently

Efficient simulation

Theorem (Universal TM)

There exists a TM \mathcal{U} such that for every $x, \alpha \in \{0, 1\}^*$, $\mathcal{U}(x, \alpha) = M_{\alpha}(x)$. If M_{α} holds on x within T steps, then $\mathcal{U}(x, \alpha)$ holds within $O(T \log T)$ steps.

Construction of $\ensuremath{\mathcal{U}}$

Simulating another TM

How does \mathcal{U} execute TM M?

Simulating another TM

How does \mathcal{U} execute TM M?

1.	transform <i>M</i> into <i>M'</i> with one input, one work, and one output tape	
	computing the same function	quadratic overhead
2.	write <i>M</i> ''s description α onto third tape	<i>M</i> '
3.	write encoding of M' start state on fourth tape	Q '
4.	for each step of M'	
	4.1 depending on state and tapes of $M' \operatorname{scan} \delta'$ tape	$ \delta' $
	4.2 update	constant

Simulation can be done with logarithmic slowdown using clever encoding of k tapes in one.

Agenda

- k-tape Turing machines √
- robustness \checkmark
- universal Turing machine \checkmark
- computability, halting problem
- P

Deciding languages

- often one is interested in functions $f : \{0, 1\}^* \rightarrow \{0, 1\}$
- *f* can be identified with the language $L_f = \{x \in \{0, 1\}^* | f(x) = 1\}$
- TM that computes *f* is said to decide *L*_f (and vice versa)

Halting Problem

There are languages that cannot be decided by any TM regardless time and space.

Example

The halting problem is the set of pairs of TM representations and inputs, such that the TMs eventually halt on the given input.

Halt = { $\langle \alpha, x \rangle \mid M_{\alpha}$ halts on x}

Theorem Halt is not decidable by any TM.

Proof: diagonalization and reduction

Definition (DTIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. $L \subseteq \{0, 1\}^*$ is in $\mathsf{DTIME}(T)$ if there exists a TM deciding L in time T' for $T' \in O(T)$.

- D refers to deterministic
- constants are ignored since TM can be sped up by arbitrary constants

Definition (P) $\mathbf{P} = \bigcup_{c \ge 1} \mathbf{DTIME}(n^c)$

- P captures tractable computations
- low-level choices of TM definitions are immaterial to P
- Connectivity, Primes ∈ P

What have we learnt?

- many equivalent ways to capture essence of computations (Church-Turing)
- k-tape TMs
- TM can be represented as strings; universal TM can simulate any TM given its representations with polynomial overhead only
- uncomputable functions do exist (halting problem): diagonalization and reductions
- P robust wrt. tweaks in TM definition (universal simulation)
- P captures tractable computations, solvable by TMs in polynomial time
- diagonalization, reduction
- up next: NP

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

April 29, 2019

Lecture 3 Basic Complexity Classes

Agenda

- · decision vs. search
- basic complexity classes
 - time and space
 - deterministic and non-deterministic
- sample problems

Decision vs. Search

- often one is interested in functions $f : \{0, 1\}^* \rightarrow \{0, 1\}$
- f can be identified with the language $L_f = \{x \in \{0, 1\}^* \mid f(x) = 1\}$
- TM that computes f is said to decide L_f (and vice versa)

Example (Indset)

Consider the independent set problem. Search What is the largest independent set of a graph?

Decision Indset = { $\langle G, k \rangle$ | *G* has independent set of size *k*}

Often decision plus binary search can solve search problems.

- decision vs. search \checkmark
- basic complexity classes
 - time and space
 - deterministic and non-deterministic
- sample problems

Basic Complexity Classes Time

Time complexity

Definition (DTIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. $L \subseteq \{0, 1\}^*$ is in $\mathsf{DTIME}(T)$ if there exists a TM deciding L in time T' for $T' \in O(T)$.

- D refers to deterministic
- constants are ignored since TM can be sped up by arbitrary constants

Basic Complexity Classes Space

Space complexity

Definition (SPACE)

Let $S : \mathbb{N} \to \mathbb{N}$ and $L \subseteq \{0, 1\}^*$. Define $L \in SPACE(S)$ iff

- there exists a TM M deciding L
- no more than S'(n) locations on M's work tapes ever visited during computations on every input of length n for S' ∈ O(S)

Remarks

- more detailed definition (cf. exercises): count non-□ symbols, where
 □ must not be written
- constants do not matter
- as for time complexity, require space-constructible bounds
 - S is space-constructible: there is TM M computing S(|x|) in O(S(|x|)) space on input x
 - TM knows its bounds
- · work tape restrictions: allows to store input
- space bounds < n make sense (as opposed to time)
- require space log *n* to remember positions in input

Non-deterministic TMs

Definition (NDTM)

A non-deterministic TM (NDTM) is a triple (Γ, Q, δ) like a deterministic TM except

- Q contains a distinguished state qaccept
- δ is a pair (δ_0, δ_1) of transition functions
- in each step, NDTM non-deterministically chooses to apply either δ_0 or δ_1
- NDTM *M* accepts *x*, *M*(*x*) = 1 if there exists a sequence of choices s.t. *M* reaches *q_{accept}*
- *M*(*x*) = 0 if every sequence of choices makes *M* halt without reaching *q*_{accept}

On non-determinism

- not supposed to model realistic devices
- remember impact of non-determinism finite state machines, pushdown automata
- NDTM compute the same functions as DTM (why?)
- non-determinism ~ guessing

Non-deterministic complexity

Define NTIME(T) and NSPACE(S) such that T and S are bounds regardless of non-deterministic choices.

Basic complexity classes

deterministic				non-deterministic			
time							
Р	=	$\bigcup_{p\geq 1}$ DTIME (n^p)	NP	$= \bigcup_{p \ge 1} NTIME(n^p)$			
EXP	=	$\bigcup_{p\geq 1}$ DTIME (2 ^{n^p})	NEXP	$= \bigcup_{p \ge 1} NTIME(2^{n^p})$			

space

L	=	SPACE(log n)	NL	=	NSPACE(log n)
PSPACE	=	$\bigcup_{p>0}$ SPACE (n^p)	NPSPACE	=	$\bigcup_{p>0}$ NSPACE (n^p)

- decision vs. search \checkmark
- basic complexity classes \checkmark
 - time and space
 - deterministic and non-deterministic
- sample problems

Most examples are the hardest within a given complexity class. They are complete for the class (wrt suitable reductions).

Most examples are the hardest within a given complexity class. They are complete for the class (wrt suitable reductions).

- L: essentially constant number of pointers into input plus logarithmically many boolean flags
 - UPath = {(*G*, *s*, *t*) | ∃a path from *s* to *t* in **undirected** graph *G*} [Reingold 2004]
 - Even = {x | x has an even number of 1s}

Most examples are the hardest within a given complexity class. They are complete for the class (wrt suitable reductions).

- L: essentially constant number of pointers into input plus logarithmically many boolean flags
 - UPath = {(*G*, *s*, *t*) | ∃a path from *s* to *t* in **undirected** graph *G*} [Reingold 2004]
 - Even = {x | x has an even number of 1s}
- NL: L plus guessing, read-once certificates
 - Path = { $\langle G, s, t \rangle$ | \exists a path from *s* to *t* in **directed** graph *G*}
 - 2SAT = {φ |

 φ satisfiable Boolean formula in CNF with two literals per clause }

- P: polynomial time, tractable, low-level choices of TM definitions are immaterial to P
 - Circuit Eval = {(C, x) | C is a n in/1 out circuit, x satisfying signals}
 - Primes = {x | x prime} [AKS 2004]
 - many graph problems like DFS and BFS

- P: polynomial time, tractable, low-level choices of TM definitions are immaterial to P
 - Circuit Eval = {(C, x) | C is a n-in/1-out circuit, xsatisfying signals}

[AKS 2004]

- Primes = $\{x \mid x \text{ prime}\}$
- many graph problems like DFS and BFS
- NP: polynomially verifiable certificates, puzzles
 - Indset = {\langle G, k \rangle | G has an independent set of size k}
 - 3-Coloring = {G | G is 3-colorable}
 - 3SAT = { $\varphi \mid \varphi$ satisfiable Boolean formula in CNF with three literals per clause }

- P: polynomial time, tractable, low-level choices of TM definitions are immaterial to P
 - Circuit Eval = {⟨C, x⟩ | C is a n−in/1−out circuit, xsatisfying signals}

[AKS 2004]

- Primes = $\{x \mid x \text{ prime}\}$
- many graph problems like DFS and BFS
- NP: polynomially verifiable certificates, puzzles
 - Indset = {\langle G, k \rangle | G has an independent set of size k}
 - 3-Coloring = {G | G is 3-colorable}
 - 3SAT = { $\varphi \mid \varphi$ satisfiable Boolean formula in CNF with three literals per clause }

PSPACE: polynomial space, games, for instance

 $\mathsf{TQBF} = \{ Q_1 x_1 \dots Q_k x_k \varphi \mid k \ge 0, Q_i \in \{\forall, \exists\}, \varphi \text{ Boolean formula over } x_i \text{ such that whole formula is true } \}$

- P: polynomial time, tractable, low-level choices of TM definitions are immaterial to P
 - Circuit Eval = {⟨C, x⟩ | C is a n−in/1−out circuit, xsatisfying signals}

[AKS 2004]

- Primes = $\{x \mid x \text{ prime}\}$
- many graph problems like DFS and BFS
- NP: polynomially verifiable certificates, puzzles
 - Indset = {\langle G, k \rangle | G has an independent set of size k}
 - 3-Coloring = {G | G is 3-colorable}
 - 3SAT = { $\varphi \mid \varphi$ satisfiable Boolean formula in CNF with three literals per clause }
- **PSPACE:** polynomial space, games, for instance $TQBF = \{Q_1x_1 \dots Q_kx_k\varphi \mid k \ge 0, Q_i \in \{\forall, \exists\}, \varphi \text{ Boolean formula over} x_i \text{ such that whole formula is true } \}$
 - **EXP:** exponential-time, for instance the language Halt_k = { $\langle M, x, k \rangle$ | DTM *M* stops on input *x* within *k* steps }

Complements

Definition (Complement classes)

Let $C \subseteq \mathcal{P}(\{0, 1\}^*)$ be a complexity class. We define $coC = \{\overline{L} \mid L \in C\}$ to be the complement class of *C*, where $\overline{L} = \{0, 1\}^* \setminus L$ is the complement of *L*.

- important class coNP
- coNP is not the complement of NP
- example: Tautology ∈ coNP, where a tautology is Boolean formula that is true for every assignment
- reminder: closure under complement wrt expressiveness and conciseness
 - finite state machines
 - pushdown automata
 - DTM, NDTM
- note: $P \subseteq NP \cap coNP$

- universal Turing machine \checkmark
- decision vs. search \checkmark
- computability, halting problem \checkmark
- basic complexity classes \checkmark

Relation between classes

Teaser

```
A regular expression over {0, 1} is defined by
```

```
r ::= 0 | 1 | rr | r|r | r^*
```

```
The language defined by r is written \mathcal{L}(r).
```

What is the computational complexity of

- deciding whether two regular expressions are equivalent, that is $\mathcal{L}(r_1) = \mathcal{L}(r_2)$?
- deciding whether a regular expression is universal, that is

 L(*r*) = {0, 1}*?
- deciding the same for star-free regular expressions?

What have we learnt?

- TM can be represented as strings; universal TM can simulate any TM given its representations with polynomial overhead only
- uncomputable functions do exist (halting problem): diagonalization and reductions
- non-deterministic TMs
- space, time, deterministic, non-deterministic, complement complexity classes
- L, NL, P, NP, EXP, PSPACE
- 2SAT, 3SAT, Path, UPath, TQBF, Primes, Indset, 3-Coloring
- big picture
- up next: justify and explore the big picture

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

April 29, 2019

Lecture 4 NP-completeness

Recap: relations between classes

- efficiently checkable certificates
- reductions, hardness, completeness
- Cook-Levin: 3SAT is NP-complete

NP computable with NDTM in polynomial time.

NP computable with NDTM in polynomial time.

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$ holds: $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M such that for every $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)}$. M(x, u) = 1

NP computable with NDTM in polynomial time.

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$ holds: $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M such that for every $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)}$. M(x, u) = 1

- *M* is called verifier
- u is called certificate

NP computable with NDTM in polynomial time.

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$ holds: $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M such that for every $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)}$. M(x, u) = 1

- M is called verifier
- u is called certificate

Proof:

- \Rightarrow certificate is sequence of choices
- NDTM guesses certificate

- Indset: certificate is set of nodes, size of certificate for k nodes in graph with n nodes O(k log n)
- 0/1-ILP: given a list of *m* linear inequalities with rational coefficients over variables x₁,..., x_k; find out if there is an assignment of 0s and 1s to x_i satisfying all inequalities; certificate is assignment.
- Iso: given two *n* × *n* adjacency matrices; do they define isomorphic graphs; certificate is a permutation *π* : [*n*] → [*n*]

- efficiently checkable certificates \checkmark
- reductions, hardness, completeness
- Cook-Levin: 3SAT is NP-complete

Reductions – reminder

IF there is an efficient procedure for *B* using a procedure for *A* (as an efficient black box) THEN *B* cannot be radically harder than *A* notation: $B \le A$

(reduction does not make anything smaller)

We have seen (at least) two reductions.

- 3-Coloring was reduced to Indset
- the diagonalized, undecidable language reduced to Halt

Reductions – definition

Definition (Karp reduction)

Let $L, L' \subseteq \{0, 1\}^*$ be languages. L is polynomial-time Karp reducible to L' iff there exists a polynomial-time computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for all $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow f(x) \in L'$

We write $L \leq_p L'$.

Reductions – definition

Definition (Karp reduction)

Let $L, L' \subseteq \{0, 1\}^*$ be languages. L is polynomial-time Karp reducible to L' iff there exists a polynomial-time computable function $f : \{0, 1\}^* \to \{0, 1\}^*$ such that for all $x \in \{0, 1\}^*$

```
x \in L \Leftrightarrow f(x) \in L'
```

We write $L \leq_p L'$.

Note: \leq_p is a transitive relation on languages (because the composition of polynomials is a polynomial).

Hardness and Completeness

Definition (NP-hardness and -completness)

- Let $L \subseteq \{0, 1\}^*$ be a language.
 - L is NP-hard if $L' \leq_p L$ for every $L' \in NP$
 - L is NP-complete if L is NP-hard and $L \in NP$.

Hardness and Completeness

Definition (NP-hardness and -completness)

Let $L \subseteq \{0, 1\}^*$ be a language.

- L is NP-hard if $L' \leq_p L$ for every $L' \in NP$
- L is NP-complete if L is NP-hard and $L \in NP$.

Examples of NP-hard languages: Indset, Haltk, Halt

Hardness and Completeness

Definition (NP-hardness and -completness)

Let $L \subseteq \{0, 1\}^*$ be a language.

- L is NP-hard if $L' \leq_p L$ for every $L' \in NP$
- L is NP-complete if L is NP-hard and $L \in NP$.

Examples of NP-hard languages: Indset, Haltk, Halt

Observation

- L NP-hard and $L \in P$ implies P = NP
- *L* NP-complete implies *L* ∈ P iff P = NP
Do NP-complete languages exist?

- upcoming result independently discovered by Cook (1971) and Levin (1973)
- uses notion of satisfiable Boolean formulas
- Boolean formula φ over variables $X = \{x_1, \dots, x_k\}$ defined by

 $\varphi ::= x \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$

- write \overline{x} instead of $\neg x$, x and \overline{x} literals u
- assume formulas are in CNF:

$$\varphi = \bigwedge_{i} \bigvee_{j} u_{i_{j}}$$

- disjunctions $\bigvee_i u_{i_i}$ called clauses
- formula is in k-CNF if the no clause has more than k literals

Cook-Levin Theorem

- φ is satisfiable iff there exists an assignments $a : X \to \{0, 1\}$ making φ true
- $3SAT = \{\varphi \mid \varphi \text{ in 3-CNF and satisfiable}\}$

Theorem 3SAT is NP-complete.

- 1. SAT is NP-complete (without restriction to clauses of size three)
 - **1.1** SAT, 3SAT $\in \mathbb{NP}$
 - **1.2** for every $L \in \mathbb{NP} \ L \leq_p SAT$
- **2.** Show that SAT \leq_p 3SAT

Summary

What have we learnt?

- NP is polynomial certificates
- · Karp reductions, hardness, completeness
- Cook-Levin: reduce any language in NP to 3SAT
- up next: the proof, more NP-complete problems, P vs. NP, tool demos

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 9, 2019

Lecture 5 NP-completeness (2)

- Cook-Levin
- SAT demo
- see old friends
 - 0/1-ILP
 - Indset
 - 3-Coloring

• 3SAT ∈ **NP**

- 3SAT ∈ **NP**
 - the assignement forms a polynomial certificate
- 3SAT is NP-hard

- 3SAT ∈ **NP**
 - the assignement forms a polynomial certificate
- 3SAT is NP-hard
 - choose $L \in \mathbb{NP}$ arbitrary, $L \subseteq \{0, 1\}^*$
 - find reduction f from L to 3SAT

- 3SAT ∈ **NP**
 - the assignement forms a polynomial certificate
- 3SAT is NP-hard
 - choose $L \in \mathbb{NP}$ arbitrary, $L \subseteq \{0, 1\}^*$
 - find reduction f from L to 3SAT
 - $\forall x \in \{0, 1\}^*$: $x \in L \Leftrightarrow f(x) \in 3$ SAT i.e. φ_x is satisfiable
 - *f* is polynomial time computable

TMs for L and f

 $L \in \mathbb{NP}$ iff there exists a TM *M* that runs in time *T* and there is a polynomial *p* such that

 $\forall x \in L \ \exists u \in \{0, 1\}^{p(|x|)} \ M(x, u) = 1 \Leftrightarrow x \in L$

TMs for L and f

 $L \in \mathbb{NP}$ iff there exists a TM *M* that runs in time *T* and there is a polynomial *p* such that

$$\forall x \in L \ \exists u \in \{0,1\}^{p(|x|)} \ M(x,u) = 1 \Leftrightarrow x \in L$$

Assumptions

- fix $n \in \mathbb{N}$ and $x \in \{0, 1\}^n$ arbitrary
- m = n + p(n)
- $M = (\Gamma, Q, \delta)$
- M is oblivious
- M has two tapes
- define TM M_f that takes M, T, p, x and outputs φ_x

M_f exploits obliviousness

1. simulate *M* on $0^{n+p(n)}$ for T(n + p(n)) steps

M_f exploits obliviousness

- **1.** simulate *M* on $0^{n+p(n)}$ for T(n+p(n)) steps
- **2.** for each $1 \le i \le T(n + p(n))$ store
 - inputpos(i): position of input head after i steps
 - prev(i): previous step when work head was here (default 1)

M_f exploits obliviousness

- **1.** simulate *M* on $0^{n+p(n)}$ for T(n+p(n)) steps
- **2.** for each $1 \le i \le T(n + p(n))$ store
 - inputpos(i): position of input head after i steps
 - prev(i): previous step when work head was here (default 1)
- **3.** compute and output φ_x

M_f exploits obliviousness

- **1.** simulate *M* on $0^{n+p(n)}$ for T(n+p(n)) steps
- **2.** for each $1 \le i \le T(n + p(n))$ store
 - inputpos(i): position of input head after i steps
 - prev(i): previous step when work head was here (default 1)
- **3.** compute and output φ_x

It does all this in time polynomial in n!

• "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots, y_{n+p(n)}$

- "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots, y_{n+p(n)}$
 - to encode the read-only input tape

Variables of $\varphi_{\rm X}$

- "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots, y_{n+p(n)}$
 - to encode the read-only input tape
 - *y*₁,..., *y_n* determined by *x*

- "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots, y_{n+p(n)}$
 - to encode the read-only input tape
 - *y*₁,..., *y_n* determined by *x*
 - $y_{n+1}, \ldots, y_{n+p(n)}$ will be certificate

- "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots, y_{n+p(n)}$
 - to encode the read-only input tape
 - *y*₁,..., *y_n* determined by *x*
 - $y_{n+1}, \ldots, y_{n+p(n)}$ will be certificate
- "computation variables"

<i>z</i> ₁	Z 2	 <i>Z</i> _{c-1}	Z _c
<i>z</i> _{c+1}	z_{c+2}	 Z _{2c-1}	Z _{2c}
:			÷
$Z_{c(T(m)-1)+1}$			Z _{cT(m)}

- "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots, y_{n+p(n)}$
 - to encode the read-only input tape
 - y₁,..., y_n determined by x
 - $y_{n+1}, \ldots, y_{n+p(n)}$ will be certificate
- "computation variables"

Z ₁	Z 2	 <i>Z</i> _{c-1}	Zc
<i>z</i> _{c+1}	z_{c+2}	 Z _{2c-1}	Z 2c
÷			÷
$Z_{c(T(m)-1)+1}$			$Z_{cT(m)}$

- each row a snapshot
- needs c 2 bits to encode state q (independent of x) and 2 bits for the symbols read
- φ_x means "computation on the input is accepting"

Snapshot $s_i = \langle q, 0, 1 \rangle$

• state of *M* at step *i*, input and work symbol currently read

Snapshot $s_i = \langle q, 0, 1 \rangle$

• state of *M* at step *i*, input and work symbol currently read

Accepting computation of *M* on $\langle x, u \rangle$ is a sequence of T(m) snapshots such that

Snapshot $s_i = \langle q, 0, 1 \rangle$

• state of *M* at step *i*, input and work symbol currently read

Accepting computation of *M* on $\langle x, u \rangle$ is a sequence of T(m) snapshots such that

• first snapshot s_1 is $\langle q_{start}, \triangleright, \triangleright \rangle$

Snapshot $s_i = \langle q, 0, 1 \rangle$

• state of *M* at step *i*, input and work symbol currently read

Accepting computation of *M* on $\langle x, u \rangle$ is a sequence of T(m) snapshots such that

- first snapshot s_1 is $\langle q_{start}, \triangleright, \triangleright \rangle$
- last snapshot s_{T(m)} has state q_{halt} and ouputs 1

Snapshot $s_i = \langle q, 0, 1 \rangle$

• state of M at step i, input and work symbol currently read

Accepting computation of *M* on $\langle x, u \rangle$ is a sequence of T(m) snapshots such that

- first snapshot s_1 is $\langle q_{start}, \triangleright, \triangleright \rangle$
- last snapshot $s_{T(m)}$ has state q_{halt} and ouputs 1
- s_{i+1} computed correctly from
 - δ
 - S_i
 - **Y**inputpos(i+1)
 - Sprev(i+1)

$\varphi_x = \varphi_1 \land \varphi_2 \land \varphi_3 \land \varphi_4$

1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$

$\varphi_{x} = \varphi_{1} \land \varphi_{2} \land \varphi_{3} \land \varphi_{4}$

1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$ \rightarrow size 4n

$\varphi_x = \varphi_1 \land \varphi_2 \land \varphi_3 \land \varphi_4$

1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$ \rightarrow size 4n

2. relate z_1, \ldots, z_c with $\langle q_{start}, \triangleright, \triangleright \rangle$

 \rightarrow size O(c) (CNF, independent of |x|)

$\varphi_x = \varphi_1 \land \varphi_2 \land \varphi_3 \land \varphi_4$

- 1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$ \rightarrow size 4n
- **2.** relate z_1, \ldots, z_c with $\langle q_{start}, \triangleright, \triangleright \rangle$
 - \rightarrow size O(c) (CNF, independent of |x|)
- **3.** relate $z_{c(T(m)-1)+1}, \ldots, z_{cT(m)}$ with accepting snapshot
 - \rightarrow analogous

$\varphi_{\mathsf{X}} = \varphi_1 \land \varphi_2 \land \varphi_3 \land \varphi_4$

- 1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$ \rightarrow size 4n
- **2.** relate z_1, \ldots, z_c with $\langle q_{start}, \triangleright, \triangleright \rangle$
 - \rightarrow size O(c) (CNF, independent of |x|)
- **3.** relate $z_{c(T(m)-1)+1}, \ldots, z_{cT(m)}$ with accepting snapshot
 - \rightarrow analogous
- **4.** relate $z_{ci+1}, \ldots, z_{c(i+1)}$ (snapshot s_{i+1}) with
 - $Z_{c(i-1)+1}, \ldots, Z_{ci-2}$ (state of snapshot s_i)
 - **y**inputpos(i+1)
 - *z_{c-prev(i)}* (next work tape symbol, from snapshot *s_{prev(i)}*)

$\varphi_{x} = \varphi_{1} \land \varphi_{2} \land \varphi_{3} \land \varphi_{4}$

- 1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$ \rightarrow size 4n
- **2.** relate z_1, \ldots, z_c with $\langle q_{start}, \triangleright, \triangleright \rangle$
 - \rightarrow size O(c) (CNF, independent of |x|)
- **3.** relate $z_{c(T(m)-1)+1}, \ldots, z_{cT(m)}$ with accepting snapshot
 - \rightarrow analogous
- **4.** relate $z_{ci+1}, \ldots, z_{c(i+1)}$ (snapshot s_{i+1}) with
 - $Z_{c(i-1)+1}, \ldots, Z_{ci-2}$ (state of snapshot s_i)
 - **y**inputpos(i+1)
 - *z_{c-prev(i)}* (next work tape symbol, from snapshot *s_{prev(i)}*)
 - CNF formula over 2c variables, size O(c2^{2c})

$\varphi_{x} = \varphi_{1} \land \varphi_{2} \land \varphi_{3} \land \varphi_{4}$

- 1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$ \rightarrow size 4n
- **2.** relate z_1, \ldots, z_c with $\langle q_{start}, \triangleright, \triangleright \rangle$
 - \rightarrow size O(c) (CNF, independent of |x|)
- **3.** relate $z_{c(T(m)-1)+1}, \ldots, z_{cT(m)}$ with accepting snapshot
 - \rightarrow analogous
- **4.** relate $z_{ci+1}, \ldots, z_{c(i+1)}$ (snapshot s_{i+1}) with
 - $Z_{c(i-1)+1}, \ldots, Z_{ci-2}$ (state of snapshot s_i)
 - **y**inputpos(i+1)
 - *z_{c-prev(i)}* (next work tape symbol, from snapshot *s_{prev(i)}*)
 - CNF formula over 2c variables, size O(c2^{2c})

Polynomial in *n*!

Stop!

- $|\varphi_x|$ polynomial in *n*
- if φ_x is satisfiable, the satisfying assignment yields certificate $y_{n+1}, \dots, y_{n+p(n)}$
- if a certificate exists in $\{0, 1\}^{p(n)}$, we get a satisfying assignment
- M_f can output φ_x in polynomial time
- \Rightarrow reduction
Stop!

- $|\varphi_x|$ polynomial in *n*
- if φ_x is satisfiable, the satisfying assignment yields certificate $y_{n+1}, \dots, y_{n+p(n)}$
- if a certificate exists in $\{0, 1\}^{p(n)}$, we get a satisfying assignment
- M_f can output φ_x in polynomial time
- \Rightarrow reduction
 - but: not to 3SAT

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

 $u_1 \vee u_2 \vee \ldots \vee u_k \sim$

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

$$\begin{array}{cccc} u_1 \lor u_2 \lor \ldots \lor u_k \\ & & & \\ & & \\ & & \\ (u_1 \lor u_2 \lor x_1) \\ \wedge & (\overline{x_1} \lor u_3 \lor x_2) \end{array}$$

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

$$\begin{array}{cccc} u_1 \lor u_2 \lor \ldots \lor u_k \\ & & & \\ & & & \\ & & & \\ & & & (u_1 & \lor & u_2 & \lor & x_1) \\ \wedge & & & & & (\overline{x_1} & \lor & u_3 & \lor & x_2) \\ \wedge & & & & & & (\overline{x_2} & \lor & u_4 & \lor & x_3) \end{array}$$

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

$$u_1 \lor u_2 \lor \ldots \lor u_k$$

$$(u_1 \lor u_2 \lor x_1)$$

$$\land \quad (\overline{x_1} \lor u_3 \lor x_2)$$

$$\land \quad (\overline{x_2} \lor u_4 \lor x_3)$$

$$\ldots$$

$$\land \quad (\overline{x_{k-2}} \lor u_{k-1} \lor u_k)$$

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

Each clause with k variables transformed into equivalent k - 2 3-clauses with 2k - 2 variables. All x_i fresh.

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

Each clause with *k* variables transformed into equivalent k - 2 3-clauses with 2k - 2 variables. All x_i fresh. Example. $x \lor \overline{y} \lor \overline{z} \lor w$ becomes $x \lor \overline{y} \lor q$ and $\overline{q} \lor \overline{z} \lor w$.

What you need to remember

- for each $L \in NP$ take TM *M* deciding *L* in polynomial time
- define TM M_f computing a reduction to formula φ_x for each input
- due to obliviousness M_f pre-computes head positions and every computation takes time T(n + p(n)) steps
- and is a sequence of snapshots (q, 0, 1)
- φ has four parts
 - correct input x, u with u being the certificate
 - correct starting snapshot
 - correct halting snapshot
 - how to go from s_i to s_{i+1}
- finally: CNF transformed to 3CNF

- Cook-Levin \checkmark
- SAT demo
- see old friends
 - 0/1-ILP
 - Indset
 - 3-Coloring

So 3SAT is intractable?

- if P ≠ NP, no polynomial time algorithm for SAT
- contrapositive: if you find one, you prove P = NP
- every problem in NP solvable by exhaustive search for certificates
- which implies NP ⊆ PSPACE (try each possible re-using space)

SAT is easy!

- well-researched problem
- has its own conference
- 1000s of tools, academic and commercial
- extremely useful for modelling
 - verification
 - planning and scheduling
 - Al
 - games (Sudoku!)
- useful for reductions due to low combinatorial complexity
- satlive.org: solvers, jobs, competitions

- www.sat4j.org
- two termination problems from string/term-rewriting
- 10000s of variables, millions of clauses
- solvable in a few seconds!

- Cook-Levin \checkmark
- SAT demo \checkmark
- see old friends
 - 0/1-ILP
 - Indset
 - 3-Coloring

More reductions from 3SAT

We will now describe reductions from 3SAT to

- 0/1-ILP: the set of satisfiable sets of integer linear programs with boolean solutions
- Indset = {\langle G, k \rangle | G has independent set of size at least k}
- 3-Coloring = {G | G is 3-colorable}

This establishes NP-hardness for all of the problems. Of course, they are easily in NP as well, hence complete.

$(x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor w) \land (\overline{x} \lor y \lor \overline{w})$

$(x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor w) \land (\overline{x} \lor y \lor \overline{w})$

$(x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor w) \land (\overline{x} \lor y \lor \overline{w})$

•
$$f(x) = x$$

•
$$f(\overline{x}) = (1-x)$$

• $f(u_1 \vee ... \vee u_k) = f(u_1) + ... + f(u_k) \ge 1$

$(x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor w) \land (\overline{x} \lor y \lor \overline{w})$

- f(x) = x
- $f(\overline{x}) = (1 x)$
- $f(u_1 \vee ... \vee u_k) = f(u_1) + ... + f(u_k) \ge 1$
- linear reduction
- φ satisfiable iff $f(\varphi)$ has boolean solution

• given: formula φ with *m* clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$

- given: formula φ with *m* clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E), such that each clause gets a node per satisfying assignment
 - $V = \{C_i^{a_i} \mid a : vars(C_i) \rightarrow \{0, 1\}, C_i \text{ holds under assignment } a_i\}$

- given: formula φ with *m* clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E), such that each clause gets a node per satisfying assignment
 - $V = \{C_i^{a_i} \mid a : vars(C_i) \rightarrow \{0, 1\}, C_i \text{ holds under assignment } a_i\}$
- edges denote conflicting assignments
 - $E = \{\{C_i^a, C_{i'}^{a'}\} \mid i, i' \in [m], \exists x.a(x) \neq a'(x)\}$

- given: formula φ with *m* clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E), such that each clause gets a node per satisfying assignment

• $V = \{C_i^{a_i} \mid a : vars(C_i) \rightarrow \{0, 1\}, C_i \text{ holds under assignment } a_i\}$

- edges denote conflicting assignments
 - $E = \{\{C_i^a, C_{i'}^{a'}\} \mid i, i' \in [m], \exists x.a(x) \neq a'(x)\}$
- *G* has 7*m* nodes and *O*(*m*²) edges and can be computed in polynomial time

- φ is satisfiable
- \Rightarrow exists assignment $a: X \rightarrow \{0, 1\}$ that makes φ true
- \Rightarrow a makes every clause true
- $\Rightarrow \{C_i^{a|vars(i)} \mid 1 \le i \le m\}$ is an independent set of size m

- φ is satisfiable
- \Rightarrow exists assignment $a: X \rightarrow \{0, 1\}$ that makes φ true
- ⇒ a makes every clause true
- $\Rightarrow \{C_i^{a|vars(i)} \mid 1 \le i \le m\}$ is an independent set of size m

- G has an independent set of size m
- \Rightarrow ind. set covers all clauses
- ⇒ ind. set yields composable, partial assignments per clause
- $\Rightarrow \varphi$ is satisfiable

• given: formula φ with *m* clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$

- given: formula φ with *m* clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E)
- V is the union of
 - $X \cup \overline{X}$ to capture assignments
 - special nodes {u, v}
 - one little house per clause with 5 nodes: $\{v_{ij}, a_i, b_i \mid i \in [m], j \in [3]\}$

- given: formula φ with *m* clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E)
- V is the union of
 - $X \cup \overline{X}$ to capture assignments
 - special nodes {u, v}
 - one little house per clause with 5 nodes: $\{v_{ij}, a_i, b_i \mid i \in [m], j \in [3]\}$
- E comprised of
 - edge {*u*, *v*}
 - for each literal in each clause, a connection to the assignment graph: $\{\{u_{ij}, v_{ij}\} \mid i \in [m], j \in [3]\}$
 - house edges:

 $\{\{v, a_i\}, \{v, b_i\}, \{v_{i1}, a_i\}, \{v_{i1}, b_i\}, \{v_{i2}, a_i\}, \{v_{i3}, b_i\}, \{v_{i2}, v_{i3}\} \mid i \in [m]\}$

- G has 2n + 5m + 2 nodes and $O(m^2)$ edges and can be computed in polynomial time
- three colors: {red, true, false}

- φ is satisfiable,
- \Rightarrow there is an assignment $a: X \rightarrow \{0, 1\}$ that makes every clause true
- ⇒ coloring *u* red, *v* false, and *x* true iff a(x) = 1 leads to a correct 3-coloring

- φ is satisfiable,
- \Rightarrow there is an assignment $a: X \rightarrow \{0, 1\}$ that makes every clause true
- ⇒ coloring *u* red, *v* false, and *x* true iff a(x) = 1 leads to a correct 3-coloring
 - G is 3-colorable
 - wlog. assume *u* is red and *v* is false
 - assume there is a clause *j* such that all literals are colored false
- \Rightarrow v_{j2} and v_{j3} are colored true and red
- \Rightarrow a_j and b_j are colored true and red
- \Rightarrow v_{j1} colored false, which is a contradiction, because it is connected to a false literal

3SAT ≤_p 3−Coloring

Summary

What have you learnt?

- SAT is NP-complete
- SAT is practically feasible
- SAT has lots of academic and industrial applications
- SAT can be reduced to independent set, 3-coloring and boolean ILP, which makes those NP-hard
- up next: coNP, Ladner

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 9, 2019

Lecture 6

• coNP

- the importance of P vs. NP vs. coNP
- neither in P nor NP-complete: Ladner's theorem
- wrap-up Lecture 1-6

coNP

- reminder: $L \subseteq \{0, 1\}^* \in \text{coNP}$ iff $\{0, 1\}^* \setminus L \in \mathbb{NP}$
- example: SAT contains

coNP

- reminder: $L \subseteq \{0, 1\}^* \in \text{coNP}$ iff $\{0, 1\}^* \setminus L \in \mathbb{NP}$
- example: SAT contains
 - not well-formed formulas
 - unsatisfiable formulas
coNP

- reminder: $L \subseteq \{0, 1\}^* \in \text{coNP}$ iff $\{0, 1\}^* \setminus L \in \mathbb{NP}$
- example: SAT contains
 - not well-formed formulas
 - unsatisfiable formulas
- does SAT have polynomial certificates?

coNP

- reminder: $L \subseteq \{0, 1\}^* \in \text{coNP}$ iff $\{0, 1\}^* \setminus L \in \mathbb{NP}$
- example: SAT contains
 - not well-formed formulas
 - unsatisfiable formulas
- does SAT have polynomial certificates?
- not known: open problem whether NP is closed under complement
- note that P is closed under complement, compare with NFA vs DFA closure

For all certificates

- like for NP there is a characterization in terms of certificates
- for coNP it is dual: for all certificates
- <u>3SAT</u>: to prove unsatifiability one must check all assignments, for satisfiability only one

For all certificates

- like for NP there is a characterization in terms of certificates
- for coNP it is dual: for all certificates
- <u>3SAT</u>: to prove unsatifiability one must check all assignments, for satisfiability only one

Theorem (coNP certificates)

A language $L \subseteq \{0, 1\}^*$ is in coNP iff there exists a polynomial p and a TM M such that

$$\forall x \in \{0,1\}^* \ x \in L \Leftrightarrow \forall u \in \{0,1\}^{p(|x|)} \ M(x,u) = 1$$

Completeness

- like for NP one can define coNP-hardness and completeness
- L is coNP-complete iff L ∈ coNP and all problems in coNP are polynomial-time Karp-reducible to L
- classical example: Tautology = {φ |
 φ is Boolean formula that is true for every assignment}
- example: $x \lor \overline{x} \in$ Tautology
- proof?

Completeness

- like for NP one can define coNP-hardness and completeness
- L is coNP-complete iff L ∈ coNP and all problems in coNP are polynomial-time Karp-reducible to L
- classical example: Tautology = {φ |
 φ is Boolean formula that is true for every assignment}
- example: $x \lor \overline{x} \in$ Tautology
- proof?
 - note that L is coNP-complete, if L is NP-complete
 - \Rightarrow SAT is **coNP**-complete
 - \Rightarrow Tautology is **coNP**-complete (reduction from SAT by negating formula)

xA regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

xA regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

The language defined by *r* is written $\mathcal{L}(r)$.

• let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n

xA regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

- let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n
- compute from φ a regular expression: $f(\varphi) = (\alpha_1 | \alpha_2 | \dots | \alpha_m)$

xA regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

- let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n
- compute from φ a regular expression: $f(\varphi) = (\alpha_1 | \alpha_2 | \dots | \alpha_m)$
- $\alpha_i = \gamma_{i1} \dots \gamma_{in}$

xA regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

- let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n
- compute from φ a regular expression: $f(\varphi) = (\alpha_1 | \alpha_2 | \dots | \alpha_m)$
- $\alpha_i = \gamma_{i1} \dots \gamma_{in}$
- $\gamma_{ij} = \begin{cases} 0 & x_j \in C_i \\ 1 & \overline{x_j} \in C_i \\ (0|1) & \text{otherwise} \end{cases}$

xA regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

The language defined by *r* is written $\mathcal{L}(r)$.

- let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n
- compute from φ a regular expression: $f(\varphi) = (\alpha_1 | \alpha_2 | \dots | \alpha_m)$
- $\alpha_i = \gamma_{i1} \dots \gamma_{in}$

•
$$\gamma_{ij} = \begin{cases} 0 & x_j \in C_i \\ 1 & \overline{x_j} \in C_i \\ (0|1) & \text{otherwise} \end{cases}$$

• example: $(x \lor y \lor \overline{z}) \land (\overline{y} \lor z \lor w)$ transformed to (001(0|1)) | (0|1)100)

xA regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

- let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n
- compute from φ a regular expression: $f(\varphi) = (\alpha_1 | \alpha_2 | \dots | \alpha_m)$
- $\alpha_i = \gamma_{i1} \dots \gamma_{in}$

•
$$\gamma_{ij} = \begin{cases} 0 & x_j \in C_i \\ 1 & \overline{x_j} \in C_i \\ (0|1) & \text{otherwise} \end{cases}$$

- example: $(x \lor y \lor \overline{z}) \land (\overline{y} \lor z \lor w)$ transformed to (001(0|1)) | (0|1)100)
- observe: φ is unsatisfiable iff $f(\varphi) = \{0, 1\}^n$

Regular expressions and computational complexity

- previous slide establishes: 3SAT≤pRegExpEq0
- that is: regular expression equivalence is coNP-hard

Regular expressions and computational complexity

- previous slide establishes: 3SAT≤pRegExpEq0
- that is: regular expression equivalence is coNP-hard
- it is coNP-complete for expressions without ∗, ∩
- because one needs to check for all expressions of length *n* whether they are included (test polynomial by NFA transformation)

Regular expressions and computational complexity

- previous slide establishes: 3SAT≤_pRegExpEq₀
- that is: regular expression equivalence is coNP-hard
- it is coNP-complete for expressions without ∗, ∩
- because one needs to check for all expressions of length *n* whether they are included (test polynomial by NFA transformation)
- the problem becomes PSPACE-complete when * is added
- the problem becomes EXP-complete when *, ∩ is added

- coNP \checkmark
- the importance of P vs. NP vs. coNP
- neither in P nor NP-complete: Ladner's theorem
- wrap-up Lecture 1-6

Open and known problems

OPEN

- **P** = **NP**?
- NP = coNP?

Open and known problems

OPEN

- **P** = **NP**?
- NP = coNP?

KNOWN

- if an NP-complete problem is in P, then P = NP
- $\mathbf{P} \subseteq \mathbf{coNP} \cap \mathbf{NP}$
- if *L* ∈ coNP and *L* NP-complete then NP = coNP
- if **P** = **NP** then **P** = **NP** = **coNP**
- if NP \neq coNP then P \neq NP
- if EXP ≠ NEXP then P ≠ NP (equalities scale up, inequalities scale down – by padding)

What if **P** = **NP**?

- one of the most important open problems
- computational utopia
- SAT has polynomial algorithm
- 1000s of other problems, too (due to reductions, completeness)
- finding solutions is as easy as verifying them
- guessing can be done deterministically
- decryption as easy as encryption
- randomization can be de-randomized

What if NP = coNP

Problems have short certificates that don't seem to have any!

- like tautology, unsatisfiability
- like unsatisfiable ILPs
- like regular expression equivalence

How to cope with NP-complete problems?

- ignore (see SAT), it may still work
- modify your problem (2SAT, 2Coloring)
- NP-completeness talks about worst cases and exact solutions
 - → try average cases
 - \rightarrow try approximations
- randomize
- explore special cases (TSP)

In praise of reductions

- · reductions help, when lower bounds are hard to come by
- reductions helped to prove NP-completeness for 1000s of natural problems
- in fact, most natural problems (exceptions are Factoring and Iso) are either in P or NP-complete
- but, unless **P** = **NP**, there exist such problems

- coNP \checkmark
- the importance of P vs. NP vs. coNP \checkmark
- neither in P nor NP-complete: Ladner's theorem
- wrap-up Lecture 1-6

Ladner's Theorem

P/NP intermediate languages exist!

Theorem (Ladner)

If $P \neq NP$ then there exists a language $L \subseteq NP \setminus P$ that is not NP-complete.

- let $H : \mathbb{N} \to \mathbb{N}$ be a function
- define SAT_H to be

 $\{\varphi 01^{n^{H(n)}} \mid \varphi \in \text{SAT}, n = |\varphi|\}$

- let $H : \mathbb{N} \to \mathbb{N}$ be a function
- define SAT_H to be

$$\{\varphi 01^{n^{H(n)}} \mid \varphi \in \text{SAT}, n = |\varphi|\}$$

Using the definition of SAT_H one can show

- **1.** $H(n) \in O(1) \Rightarrow SAT_H \notin P$
- **2.** $\lim_{n\to\infty} H(n) = \infty \Rightarrow SAT_H$ is not NP-complete

- let $H : \mathbb{N} \to \mathbb{N}$ be a function
- define SAT_H to be

$$\{\varphi 01^{n^{H(n)}} \mid \varphi \in \text{SAT}, n = |\varphi|\}$$

Using the definition of SAT_H one can show

- **1.** $H(n) \in O(1) \Rightarrow SAT_H \notin P$
- **2.** $\lim_{n\to\infty} H(n) = \infty \Rightarrow SAT_H$ is not **NP**-complete

For H(n) at most a constant, padding is polynomial and the SAT_H is NP-complete, hence not in P.

- let $H : \mathbb{N} \to \mathbb{N}$ be a function
- define SAT_H to be

$$\{\varphi 01^{n^{H(n)}} \mid \varphi \in \text{SAT}, n = |\varphi|\}$$

Using the definition of SAT_H one can show

- 1. $H(n) \in O(1) \Rightarrow SAT_H \notin P$
- **2.** $\lim_{n\to\infty} H(n) = \infty \Rightarrow SAT_H$ is not **NP**-complete

For H(n) at most a constant, padding is polynomial and the SAT_H is NP-complete, hence not in P.

If SAT_H is NP-complete, then there is a reduction from SAT to SAT_H in time $O(n^i)$ for some constant. For large *n* it maps SAT instances φ to SAT_H instances $\psi 01^{|\psi|^{H(|\psi|)}}$ of size $|\psi| + |\psi|^{H(|\psi|)} = O(|\varphi|^i)$. This implies $|\psi| \in o(|\varphi|)$ and by repeated application SAT \in P. Contradiction!

Combine the approaches:

• define the function H and fix SAT_H

- define the function H and fix SAT_H
- *H*(*n*) is
 - the smallest $i < \log \log n$ such that

- define the function H and fix SAT_H
- *H*(*n*) is
 - the smallest $i < \log \log n$ such that $\forall x \in \{0, 1\}^*$ with $|x| \le \log n$ M_i (the *i*-th TM) outputs $SAT_H(x)$ within $i|x|^i$ steps

- define the function H and fix SAT_H
- *H*(*n*) is
 - the smallest $i < \log \log n$ such that $\forall x \in \{0, 1\}^*$ with $|x| \le \log n$ M_i (the *i*-th TM) outputs $SAT_H(x)$ within $i|x|^i$ steps
 - if no such *i* exists then $H(n) = \log \log n$
- if SAT_H(x) ∈ P, say computed in kn^k then there is j > k such that M_i computes SAT_H(x) hence for n > 2^{2ⁱ} we have H(n) ≤ j

- define the function H and fix SAT_H
- *H*(*n*) is
 - the smallest $i < \log \log n$ such that $\forall x \in \{0, 1\}^*$ with $|x| \le \log n$ M_i (the *i*-th TM) outputs $SAT_H(x)$ within $i|x|^i$ steps
 - if no such *i* exists then $H(n) = \log \log n$
- if SAT_H(x) ∈ P, say computed in kn^k then there is j > k such that M_i computes SAT_H(x) hence for n > 2²ⁱ we have H(n) ≤ j
- *H* tends to ∞ since SAT_H(x) cannot be computed in P and each M_i must be wrong on a long enough input

- coNP \checkmark
- the importance of P vs. NP vs. coNP \checkmark
- neither in P nor NP-complete: Ladner's theorem ✓
- wrap-up Lecture 1-6

What you should know by now

- deterministic TMs capture the inuitive notion of algorithms and computability
- universal TM ~ general-purpose computer or an interpreter
- some problems are not computable aka. undecidable, like the halting problem
- this is proved by diagonalization
- complexity class P captures tractable problems
- P is robust under TM definition tweaks (tapes, alphabet size, obliviousness, universal simulation)
- non-deterministic TMs can be simulated by TM in exponential time
- NP ~ non-det. poly. time ~ polynomially checkable certificates
What you should know by now

- NP ~ non-det. poly. time ~ polynomially checkable certificates
- reductions allow to define hardness and completeness of problems
- complete problems are the hardest within a class, if they can be solved efficiently the whole class can
- NP complete problems: 3SAT (by Cook-Levin); Indset, 3–Coloring, ILP (by reduction from 3SAT)
- SAT is practically useful and feasible
- **coNP** complete problems: Tautology, star-free regular expression equivalence
- probably there are problems neither in P nor NP-complete (Ladner)

What's next?

- space classes
- space and time hierarchy theorems
- generalization of NP and coNP: polynomial hierarchy
- probabilistic TMs, randomization
- complexity and proofs

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 9, 2019

Lecture 7 Hierarchies

- deterministic time hierarchy theorem
- · non-deterministic time hierarchy theorem
- space hierarchy theorem
- relation between space and time

Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f \cdot \log f \in o(g)$. Then DTIME $(f(n)) \subset \text{DTIME}(g(n))$.

Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f \cdot \log f \in o(g)$. Then $\mathsf{DTIME}(f(n)) \subset \mathsf{DTIME}(g(n))$.

- inclusion is strict
- proof: diagonalization
 - TM D simulates M_x on x for $g(|x|) / \log(|x|)$ steps and flips any answer
 - *D* runs in *O*(*g*)
 - if computable by $E = M_i$ in O(f) then $D(i) \neq M_i(i) = E(i)$, contradiction

Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f \cdot \log f \in o(g)$. Then DTIME $(f(n)) \subset \text{DTIME}(g(n))$.

- inclusion is strict
- proof: diagonalization
 - TM D simulates M_x on x for $g(|x|) / \log(|x|)$ steps and flips any answer
 - *D* runs in *O*(*g*)
 - if computable by $E = M_i$ in O(f) then $D(i) \neq M_i(i) = E(i)$, contradiction
- logarithmic factor due to slowdown in universal simulation
- shows that P does not collapse to level k
- corollary: P ⊂ EXP

Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f(n + 1) \in o(g(n))$. Then NTIME $(f(n)) \subset \text{NTIME}(g(n))$.

Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f(n + 1) \in o(g(n))$. Then NTIME $(f(n)) \subset \text{NTIME}(g(n))$.

- inclusion is strict
- proof by lazy diagonalization (see: AB Th. 3.2)
- note: proof of deterministic theorem does not carry over

Space Hierarchy Theorem

Theorem (Space Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be space-constructible such that $f \in o(g)$. Then **SPACE** $(f(n)) \subset$ **SPACE**(g(n)).

Space Hierarchy Theorem

Theorem (Space Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be space-constructible such that $f \in o(g)$. Then SPACE $(f(n)) \subset$ SPACE(g(n)).

- inclusion is strict
- stronger theorem than corresponding time theorem
 - universal TM for space-bounded computation incurs only constant space overhead
 - f, g can be logarithmic too
- · proof analogous to deterministic time hierarchy
- corollary: L ⊂ PSPACE

- deterministic time hierarchy theorem \checkmark
- non-deterministic time hierarchy theorem \checkmark
- space hierarchy theorem \checkmark
- relation between space and time

Relation between time and space

Theorem (Time vs. Space)

Let $s : \mathbb{N} \to \mathbb{N}$ be space-constructible. Then

 $\mathsf{DTIME}(s(n)) \subseteq \mathsf{SPACE}(s(n)) \subseteq \mathsf{NSPACE}(s(n)) \subseteq \mathsf{DTIME}(2^{O(s(n))})$

Relation between time and space

Theorem (Time vs. Space)

Let $s:\mathbb{N}\to\mathbb{N}$ be space-constructible. Then

 $\mathsf{DTIME}(s(n)) \subseteq \mathsf{SPACE}(s(n)) \subseteq \mathsf{NSPACE}(s(n)) \subseteq \mathsf{DTIME}(2^{O(s(n))})$

- inclusions are non-strict
- first two are obvious
- third inclusion requires notion of configuration graphs
- first inclusion can be strengthened to $\text{DTIME}(s(n)) \subseteq \text{SPACE}(\frac{s(n)}{\log n})$

Configuration Graphs

Let *M* be a deterministic or non-deterministic TM using s(n) space. Let x be some input.

Configuration Graphs

Let *M* be a deterministic or non-deterministic TM using s(n) space. Let *x* be some input.

- this induces a configuration graph G(M, x)
- nodes are configuration
 - states
 - content of work tapes
- edges are transitions (steps) that M can take

Properties of configuration graph

- outdegree of *G*(*M*, *x*) is 1 if *M* is deterministic; 2 if *M* is non-deterministic
- G(M, x) has at most $|Q| \cdot \Gamma^{c \cdot s(n)}$ nodes (c some constant)
- which is in 2^{O(s(n))}
- G(M, x) can be made to have unique source and sink
- acceptance ~ existence of path from source to sink
- which can be checked in time O(G(M, x)) using BFS

Properties of configuration graph

- outdegree of G(M, x) is 1 if M is deterministic; 2 if M is non-deterministic
- G(M, x) has at most $|Q| \cdot \Gamma^{c \cdot s(n)}$ nodes (c some constant)
- which is in 2^{O(s(n))}
- G(M, x) can be made to have unique source and sink
- acceptance ~ existence of path from source to sink
- which can be checked in time O(G(M, x)) using BFS
- \Rightarrow NSPACE(s(n)) \subseteq DTIME(2^{O(s(n))})

Properties of configuration graph

- outdegree of G(M, x) is 1 if M is deterministic; 2 if M is non-deterministic
- G(M, x) has at most $|Q| \cdot \Gamma^{c \cdot s(n)}$ nodes (c some constant)
- which is in 2^{O(s(n))}
- G(M, x) can be made to have unique source and sink
- acceptance ~ existence of path from source to sink
- which can be checked in time O(G(M, x)) using BFS
- \Rightarrow NSPACE(s(n)) \subseteq DTIME(2^{O(s(n))})
- \Rightarrow DTIME(s(n)) \subseteq NTIME(s(n)) \subseteq SPACE(s(n))
 - configurations include a counter over all possible choices

References

- the proof of Ladner's theorem given here follows AB, Th. 3.3
- nice survey, see blog.computationalcomplexity.org/media/ladner.pdf
- original proof of time hierarchy by *Hartmanis and Stearns* On the computational complexity of algorithms in Transactions of the American Mathematical Society 117.
- non-det time hierarchy by Stephen Cook: A hierarchy for nondeterministic time complexity in 4th annual ACM Symposium on Theory of Computing.
- stronger result on time vs space using pebble games by *Hopcroft, Paul, and Valiant* On time versus space in Journal of the ACM 24(2):332-337, April 1977.

Conclusion

Summary

- a lot of diagonalization
- Ladner: NP-intermediate languages exist
- $f \cdot \log f \in o(g)$ implies $\mathsf{DTIME}(f(n)) \subset \mathsf{DTIME}(g(n))$
- $f \in o(g)$ implies SPACE $(f(n)) \subset$ SPACE(g(n))
- $DTIME(f(n)) \subseteq SPACE(s(n)) \subseteq NSPACE(s(n)) \subseteq DTIME(2^{O(s(n))})$
- $P \subset EXP$ and $L \subset PSPACE$

Next time: **PSPACE**

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 9, 2019

Lecture 8
PSPACE

Agenda

- succinctness
- QBF and GG
- PSPACE completeness
- QBF is **PSPACE**-complete
- Savitch's theorem

Succinctness vs Expressiveness

Some intuition:

- $5 \cdot 5$ is more succinct than 5 + 5 + 5 + 5 + 5
- ⇒ multiplication allows for more succinct representation of arithmetic expressions
 - but it is not more expressive

Succinctness vs Expressiveness

Some intuition:

- $5 \cdot 5$ is more succinct than 5 + 5 + 5 + 5 + 5
- ⇒ multiplication allows for more succinct representation of arithmetic expressions
 - but it is not more expressive

regular expressions

- regular expressions with squaring are more succinct than without
- example: strings over {1} with length divisible by 16
 - ((((00)²)²)²)* versus
 - (00000000000000)*
- but obviously squaring does not add expressiveness

More succinct means more difficult to handle

Non-deterministic finite automata

- NFAs can be exponentially more succinct than DFAs
- but equally expressive
- example: k-last symbol is 1
- complementation, equivalence are polynomial for DFAs and exponential for NFAs

Succinctness

Succinct Boolean formulas

Consider the following formula where $\psi = x \lor y \lor \overline{z}$

$$(x \land y \land \psi) \land (x \land \overline{y} \land \psi) \land (\overline{x} \land y \land \psi) \land (\overline{x} \land \overline{y} \land \psi)$$

Succinctness

Succinct Boolean formulas

Consider the following formula where $\psi = x \lor y \lor \overline{z}$

$$\begin{array}{c} (x \wedge y \wedge \psi) \\ \wedge & (x \wedge \overline{y} \wedge \psi) \\ \wedge & (\overline{x} \wedge y \wedge \psi) \\ \wedge & (\overline{x} \wedge \overline{y} \wedge \psi) \end{array}$$

Formula is satisfiable iff $\exists z \ \forall x \ \forall y.\psi$ is true, where variables range over $\{0, 1\}$.

Succinctness

Succinct Boolean formulas

Consider the following formula where $\psi = x \lor y \lor \overline{z}$

$$(x \land y \land \psi) \land (x \land \overline{y} \land \psi) \land (\overline{x} \land y \land \psi) \land (\overline{x} \land \overline{y} \land \psi)$$

Formula is satisfiable iff $\exists z \ \forall x \ \forall y.\psi$ is true, where variables range over $\{0, 1\}$.

⇒ Quantified Boolean Formulas

Quantified Boolean Formulas

Definition (QBF)

A quantified Boolean formula is a formula of the form

$$Q_1 x_1 Q_2 x_2 \ldots Q_n x_n \varphi(x_1, \ldots, x_n)$$

- where each $Q_i \in \{\forall, \exists\}$
- each x_i ranges over {0, 1}
- φ is quantifier-free

Quantified Boolean Formulas

Definition (QBF)

A quantified Boolean formula is a formula of the form

$$Q_1 x_1 Q_2 x_2 \ldots Q_n x_n \varphi(x_1, \ldots, x_n)$$

- where each $Q_i \in \{\forall, \exists\}$
- each x_i ranges over {0, 1}
- φ is quantifier-free
- wlog we can assume prenex form
- formulas are closed, i.e. each QBF is true or false
- QBF = { $\varphi \mid \varphi$ is a true QBF}
- if all $Q_i = \exists$, we obtain SAT as a special case
- if all $Q_i = \forall$, we obtain Tautology as a special case

QBF is in PSPACE

Polynomial space algorithm to decide QBF

 $abfsolve(\psi)$ if ψ is quantifier-free return evaluation of ψ if $\psi = Qx.\psi'$ if $\mathbf{O} = \mathbf{F}$ if $gbfsolve(\psi'[x \mapsto 0])$ return true if $gbfsolve(\psi'[x \mapsto 1])$ return true if $\mathbf{Q} = \mathbf{V}$ $b_1 = \text{qbfsolve}(\psi'[x \mapsto 0])$ $b_2 = \text{qbfsolve}(\psi'[x \mapsto 1])$ return $b_1 \wedge b_2$ return false

QBF is in PSPACE

Polynomial space algorithm to decide QBF

 $abfsolve(\psi)$ if ψ is quantifier-free return evaluation of ψ if $\psi = Qx.\psi'$ if $\mathbf{O} = \mathbf{F}$ if $gbfsolve(\psi'[x \mapsto 0])$ return true if $gbfsolve(\psi'[x \mapsto 1])$ return true if $\mathbf{O} = \mathbf{V}$ $b_1 = \text{qbfsolve}(\psi'[x \mapsto 0])$ $b_2 = \text{gbfsolve}(\psi'[x \mapsto 1])$ return $b_1 \wedge b_2$ return false

- each recursive call can re-use same space!
- **qbsolve** uses at most $O(|\psi|^2)$ space

Generalized Geography

- children's game, where people take turn naming cities
- next city must start with previous city's final letter
- as in München → Nürnberg
- no repetitions
- lost if no more choices left
Generalized Geography

- children's game, where people take turn naming cities
- next city must start with previous city's final letter
- as in München → Nürnberg
- no repetitions
- lost if no more choices left

Formalization

Given a graph and a node, players take turns choosing an unvisited adjacent node until no longer possible.

 $GG = \{\langle G, u \rangle \mid \text{ player 1 has winning strategy from node } u \text{ in } G\}$

GG ∈ **PSPACE**

and here is the algorithm to prove it:

```
ggsolve(G, u)

if u has no outgoing edge return false

remove u and its adjacent edges from G to obtain G'

for each u_i adjacent to u

b_i = ggsolve(G', u_i)

return \bigvee_i \overline{b_i}
```

GG ∈ **PSPACE**

and here is the algorithm to prove it:

```
ggsolve(G, u)

if u has no outgoing edge return false

remove u and its adjacent edges from G to obtain G'

for each u_i adjacent to u

b_i = ggsolve(G', u_i)

return \bigvee_i \overline{b_i}
```

- stack depth 1 for recursion implies polynomial space
- QBF ≤_p GG

Agenda

- succinctness √
- QBF and GG \checkmark
- PSPACE completeness
- QBF is **PSPACE**-complete
- Savitch's theorem

PSPACE-completness

Definition (PSPACE-completeness)

Language *L* is **PSPACE-hard** if for every $L' \in \text{PSPACE } L' \leq_p L$. *L* is **PSPACE-complete** if $L \in \text{PSPACE}$ and *L* is **PSPACE-hard**.

QBF is PSPACE-complete

Theorem QBF is PSPACE-complete.

QBF is PSPACE-complete

- have already shown that QBF ∈ PSPACE
- need to show that every problem *L* ∈ PSPACE is polynomial-time reducible to QBF

• let *L* ∈ **PSPACE** arbitrary

- let *L* ∈ **PSPACE** arbitrary
- $L \in \text{SPACE}(s(n))$ for polynomial s

- let *L* ∈ **PSPACE** arbitrary
- $L \in \text{SPACE}(s(n))$ for polynomial s
- $m \in O(s(n))$: bits needed to encode configuration C

- let *L* ∈ **PSPACE** arbitrary
- $L \in \text{SPACE}(s(n))$ for polynomial s
- $m \in O(s(n))$: bits needed to encode configuration C
- exists Boolean formula $\varphi_{M,x}$ with size O(m) such that $\varphi_{M,x}(C, C') = 1$ iff $C, C' \in \{0, 1\}^m$ encode adjacent configurations; see Cook-Levin

- let *L* ∈ **PSPACE** arbitrary
- $L \in \text{SPACE}(s(n))$ for polynomial s
- $m \in O(s(n))$: bits needed to encode configuration C
- exists Boolean formula $\varphi_{M,x}$ with size O(m) such that $\varphi_{M,x}(C, C') = 1$ iff $C, C' \in \{0, 1\}^m$ encode adjacent configurations; see Cook-Levin
- define QBF ψ such that ψ(C, C') is true iff there is a path in G(M, x) from C to C'

- let *L* ∈ **PSPACE** arbitrary
- $L \in \text{SPACE}(s(n))$ for polynomial s
- $m \in O(s(n))$: bits needed to encode configuration C
- exists Boolean formula $\varphi_{M,x}$ with size O(m) such that $\varphi_{M,x}(C, C') = 1$ iff $C, C' \in \{0, 1\}^m$ encode adjacent configurations; see Cook-Levin
- define QBF ψ such that ψ(C, C') is true iff there is a path in G(M, x) from C to C'
- $\psi(C_{start}, C_{accept})$ is true iff *M* accepts *x*

Define ψ inductively!

• $\psi_i(C, C')$: there is a path of length at most 2^i from C to C'

- $\psi_i(C, C')$: there is a path of length at most 2^i from C to C'
- $\psi = \psi_m$ and $\psi_0 = \varphi_{M,x}$

- $\psi_i(C, C')$: there is a path of length at most 2^i from C to C'
- $\psi = \psi_m$ and $\psi_0 = \varphi_{M,x}$

 $\psi_i(\boldsymbol{C},\boldsymbol{C}') = \exists \boldsymbol{C}''.\psi_{i-1}(\boldsymbol{C},\boldsymbol{C}'') \land \psi_{i-1}(\boldsymbol{C}'',\boldsymbol{C}')$

- $\psi_i(C, C')$: there is a path of length at most 2^i from C to C'
- $\psi = \psi_m$ and $\psi_0 = \varphi_{M,x}$

 $\psi_i(\boldsymbol{C},\boldsymbol{C}') = \exists \boldsymbol{C}''.\psi_{i-1}(\boldsymbol{C},\boldsymbol{C}'') \land \psi_{i-1}(\boldsymbol{C}'',\boldsymbol{C}')$

might be exponential size,

Define ψ inductively!

- $\psi_i(C, C')$: there is a path of length at most 2^i from C to C'
- $\psi = \psi_m$ and $\psi_0 = \varphi_{M,x}$

$$\psi_i(\boldsymbol{C},\boldsymbol{C}') = \exists \boldsymbol{C}''.\psi_{i-1}(\boldsymbol{C},\boldsymbol{C}'') \land \psi_{i-1}(\boldsymbol{C}'',\boldsymbol{C}')$$

might be exponential size, therefore use equivalent

$$\psi_i(C, C') = \exists C'' \cdot \forall D_1 \cdot \forall D_2. \\ ((D_1 = C \land D_2 = C'') \lor (D_1 = C'' \land D_2 = C')) \\ \Rightarrow \psi_{i-1}(D_1, D_2)$$

Size of ψ

$$\psi_i(C,C') = \exists C''.\forall D_1.\forall D_2. \\ ((D_1 = C \land D_2 = C'') \lor (D_1 = C'' \land D_2 = C')) \\ \Rightarrow \psi_{i-1}(D_1,D_2)$$

- C'' stands for m variables
- $\Rightarrow |\psi_i| = |\psi_{i-1}| + O(m)$
- $\Rightarrow |\psi| \in O(m^2)$

Observations and consequences

- GG is PSPACE-complete
- if PSPACE ≠ NP then QBF and GG have no short certificates
- note: proof does not make use of outdegree of G(M, x)
- ⇒ QBF is NPSPACE-complete
- \Rightarrow NPSPACE = PSPACE!
 - in fact, the same reasoning can be used to prove a stronger result

Savitch's Theorem

Theorem (Savitch)

For every space-constructible $s : \mathbb{N} \to \mathbb{N}$ with $s(n) \ge \log n$ NSPACE $(s(n)) \subseteq$ SPACE $(s(n)^2)$.

Let *M* be a NDTM accepting *L*. Let G(M, x) be its configuration graph of size $m \in O(2^{s(n)})$; each node is represented using log *m* space.

Let *M* be a NDTM accepting *L*. Let G(M, x) be its configuration graph of size $m \in O(2^{s(n)})$;

each node is represented using $\log m$ space.

M accepts *x* iff there is a path of length at most *m* from C_{start} to C_{accept} .

Let *M* be a NDTM accepting *L*. Let G(M, x) be its configuration graph of size $m \in O(2^{s(n)})$;

each node is represented using $\log m$ space.

M accepts *x* iff there is a path of length at most *m* from C_{start} to C_{accept} .

Consider the following algorithm reach(u,v,i) to determine whether there is a path from u to v of length at most 2^{i} .

- for each node z of M
 - b₁ = reach(u, z, i − 1)
 - b₂ = reach(z, v, i − 1)
 - return $b_1 \wedge b_2$

Let *M* be a NDTM accepting *L*. Let G(M, x) be its configuration graph of size $m \in O(2^{s(n)})$;

each node is represented using $\log m$ space.

M accepts *x* iff there is a path of length at most *m* from C_{start} to C_{accept} .

Consider the following algorithm reach(u,v,i) to determine whether there is a path from u to v of length at most 2^{i} .

- for each node z of M
 - b₁ = reach(u, z, i − 1)
 - b₂ = reach(z, v, i − 1)
 - return $b_1 \wedge b_2$

 \Rightarrow reach(C_{start}, C_{accept}, m) takes space $O((\log m)^2) = O(s(n)^2)$

Conclusion

Further Reading

- *L. J. Stockmeyer and A. R. Meyer.* Word problems requiring exponential time. STOC, pages 1-9, 1973
 - contains the original proof of PSPACE completeness of QBF
 - PSPACE-completeness of NFA equivalence
- regular expression equivalence with squaring is **EXPSPACE**-complete:

http://people.csail.mit.edu/meyer/rsq.pdf

- *Gilbert, Lengauer, Tarjan* The Pebbling Problem is Complete in Polynomial Space. SIAM Journal on Computing, Volume 9, Issue 3, 1980, pages 513-524.
- http://www.qbflib.org/
 - tools (solvers)
 - many QBF models from verification, games, planning
 - competitions
- PSPACE-completeness of Hex, Atomix, Gobang, Chess
- *W.J.Savitch* Relationship between nondeterministic and deterministic tape classes JCSS, 4, pp 177-192, 1970.

Conclusion

What have we learnt

- succinctness leads to more difficult problems
- **PSPACE**: computable in polynomial space (deterministically)
- PSPACE-completeness defined in terms of polynomial Karp reductions
- canonical **PSPACE**-complete problem: QBF generalizes SAT
- other complete problems: generalized geography, chess, Hex, Sokoban, Reversi, NFA equivalence, regular expressions equivalence
- PSPACE ~ winning strategies in games rather than short certificates
- PSPACE = NPSPACE
- Savitch: non-deterministic space can be simulated by deterministic space with quadratic overhead (by path enumeration in configuration graph)

Up next: NL

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 22, 2019

Lecture 9

Intro

Agenda

- about logarithmic space
- paths ...
- ... and the absence thereof
- Immerman-Szelepcsényi and others

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of

- pointers into the input
 - for instance node identities (graph problems)
 - head positions
- counters up to input length

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of

- pointers into the input
 - for instance node identities (graph problems)
 - head positions
- counters up to input length

Examples:

- L: basic arithmetic
- NL: paths in graphs

Technical issues

- space usage refers to work tapes only
- read-only input and write-once output is allowed to use more than log *n* cells
- write-once: output head must not move to the left
- logspace reductions (because polynomial time-reductions too powerful)

Logspace reductions

Definition (logspace reduction)

Let $L, L' \subseteq \{0, 1\}^*$ be languages. We say that L is logspace-reducible to L', written $L \leq_{log} L'$ if there is a function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ computed by a deterministic TM using logarithmic space such that $x \in L \Leftrightarrow f(x) \in L'$ for every $x \in \{0, 1\}^*$.

- ≤_{log} is transitive
- $C \in L$ and $B \leq_{log} C$ implies $B \in L$

 NL-hardness and NL-completeness defined in terms of logspace reductions

Logspace reductions

Definition (logspace reduction)

Let $L, L' \subseteq \{0, 1\}^*$ be languages. We say that L is logspace-reducible to L', written $L \leq_{log} L'$ if there is a function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ computed by a deterministic TM using logarithmic space such that $x \in L \Leftrightarrow f(x) \in L'$ for every $x \in \{0, 1\}^*$.

- ≤_{log} is transitive
- $C \in L$ and $B \leq_{log} C$ implies $B \in L$
 - Space does not bound time and output size: possibly $|f(w)| \neq O(\log(|w|))$
- NL-hardness and NL-completeness defined in terms of logspace reductions

Logspace reductions

Definition (logspace reduction)

Let $L, L' \subseteq \{0, 1\}^*$ be languages. We say that L is logspace-reducible to L', written $L \leq_{log} L'$ if there is a function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ computed by a deterministic TM using logarithmic space such that $x \in L \Leftrightarrow f(x) \in L'$ for every $x \in \{0, 1\}^*$.

- ≤_{log} is transitive
- $C \in L$ and $B \leq_{log} C$ implies $B \in L$
 - Space does not bound time and output size: possibly $|f(w)| \neq O(\log(|w|))$
 - Compute f(x) on demand: store only current symbol and its cell number
- NL-hardness and NL-completeness defined in terms of logspace reductions
Read-once Certificates

Similar to NP, also NL has a characterization using certificates

Theorem (read-once certificates)

 $L \subseteq \{0, 1\}^*$ is in NL iff there exists a det. logspace TM M (verifier) and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0, 1\}^*$

 $x \in L$ iff $\exists u \in \{0, 1\}^{p(|x|)}.M(x, u) = 1$

Certificate u is written on an additional read-once input tape of M.

Read-once Certificates

Similar to NP, also NL has a characterization using certificates

Theorem (read-once certificates)

 $L \subseteq \{0, 1\}^*$ is in NL iff there exists a det. logspace TM M (verifier) and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0, 1\}^*$

 $x \in L$ iff $\exists u \in \{0, 1\}^{p(|x|)}.M(x, u) = 1$

Certificate u is written on an additional read-once input tape of M.

- example: path in a graph is a read-once certificate
- ⇒ certificate is sequence of choices
- certificate is guessed bit-wise (it cannot be stored)

Paths

Agenda

- about logarithmic space \checkmark
- paths ...
- ... and the absence thereof
- Immerman-Szelepcsényi and others

NL is all about paths

Recall the language Path in directed graphs defined as

 $\{\langle G, s, t \rangle \mid \exists a \text{ path from } s \text{ to } t \text{ in directed graph } G\}$

NL is all about paths

Recall the language Path in directed graphs defined as

 $\{\langle G, s, t \rangle \mid \exists a \text{ path from } s \text{ to } t \text{ in directed graph } G\}$

We have seen in Lecture 3 that $Path \in NL$ by guessing a path:

- non-deterministic walks on graphs of n nodes
- if there is a path, it has length $\leq n$
- maintain one pointer to current node
- one counter counting up to n

NL is all about paths

Recall the language Path in directed graphs defined as

 $\{\langle G, s, t \rangle \mid \exists a \text{ path from } s \text{ to } t \text{ in directed graph } G\}$

We have seen in Lecture 3 that $Path \in NL$ by guessing a path:

- non-deterministic walks on graphs of n nodes
- if there is a path, it has length $\leq n$
- maintain one pointer to current node
- one counter counting up to n

In fact we even have:

Theorem (Path)

Path is NL-complete.

Proof

• let *L* ∈ NL be arbitrary, decided by NDTM *M*

Proof

- let L ∈ NL be arbitrary, decided by NDTM M
- on input x ∈ {0, 1}ⁿ reduction f outputs configuration graph G(M, x) of size 2^{O(log n)} by counting to n

Proof

- let L ∈ NL be arbitrary, decided by NDTM M
- on input x ∈ {0, 1}ⁿ reduction f outputs configuration graph G(M, x) of size 2^{O(log n)} by counting to n
- there exists a path from *C*_{start} to *C*_{accept} in *G*(*M*, *x*) iff *M* accepts *x*
- path itself can be used as read-once certificate

More path problems

- many natural problems correspond to path (reachability) problems
- the word problem for NFAs: { $\langle A, w \rangle$ | w is accepted by NFA A}
- cycle detection/connected components in directed graphs
- 2SAT ∈ NL

More path problems

- many natural problems correspond to path (reachability) problems
- the word problem for NFAs: { $\langle A, w \rangle$ | w is accepted by NFA A}
- cycle detection/connected components in directed graphs
- 2SAT ∈ NL
 - $x \lor y$ equivalent to $\neg x \implies y$ equivalent to $\neg y \implies x$
 - yields an implication graph (computable in logspace)
 - unsatisfiable iff there exists a path $x \to \overline{x} \to x$ in implication graph for variable x

Certificates for absence of paths?

- recall the open problem NP = coNP?
- equivalent to asking whether unsatisfiability has short certificates
- possibly not

Certificates for absence of paths?

- recall the open problem NP = coNP?
- equivalent to asking whether unsatisfiability has short certificates
- possibly not

What about absence of paths from *s* to *t* in graph *G* with *n* nodes named $1, \ldots, n$?

 let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in *C_i* has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - 1. list all membership certificates for all $u \in C_i$ sorted in ascending order
 - 2. check validity and sortedness
 - 3. check that v is not in the list
 - 4. check that the list has length $|C_i|$

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - 1. list all membership certificates for all $u \in C_i$ sorted in ascending order
 - 2. check validity and sortedness
 - 3. check that v is not in the list
 - 4. check that the list has length $|C_i|$
- non-membership in *C_i* is known given |*C_{i-1}*| (checking neighbors in (3) as well)

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - 1. list all membership certificates for all $u \in C_i$ sorted in ascending order
 - 2. check validity and sortedness
 - 3. check that v is not in the list
 - 4. check that the list has length $|C_i|$
- non-membership in C_i is known given |C_{i-1}| (checking neighbors in (3) as well)
- $|C_i| = c$ can be certified given $|C_{i-1}|$ using $C_0 = \{s\}$ as base case

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - 1. list all membership certificates for all $u \in C_i$ sorted in ascending order
 - 2. check validity and sortedness
 - 3. check that v is not in the list
 - 4. check that the list has length $|C_i|$
- non-membership in C_i is known given |C_{i-1}| (checking neighbors in (3) as well)
- $|C_i| = c$ can be certified given $|C_{i-1}|$ using $C_0 = \{s\}$ as base case

Certificate is certificate for non-membership in *C_n*!

- let *C_i* be the set of nodes reachable from *s* in at most *i* steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - 1. list all membership certificates for all $u \in C_i$ sorted in ascending order
 - 2. check validity and sortedness
 - 3. check that v is not in the list
 - 4. check that the list has length $|C_i|$
- non-membership in *C_i* is known given |*C_{i-1}*| (checking neighbors in (3) as well)
- $|C_i| = c$ can be certified given $|C_{i-1}|$ using $C_0 = \{s\}$ as base case

Certificate is certificate for non-membership in C_n ! Its size is polynomial in number of nodes and read-once! M

NL algorithm for PATH

= "On input $\langle G, s, t \rangle$:		
1.	Let $c_0 = 1$.	$\llbracket A_0 = \{s\} \text{ has } 1 \text{ node } \rrbracket$
2.	For $i = 0$ to $m - 1$:	$\llbracket \text{ compute } c_{i+1} \text{ from } c_i \rrbracket$
3.	Let $c_{i+1} = 1$.	$[\![c_{i+1} \text{ counts nodes in } A_{i+1}]\!]$
4.	For each node $v \neq s$ in G :	$\llbracket \text{check if } v \in A_{i+1} \rrbracket$
5.	Let $d = 0$.	$\llbracket d \text{ re-counts } A_i \rrbracket$
6.	For each node <i>u</i> in <i>G</i> :	$\llbracket \text{check if } u \in A_i \rrbracket$
7.	Nondeterministically either perform or skip these steps:	
8.	Nondeterministically follow a path of length at most i	
	from s and <i>reject</i> if it doesn't end at u .	
9.	Increment d.	\llbracket verified that $u \in A_i \rrbracket$
10.	If (u, v) is an edge of G, increment c_{i+1} and go to	
	stage 5 with the next	v. [[verified that $v \in A_{i+1}$]]
11.	If $d \neq c_i$, then reject.	[check whether found all A_i]
12.	Let $d = 0$.	$[\![c_m \text{ now known}; d \text{ re-counts } A_m]\!]$
13.	For each node <i>u</i> in <i>G</i> :	$\llbracket \text{check if } u \in A_m \rrbracket$
14.	Nondeterministically either perform or skip these steps:	
15.	Nondeterministically follow a path of length at most m	
	from s and <i>reject</i> if it doesn't end at u .	
16.	If $u = t$, then reject.	[found path from s to t]
17.	Increment d.	$\llbracket \text{ verified that } u \in A_m \rrbracket$
18.	If $d \neq c_m$, then reject.	$[\![{\rm check \ whether \ found \ all \ of \ } A_m \]\!]$
	Otherwise, accept."	

NL = coNL

We have just argued the existence of polynomial read-once certificates for absence of paths.

Theorem (Immerman-Szelepcsényi) NL = coNL. Conclusion

Further Reading

- paths in undirected graphs is in L
 - Omer Reingold Undirected ST-Connectivity in Log-Space, STOC 2005
 - available from

http://www.wisdom.weizmann.ac.il/~reingold/publications/sl.ps

- an alternative characterization of NL by reachability is at the heart of descriptive complexity
 - NL is first-order logic plus transitive closure
 - Neil Immerman, Descriptive Complexity, Springer 1999.

Conclusion

What have we learnt?

- space classes closed under complement
 - so are context-sensitive language (see exercises)
- analogous results for time complexity unlikely
- space classes beyond logarithmic closed under non-determinism
- NL is all about reachability
- 2SAT is in NL and thus also 2SAT (in fact, hard for NL)
- NL has polynomial read-once certificates
- logarithmic space ~ constant number of pointers and counters

Up next: the polynomial hierarchy PH

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 22, 2019

Lecture 10 The polynomial hierarchy PH

- ExactIndset, MinEqDNF, and bounded QBF
- Σ^{p} , Π^{p} , and PH
- properties of the polynomial hierarchy
- more examples

Recall the independent set problem

Indset = { $\langle G, k \rangle$ | G has an independent set of size k}

which was shown to be NP-complete.

Recall the independent set problem

Indset = { $\langle G, k \rangle$ | G has an independent set of size k}

which was shown to be NP-complete.

What about the variation

ExactIndset = {(G, k) | the largest independent set of G has size k}

Recall the independent set problem

Indset = { $\langle G, k \rangle$ | G has an independent set of size k}

which was shown to be NP-complete.

What about the variation

ExactIndset = { $\langle G, k \rangle$ | the largest independent set of G has size k}

One needs to show

- 1. there exists an independent set of size k and
- 2. all other independent set have size at most k

Recall the independent set problem

Indset = { $\langle G, k \rangle$ | G has an independent set of size k}

which was shown to be NP-complete.

What about the variation

ExactIndset = {(G, k) | the largest independent set of G has size k}

One needs to show

- 1. there exists an independent set of size k and
- 2. all other independent set have size at most k

(1) is a \exists certificate (as in NP) while (2) is a \forall certificate (as in coNP)!

Minimizing Boolean formulas

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

Minimizing Boolean formulas

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

What about certificates for membership?

- for all assignments φ and ψ evaluate to the same

Minimizing Boolean formulas

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

What about certificates for membership?

- there exists a formula ψ such that
- for all assignments φ and ψ evaluate to the same

What about MinEqDNF?

Recall the certificate-based definitions of NP and coNP, where $q : \mathbb{N} \to \mathbb{N}$ is a polynomial, $x \in \{0, 1\}^*$ and *M* is a polynomial-time, det. verifier.

NP $x \in L$ iff $\exists u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1CONP $x \in L$ iff $\forall u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1
Recall the certificate-based definitions of NP and coNP, where $q : \mathbb{N} \to \mathbb{N}$ is a polynomial, $x \in \{0, 1\}^*$ and *M* is a polynomial-time, det. verifier.

NP $x \in L$ iff $\exists u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1CONP $x \in L$ iff $\forall u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1

ExactIndset and MinEqDNF are in a class defined by

 $x \in L$ iff $\exists u \in \{0, 1\}^{q(|x|)}$. $\forall v \in \{0, 1\}^{q(|x|)}$. M(x, u, v) = 1

Recall the certificate-based definitions of NP and coNP, where $q : \mathbb{N} \to \mathbb{N}$ is a polynomial, $x \in \{0, 1\}^*$ and *M* is a polynomial-time, det. verifier.

NP $x \in L$ iff $\exists u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1CONP $x \in L$ iff $\forall u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1

ExactIndset and MinEqDNF are in a class defined by

 $x \in L$ iff $\exists u \in \{0, 1\}^{q(|x|)}$. $\forall v \in \{0, 1\}^{q(|x|)}$. M(x, u, v) = 1

This class is called Σ_2^p .

Bounded QBF

Another natural problem within Σ_2^p is QBF with one alternation!

 Σ_2 SAT = { $\exists \vec{u_1} \forall \vec{u_2}. \varphi(\vec{u_1}, \vec{u_2})$ | formula is true }

where $\vec{u_i}$ denotes a finite sequence of Boolean variables.

Bounded QBF

Another natural problem within Σ_2^p is QBF with one alternation!

 $\Sigma_2 \text{SAT} = \{ \exists \vec{u_1} \forall \vec{u_2}. \varphi(\vec{u_1}, \vec{u_2}) \mid \text{formula is true} \}$

where $\vec{u_i}$ denotes a finite sequence of Boolean variables.

Remarks

- in fact, Σ₂SAT is complete for Σ₂^p
- more alternations lead to a whole hierarchy
- all of it is contained in PSPACE

- ExactIndset, MinEqDNF, and bounded QBF \checkmark
- Σ_i^p , Π_i^p , and PH
- properties of the polynomial hierarchy
- more examples

Definition

Definition (Polynomial Hierarchy)

For $i \ge 1$, a language $L \subseteq \{0, 1\}^*$ is in Σ_i^p if there exists a polynomial-time TM *M* and a polynomial *q* such that

 $x \in L$ **if and only if** $\exists u_1 \in \{0, 1\}^{q(|x|)}.$ $\forall u_2 \in \{0, 1\}^{q(|x|)}.$... $Q_i u_i \in \{0, 1\}^{q(|x|)}.$ $M(x, u_1, u_2, ..., u_i) = 1$

where Q_i is \exists if *i* is odd and \forall otherwise.

Definition

Definition (Polynomial Hierarchy)

For $i \ge 1$, a language $L \subseteq \{0, 1\}^*$ is in Σ_i^p if there exists a polynomial-time TM *M* and a polynomial *q* such that

 $\begin{aligned} x \in L \\ & \text{if and only if} \\ \exists u_1 \in \{0, 1\}^{q(|x|)}. \\ \forall u_2 \in \{0, 1\}^{q(|x|)}. \\ & \cdots \\ Q_i u_i \in \{0, 1\}^{q(|x|)}. \\ & M(x, u_1, u_2, \dots, u_i) = 1 \end{aligned}$

where Q_i is \exists if *i* is odd and \forall otherwise.

• the polynomial hierarchy is the set $PH = \bigcup_{i \ge 1} \Sigma_i^p$

•
$$\Pi^{\mathsf{p}}_{\mathsf{i}} = \mathsf{co}\Sigma^{\mathsf{p}}_{\mathsf{i}} = \{\overline{L} \mid L \in \Sigma^{\mathsf{p}}_{\mathsf{i}}\}$$

Properties

Generalization of NP and coNP

• NP = Σ_1^p and coNP = Π_1^p

Properties

Generalization of NP and coNP

- $NP = \Sigma_1^p$ and $coNP = \Pi_1^p$
- $\bullet \ \Sigma^p_i \subseteq \Pi^p_{i+1} \subseteq \Sigma^p_{i+2}$

Generalization of NP and coNP

- $NP = \Sigma_1^p$ and $coNP = \Pi_1^p$
- $\Sigma_i^p \subseteq \Pi_{i+1}^p \subseteq \Sigma_{i+2}^p$
- hence $\mathbf{PH} = \bigcup_{i \ge 1} \Pi_i^p$
- PH ⊆ PSPACE

It is an open problem whether there is an *i* such that $\Sigma_{i}^{p} = \Sigma_{i+1}^{p}$.

It is an open problem whether there is an *i* such that $\Sigma_{i}^{p} = \Sigma_{i+1}^{p}$.

This would imply that $\Sigma_i^p = PH$: the hierarchy collapses to the *i*-th level.

It is an open problem whether there is an *i* such that $\Sigma_{i}^{p} = \Sigma_{i+1}^{p}$.

This would imply that $\Sigma_i^p = PH$: the hierarchy collapses to the *i*-th level.

Most researchers believe that the hierarchy does not collapse.

It is an open problem whether there is an *i* such that $\Sigma_{i}^{p} = \Sigma_{i+1}^{p}$.

This would imply that $\Sigma_i^p = PH$: the hierarchy collapses to the *i*-th level.

Most researchers believe that the hierarchy does not collapse.

Theorem (Collapse)

- For every $i \ge 1$, if $\Sigma_i^p = \Pi_i^p$ then $PH = \Sigma_i^p$
- If **P** = **NP** then **PH** = **P**, i.e. the hierarchy collapses to **P**.

Completeness

For each level of the hierarchy completeness is defined in terms of polynomial Karp reductions.

Completeness

For each level of the hierarchy completeness is defined in terms of polynomial Karp reductions.

- if there exists a PH-complete language, then the hierarchy collapses
- **PH** \neq **PSPACE** unless the hierarchy collapses

Completeness

For each level of the hierarchy completeness is defined in terms of polynomial Karp reductions.

- if there exists a PH-complete language, then the hierarchy collapses
- **PH** \neq **PSPACE** unless the hierarchy collapses

Theorem (bounded QBF)

For each $i \ge 1$, Σ_i SAT is Σ_i^p -complete, where Σ_i SAT is the language of true quantified Boolean formulas of the form

 $\exists \vec{u_1} \forall \vec{u_2} \dots \vec{Q_i} \vec{u_i} . \varphi(\vec{u_1}, \vec{u_1}, \dots, \vec{u_i})$

- ExactIndset, MinEqDNF, and bounded QBF \checkmark
- Σ^{p} , Π^{p} , and PH \checkmark
- properties of the polynomial hierarchy \checkmark
- more examples

Integer Expressions

An integer expression *I* is defined by the following BNF for binary numbers \vec{b} :

 $I ::= \vec{b} \mid I + I \mid I \cup I$

The language $\mathcal{L}(I) \subseteq \mathbb{N}$ is defined by

- $\mathcal{L}(\vec{b}) = \{n\}$ where *n* is the natural number represented by \vec{b}
- $\mathcal{L}(I_1 + I_2) = \{n_1 + n_2 \mid n_i \in \mathcal{L}(I_i)\}$
- $\mathcal{L}(I_1 \cup I_2) = \mathcal{L}(I_1) \cup \mathcal{L}(I_2)$

Example: $\mathcal{L}(1 + (2 \cup (3 + 4))) = \{3, 8\}$

A set $M \subseteq \mathbb{N}$ is connected if for all $x, z \in M$ and every x < y < z also $y \in M$.

A component of *M* is a maximal connected subset of *M*.

Examples

Integer Expressions

- membership of a number in the language of an integer expression: NP-complete
- integer expression inequivalence: Σ₂^p-complete
- Does $\mathcal{L}(I)$ have a component of size at least k?: Σ_3^p -complete

Regular Expressions

Consider regular expressions with union and concatentation only. In addition, we define an interleaving operator on words

 $x_1 x_2 \dots x_k \mid y_1 y_2 \dots y_k$ = $x_1 y_1 x_2 y_2 \dots x_k y_k$

where y_i can be strings of arbitrary length.

Regular expression equivalence for star-free expressions with interleaving is Π_2^p -complete.

Context-free languages

Consider context-free grammars defining unary languages.

- $\{\langle G_1, G_2 \rangle \mid \mathcal{L}(G_1) \neq \mathcal{L}(G_2)\}$ is Σ_2^p -complete
- note that for non-unary languages this problem is undecidable

Further Reading

Survey on complete problems for various levels of the hierarchy:

• Schaefer and Umans Completeness in the Polynomial-Time Hierarchy — A Compendium

Conclusion

What have we learnt?

- the polynomial hierarchy is a natural generalization of NP and coNP
- bounded alternation QBFs are complete problems for each level of the hierarchy
- in the limit unbounded alternations the hierarchy approaches PSPACE
- the hierarchy is widely believed not to collapse to any level

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 22, 2019

Lecture 10–Part II PH & co.

- oracles
- oracles and PH
- relativization and P vs. NP
- alternation and PH

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

Certificate for membership:

- there exists a formula ψ such that
- for all assignments φ and ψ evaluate to the same

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

Certificate for membership:

- there exists a formula ψ such that
- for all assignments φ and ψ evaluate to the same Thus MinEqDNF $\in \Sigma_2^p$.

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

Certificate for membership:

• there exists a formula ψ such that

• for all assignments φ and ψ evaluate to the same Thus MinEqDNF $\in \Sigma_2^p$.

What if we can check equivalence of formulae for free?

Oracle

Definition

An oracle is a language A.

An oracle Turing machine M^A is a Turing machine that

- 1. has an extra oracle tape, and
- 2. can ask whther the string currently written on the oracle tape belongs to *A* and in a *single* computation step gets the answer.

 P^A is a class of languages decidable by a polynomial-time oracle Turing machine with an oracle *A*; similarly NP^A etc.

• $MinEqDNF \in NP^{SAT}$

- MinEqDNF $\in \mathbb{NP}^{SAT}$
- NP \subseteq P^{SAT}
- coNP ⊆ P^{SAT} since P and P^{SAT} are deterministic classes and thus closed under complement

- MinEqDNF $\in \mathbb{NP}^{SAT}$
- NP \subseteq P^{SAT}
- coNP ⊆ P^{SAT} since P and P^{SAT} are deterministic classes and thus closed under complement
- We often write classes instead of the complete languages, e.g.,
 P^{NP} = P^{SAT} = P^{CONP}

Oracles and PH

Recall that

 $\Sigma_i SAT = \{ \exists \vec{u_1} \forall \vec{u_2} \cdots Q \vec{u_i}. \varphi(\vec{u_1}, \dots, \vec{u_i}) \mid \text{formula is true} \}$ is Σ_i^p -complete.
Oracles and PH

Recall that

 $\Sigma_i SAT = \{ \exists \vec{u_1} \forall \vec{u_2} \cdots Q \vec{u_i}. \varphi(\vec{u_1}, \dots, \vec{u_i}) \mid \text{formula is true} \}$ is Σ_i^p -complete.

Theorem

For every i, $\boldsymbol{\Sigma}_{i}^{p} = NP^{\boldsymbol{\Sigma}_{i-1}^{-}SAT} = NP^{\boldsymbol{\Sigma}_{i-1}^{p}}.$

e.g. $\boldsymbol{\Sigma_3^p} = \boldsymbol{NP^{NP^{NP}}}$

Oracles and PH

Recall that

 $\Sigma_i SAT = \{\exists \vec{u_1} \forall \vec{u_2} \cdots Q \vec{u_i}. \varphi(\vec{u_1}, \dots, \vec{u_i}) \mid \text{formula is true} \}$ is Σ_i^p -complete.

Theorem

For every *i*, $\Sigma_{i}^{p} = NP^{\Sigma_{i-1}SAT} = NP^{\Sigma_{i-1}^{p}}$.

e.g. $\boldsymbol{\Sigma_3^p} = \boldsymbol{NP^{NP^{NP}}}$

Proof

⊆: easy

⊇ (here for i=2, i.e. $\Sigma_2^p \supseteq NP^{SAT}$): Let φ_i denote the *i*th query $x \in L \iff \exists c_1, \ldots, c_m, a_1, \ldots, a_k, u_1, \ldots, u_k \forall v_1, \ldots, v_k$ such that TM accepts x using choices c_1, \ldots, c_m and answers a_1, \ldots, a_k AND $\forall i \in [k]$ if $a_i = 1$ then $\varphi_i(u_i) = 1$ AND $\forall i \in [k]$ if $a_i = 0$ then $\varphi_i(v_i) = 0$

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.
- If we can prove P = NP using only simulation, we can also prove P^A = NP^A for all A.
- If we can prove P ≠ NP using only simulation, we can also prove P^A ≠ NP^A for all A.

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.
- If we can prove P = NP using only simulation, we can also prove $P^A = NP^A$ for all A.
- If we can prove P ≠ NP using only simulation, we can also prove P^A ≠ NP^A for all A.
- But there exist oracles X and Y:
 - $P^{X} \neq NP^{X}$ (See Sipser p.378)
 - $P^{Y} = NP^{Y}$ (Proof: $NP^{QBF} \subseteq NPSPACE \subseteq PSPACE \subseteq P^{QBF}$)

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.
- If we can prove P = NP using only simulation, we can also prove P^A = NP^A for all A.
- If we can prove P ≠ NP using only simulation, we can also prove P^A ≠ NP^A for all A.
- But there exist oracles X and Y:
 - $P^{\chi} \neq NP^{\chi}$ (See Sipser p.378)
 - $P^{Y} = NP^{Y}$ (Proof: $NP^{QBF} \subseteq NPSPACE \subseteq PSPACE \subseteq P^{QBF}$)
- Diagonalization has its limits!
 It is not sufficent to simulate computation,
 we must analyze them → e.g. cicuit complexity.

- oracles \checkmark
- oracles and PH \checkmark
- relativization and P vs. NP \checkmark
- alternation and PH

Alternation

Recall that

- Σ_2 SAT = { $\exists \vec{u_1} \forall \vec{u_2}. \varphi(\vec{u_1}, \vec{u_2})$ | formula is true } is NP^{coNP}-complete
- SAT = $\{\exists \vec{u_1}. \varphi(\vec{u_1}) \mid \text{formula is true} \}$ is NP-complete
- VAL = { $\forall \vec{u_1}.\varphi(\vec{u_1})$ | formula is true } is coNP-complete
- $\exists \sim existential certificate \sim there is an accepting computation$
- $\forall \sim$ universal certificate \sim all computations are accepting

Alternation

Definition

An alternating Turing machine is a Turing machine where

- states are partitioned into existential (denoted ∃ or ∨) and universal (denoted ∀ or ∧),
- configurations are labelled by the type of the current state,
- a configuration in the computation tree is accepting iff
 - it is ∃ and some of its successors is accepting,
 - it is ∀ and all its successors are accepting.

We define ATIME, ASPACE, AP, APSPACE etc. accordingly.

Alternation and PH

Let $\Sigma_i P$ denote the set of languages decidable by ATM

- running in polynomial time,
- with initial state being existential, and
- such that on every run there are at most *i* maximal blocks of existential and of universal configurations.

Theorem

For all *i*, $\Sigma_i^p = \Sigma_i P$.

Power of alternation

Theorem

For $f(n) \ge n$, we have ATIME $(f(n)) \subseteq$ SPACE $(f(n)) \subseteq$ ATIME $(f^2(n))$.

For $f(n) \ge \log n$, we have ASPACE $(f(n)) = \text{TIME}(2^{O(f(n))})$.

Power of alternation

Theorem

For $f(n) \ge n$, we have ATIME $(f(n)) \subseteq$ SPACE $(f(n)) \subseteq$ ATIME $(f^2(n))$.

For $f(n) \ge \log n$, we have ASPACE $(f(n)) = \text{TIME}(2^{O(f(n))})$.

Corollary: $L \subseteq AL = P \subseteq AP = PSPACE \subseteq APSPACE = EXP \subseteq AEXP \cdots$

Power of alternation: Proofs

• ATIME $(f(n)) \subseteq$ SPACE(f(n))

Power of alternation: Proofs

• ATIME $(f(n)) \subseteq$ SPACE(f(n))

DFS on the tree + remember only decisions (not configurations)

• SPACE $(f(n)) \subseteq \text{ATIME}(f^2(n))$

Power of alternation: Proofs

• ATIME $(f(n)) \subseteq$ SPACE(f(n))

DFS on the tree + remember only decisions (not configurations)

• SPACE $(f(n)) \subseteq \text{ATIME}(f^2(n))$

like Savitch's theorem

• ASPACE $(f(n)) \subseteq \text{TIME}(2^{O(f(n))})$

Power of alternation: Proofs

• ATIME $(f(n)) \subseteq$ SPACE(f(n))

DFS on the tree + remember only decisions (not configurations)

• SPACE(f(n)) \subseteq ATIME($f^2(n)$)

like Savitch's theorem

- ASPACE(f(n)) ⊆ TIME(2^{O(f(n))}) configuration graph + "attractor" construction
- ASPACE(f(n)) \supseteq TIME($2^{O(f(n))}$)

Power of alternation: Proofs

• ATIME $(f(n)) \subseteq$ SPACE(f(n))

DFS on the tree + remember only decisions (not configurations)

• SPACE $(f(n)) \subseteq ATIME(f^2(n))$

like Savitch's theorem

- ASPACE(f(n)) ⊆ TIME(2^{O(f(n))}) configuration graph + "attractor" construction
- ASPACE(f(n)) ⊇ TIME(2^{O(f(n))}) guess and check the tableaux of the computation (+ halting state on the left)

Further Reading

Alternation

- for a survey on alternation see *Chandra, Kozen, Stockmeyer* Alternation in Journal of the ACM 28(1), 1981.
- http://portal.acm.org/citation.cfm?id=322243

What have we learnt?

- the polynomial hierarchy can be defined in terms of certificates, recursively by oracles, or by bounded alternation
- diagonalization/simulation proof techniques have their limits
- alternation seems to add power: it moves us to the "next higher" class

Up next: time/space tradeoffs, TISP(f, g)

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 22, 2019

Lecture 11 Lower Bounds for SAT

- big picture
- TISP
- · lower bound for satisfiability

What is complexity all about?

- formalize the notion of computation
- resource consumption of computations
- depending on input size
- in the worst-case
- computing precise solutions

What is complexity all about?

- formalize the notion of computation
- resource consumption of computations
- depending on input size
- in the worst-case
- computing precise solutions

complexity classes separation lower bounds

Satisfiability

We cannot rule out that SAT could be solved in

- linear time or
- logarithmic space

Satisfiability

We cannot rule out that SAT could be solved in

- linear time or
- logarithmic space

Situation similar for many NP-complete problems.

What about restricting time and space simultaneously?

Definition (TISP)

Let $S, T : \mathbb{N} \to \mathbb{N}$ be constructible functions. A language $L \subseteq \{0, 1\}^*$ is in the complexity class **TISP**(T(n), S(n)) if there exists a TM *M* deciding *L* in time T(n) and space S(n).

Note: $TISP(T(n), S(n)) \neq DTIME(T(n)) \cap SPACE(S(n))$

- big picture \checkmark
- TISP \checkmark
- lower bound for satisfiability
- big picture

Lower Bound for Satisfiability

Theorem SAT \notin TISP $(n^{1.1}, n^{0.1})$.

In order to decide SAT we need

- either more than linear time
- or more than logarithmic space
- due to completeness this translates to any other problem in NP
- stronger results known (see further reading)

Proof – Big Picture

Proof is by contradiction. So assume

- **0.** SAT \in **TISP** $(n^{1.1}, n^{0.1})$
- **1.** This implies NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$)
- **2.** This implies $NTIME(n^{10}) \subseteq TISP(n^{12}, n^{02})$ by padding
- **3.** 1. also implies $NTIME(n) \subseteq DTIME(n^{1.2})$
- 4. which implies $\Sigma_2 \text{TIME}(n^8) \subseteq \text{NTIME}(n^{9.6})$
- **5.** separately we can show $TISP(n^{12}, n^2) \subseteq \Sigma_2 TIME(n^8)$
- **6.** (2,4,5) together establish $NTIME(n^{10}) \subseteq NTIME(n^{9.6})$ contradicting the non-deterministic time hierarchy theorem

- can be proven by careful observation of the Cook-Levin reduction.
- problem decided in NTIME(T(n)) can be formulated as satisfiability problem of size T(n) log(T(n))
- every output bit of reduction computable in polylogarithmic time and space
- hence if SAT \in TISP $(n^{1.1}, n^{0.1})$ then NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$

• let $L \in \mathsf{NTIME}(n^{10})$

- let $L \in \text{NTIME}(n^{10})$
- define $L' = \{x1^{|x|^{10}} \mid x \in L\}$

- let $L \in \text{NTIME}(n^{10})$
- define $L' = \{x1^{|x|^{10}} \mid x \in L\}$
- then $L' \in NTIME(n)$

- let $L \in \text{NTIME}(n^{10})$
- define $L' = \{x1^{|x|^{10}} \mid x \in L\}$
- then $L' \in \mathsf{NTIME}(n)$
- by part 1 of proof: $L' \in TISP(n^{1.2}, n^{0.2})$
- thus $L \in \text{TISP}(n^{12}, n^2)$

By definition of **TISP**.
Definition

A language *L* is in $\Sigma_2 \text{TIME}(n^8)$ iff there exists a TM *M* running in time $O(n^8)$ and constants *c*, *d* such that

Definition

A language *L* is in $\Sigma_2 \text{TIME}(n^8)$ iff there exists a TM *M* running in time $O(n^8)$ and constants *c*, *d* such that

 $x \in L$ iff $\exists u \in \{0, 1\}^{c|x|^8}$. $\forall v \in \{0, 1\}^{d|x|^8}$. M(x, u, v) = 1

• let $L \in \Sigma_2 \text{TIME}(n^8)$

Definition

A language *L* is in Σ_2 TIME(n^8) iff there exists a TM *M* running in time $O(n^8)$ and constants *c*, *d* such that

- let $L \in \Sigma_2 \text{TIME}(n^8)$
- define $L' = \{(x, u) \mid \forall v \in \{0, 1\}^{d|x|^8}. M(x, u, v) = 1\}$

Definition

A language *L* is in $\Sigma_2 \text{TIME}(n^8)$ iff there exists a TM *M* running in time $O(n^8)$ and constants *c*, *d* such that

- let $L \in \Sigma_2 \text{TIME}(n^8)$
- define $L' = \{(x, u) \mid \forall v \in \{0, 1\}^{d|x|^8}. M(x, u, v) = 1\}$
- hence $\overline{L'} \in \text{NTIME}(n^8)$

Definition

A language *L* is in $\Sigma_2 \text{TIME}(n^8)$ iff there exists a TM *M* running in time $O(n^8)$ and constants *c*, *d* such that

- let $L \in \Sigma_2 \text{TIME}(n^8)$
- define $L' = \{(x, u) \mid \forall v \in \{0, 1\}^{d|x|^8}. M(x, u, v) = 1\}$
- hence $\overline{L'} \in \text{NTIME}(n^8)$
- by premise we obtain $\overline{L'} \in \text{DTIME}(n^{1.2*8})$ and also L'

Definition

A language *L* is in $\Sigma_2 \text{TIME}(n^8)$ iff there exists a TM *M* running in time $O(n^8)$ and constants *c*, *d* such that

- let $L \in \Sigma_2 \text{TIME}(n^8)$
- define $L' = \{(x, u) \mid \forall v \in \{0, 1\}^{d|x|^8}. M(x, u, v) = 1\}$
- hence $\overline{L'} \in \text{NTIME}(n^8)$
- by premise we obtain $\overline{L'} \in \text{DTIME}(n^{1.2*8})$ and also L'
- since $L = \{x \mid \exists u \in \{0, 1\}^{c|x|^8}, (x, u) \in L'\}$ we obtain $L \in NTIME(n^{9.6})$

• let $L \in \mathbf{TISP}(n^{12}, n^2)$

- let $L \in \mathbf{TISP}(n^{12}, n^2)$
- then there exists a TM M such that x ∈ {0, 1}ⁿ is accepted iff there is a path of length n¹² in the configuration graph from C_{start} to C_{accept}

- let $L \in \mathbf{TISP}(n^{12}, n^2)$
- then there exists a TM M such that x ∈ {0, 1}ⁿ is accepted iff there is a path of length n¹² in the configuration graph from C_{start} to C_{accept}
- where each configuration takes space $O(n^2)$
- this is the case iff
 - there exist configurations C_0, \ldots, C_{n^6} such that
 - $C_0 = C_{start}, C_{n^6} = C_{accept}$
 - for all $1 \le i \le n^6 C_{i+1}$ is reachable from C_i in n^6 steps

- let $L \in \mathbf{TISP}(n^{12}, n^2)$
- then there exists a TM M such that x ∈ {0, 1}ⁿ is accepted iff there is a path of length n¹² in the configuration graph from C_{start} to C_{accept}
- where each configuration takes space $O(n^2)$
- this is the case iff
 - there exist configurations C_0, \ldots, C_{n^6} such that
 - $C_0 = C_{start}, C_{n^6} = C_{accept}$
 - for all $1 \le i \le n^6 C_{i+1}$ is reachable from C_i in n^6 steps
- this implies $L \in \Sigma_2 \text{TIME}(n^8)$
- which can be equivalently characterized using alternating TMs

- big picture \checkmark
- TISP \checkmark
- lower bound for satisfiability \checkmark

Conclusion

Summary of today's result

- SAT cannot be decided in linear time and, simultaneously, logarithmic space
- neither can any other problem in NP
- lower bounds are hard
- nice combination of proof techniques
 - padding
 - reductions
 - splitting paths in the configuration graph
 - diagonalization

Conclusion

Further Reading

- AB, Theorem 5.11
- original lower bound by *Fortnow*, Time-space tradeoffs for satisfiability, CCC 1997.
- current record: SAT \notin **TISP** $(n^c, n^{o(1)})$ for any $c < 2\cos(\pi/7)$
- by *R. Williams* Time-space tradeoffs for counting NP solutions modulo integers, CCC 2007.

Complexity Theory

Jan Křetínský

Based on slides by Michael Luttenberger

Technical University of Munich Summer 2019

May 28, 2019

Lecture 12–13

Randomization and Polynomial Time

"Realistic computation somewhere between P and NP"

Agenda

- Motivation: From NP to a more realistic class by randomization
 - Choosing the certificate at random
 - Error reduction by rerunning
- Randomized poly-time with one-sided error: RP, coRP, ZPP
- Power of randomization with two-sided error: PP, BPP

Recap P

Definition (P)

For every $L \subseteq \{0, 1\}^*$: $L \in \mathbf{P}$ if there is a poly-time TM *M* such that for every $x \in \{0, 1\}^*$:

```
x \in L \Leftrightarrow M(x) = 1.
```

- "poly-time TM M":
 - M deterministic
 - *M* outputs {0, 1}
 - There is a polynomial T(n) s.t. *M* halts on every *x* within T(|x|) steps.
- Problems in P are deemed "tractable".

Recap NP

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$: $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a poly-time TM M such that for every $x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)} : M(x, u) = 1$$

- Certificate *u*: satisfying assignment, independent set, 3-coloring, etc.
- NP captures the class of possibly (not) tractable computations:
 - Don't know how to compute *u* in poly-time, but
 - if there is a u, then |u| is polynomial in |x|, and
 - we can check in poly-time if a *u* is a certificate/solution.

Recap NP

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$: $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a poly-time TM M such that for every $x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)} : M(x, u) = 1$$

- Certificate *u*: satisfying assignment, independent set, 3-coloring, etc.
- NP captures the class of possibly (not) tractable computations:
 - Don't know how to compute *u* in poly-time, but
 - if there is a u, then |u| is polynomial in |x|, and
 - we can check in poly-time if a *u* is a certificate/solution.
- NDTMs can check all 2^{p(|x|)} possible *u*s in parallel.
- Seems unrealistic. Common conjecture: $P \neq NP$.

Recap NP

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$: $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a poly-time TM M such that for every $x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)} : M(x, u) = 1$$

- Certificate *u*: satisfying assignment, independent set, 3-coloring, etc.
- NP captures the class of possibly (not) tractable computations:
 - Don't know how to compute u in poly-time, but
 - if there is a u, then |u| is polynomial in |x|, and
 - we can check in poly-time if a *u* is a certificate/solution.
- NDTMs can check all $2^{p(|x|)}$ possible *us* in parallel.
- Seems unrealistic. Common conjecture: $P \neq NP$.
- Goal: Obtain from NP a more realistic class by randomization:

Choose *u* uniformly at random from $\{0, 1\}^{p(|x|)}$.

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in \mathbb{NP}$ decided by *M* using certificates *u* of length $p(\cdot)$:

 $A_{M,x} := \{u \in \{0,1\}^{p(|x|)} \mid M(x,u) = 1\} \text{ and } R_{M,x} := \{0,1\}^{p(|x|)} \setminus A_{M,x}.$

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in \mathbb{NP}$ decided by *M* using certificates *u* of length $p(\cdot)$:

 $A_{M,x} := \{u \in \{0,1\}^{p(|x|)} \mid M(x,u) = 1\} \text{ and } R_{M,x} := \{0,1\}^{p(|x|)} \setminus A_{M,x}.$

- If we choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random:
 - A_{M,x} is the event that *u* "says accept *x*".
 - R_{M,x} is the event that *u* "says reject *x*".

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in \mathbb{NP}$ decided by *M* using certificates *u* of length $p(\cdot)$:

 $A_{M,x} := \{u \in \{0,1\}^{p(|x|)} \mid M(x,u) = 1\} \text{ and } R_{M,x} := \{0,1\}^{p(|x|)} \setminus A_{M,x}.$

- If we choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random:
 - A_{M,x} is the event that *u* "says accept *x*".
 - $R_{M,x}$ is the event that *u* "says reject *x*".

Definition (Accept/Reject certificates and probabilities (cont'd))

$$\Pr[A_{M,x}] := \frac{|A_{M,x}|}{2^{p(|x|)}} \text{ and } \Pr[R_{M,x}] := \frac{|R_{M,x}|}{2^{p(|x|)}} = 1 - \Pr[A_{M,x}].$$

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in \mathbb{NP}$ decided by *M* using certificates *u* of length $p(\cdot)$:

 $A_{M,x} := \{u \in \{0,1\}^{p(|x|)} \mid M(x,u) = 1\} \text{ and } R_{M,x} := \{0,1\}^{p(|x|)} \setminus A_{M,x}.$

- If we choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random:
 - A_{M,x} is the event that *u* "says accept *x*".
 - $R_{M,x}$ is the event that *u* "says reject *x*".

Definition (Accept/Reject certificates and probabilities (cont'd))

$$\Pr[A_{M,x}] := \frac{|A_{M,x}|}{2^{p(|x|)}} \text{ and } \Pr[R_{M,x}] := \frac{|R_{M,x}|}{2^{p(|x|)}} = 1 - \Pr[A_{M,x}].$$

 $L \in \mathbb{NP}$ iff $\forall x \in \{0, 1\}^*$:

 $x \in L \Rightarrow \Pr[A_{M,x}] \ge 2^{-\rho(|x|)} \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$

- Input: CNF-formula ϕ with *n* variables.
- Output: Choose truth assignment $u \in \{0, 1\}^n$ uniformly at random.
 - If *u* satisfies ϕ , output yes, $\phi \in SAT$.
 - Else, output probably, $\phi \notin SAT$.
- If output is yes, $\phi \in SAT$, then we know $\phi \in SAT$ for sure.
- But what if output is probably, $\phi \notin SAT$?

- Input: CNF-formula ϕ with *n* variables.
- Output: Choose truth assignment $u \in \{0, 1\}^n$ uniformly at random.
 - If *u* satisfies ϕ , output yes, $\phi \in SAT$.
 - Else, output probably, $\phi \notin SAT$.
- If output is yes, $\phi \in SAT$, then we know $\phi \in SAT$ for sure.
- But what if output is probably, $\phi \notin SAT$?
- Consider $\phi = x_1 \land x_2 \land \ldots \land x_n \in SAT$:
 - Probability of probably, $\phi \notin \text{SAT: } \Pr[R_{M,x}] = 1 2^{-n}$
 - Called false negative.

- Input: CNF-formula ϕ with *n* variables.
- Output: Choose truth assignment $u \in \{0, 1\}^n$ uniformly at random.
 - If *u* satisfies ϕ , output yes, $\phi \in SAT$.
 - Else, output probably, $\phi \notin SAT$.
- If output is yes, $\phi \in SAT$, then we know $\phi \in SAT$ for sure.
- But what if output is probably, $\phi \notin SAT$?
- Consider $\phi = x_1 \land x_2 \land \ldots \land x_n \in SAT$:
 - Probability of probably, $\phi \notin \text{SAT: } \Pr[R_{M,x}] = 1 2^{-n}$
 - Called false negative.
- If we run this algorithm *r*-times, prob. of false negative decreases to: (1 − 2⁻ⁿ)^r ≈ e^{-r/2ⁿ}.

- Input: CNF-formula ϕ with *n* variables.
- Output: Choose truth assignment $u \in \{0, 1\}^n$ uniformly at random.
 - If *u* satisfies ϕ , output yes, $\phi \in SAT$.
 - Else, output probably, $\phi \notin SAT$.
- If output is yes, $\phi \in SAT$, then we know $\phi \in SAT$ for sure.
- But what if output is probably, $\phi \notin SAT$?
- Consider $\phi = x_1 \land x_2 \land \ldots \land x_n \in SAT$:
 - Probability of probably, $\phi \notin \text{SAT: } \Pr[R_{M,x}] = 1 2^{-n}$
 - Called false negative.
- If we run this algorithm *r*-times, prob. of false negative decreases to: (1 − 2⁻ⁿ)^r ≈ e^{-r/2ⁿ}.
- Exponential number $r \sim 2^n$ required to reduce this to any tolerable error bound like 1/4 or 1/10.
- Not that helpful as SAT ∈ EXP (zero prob. of false negative).

Randomizing NP: Conclusion

• Not enough to only choose certificate *u* at random, we need to require that $\Pr[A_{M,x}]$ is significantly larger than $2^{-p(|x|)}$; otherwise we'll stay in NP.

Randomizing NP: Conclusion

- Not enough to only choose certificate *u* at random, we need to require that $\Pr[A_{M,x}]$ is significantly larger than $2^{-p(|x|)}$; otherwise we'll stay in NP.
- Goal:

Polynomial number r(|x|) of reruns should make prob. of false negatives arbitrary small.

Randomizing NP: Conclusion

- Not enough to only choose certificate *u* at random, we need to require that $\Pr[A_{M,x}]$ is significantly larger than $2^{-p(|x|)}$; otherwise we'll stay in NP.
- Goal:

Polynomial number r(|x|) of reruns should make prob. of false negatives arbitrary small.

• This holds if $\Pr[A_{M,x}] \ge n^{-k}$ for some k > 0:

$$(1 - \Pr[A_{M,x}])^{c|x|^{k+d}} \ge (1 - 1/|x|^k)^{c|x|^{k+d}} \approx e^{-c|x|^d}$$

as $\lim_{m\to\infty} (1-1/m)^m = e^{-1}$.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
 - Choosing the certificate at random \checkmark
 - Error reduction by rerunning \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP
 - Definitions
 - Monte Carlo and Las Vegas algorithms
 - Examples: ZEROP and perfect matchings
- Power of randomization with two-sided error: PP, BPP

Definition of RP

Definition (Randomized P (RP))

 $L \in \mathbb{RP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$$

- $P \subseteq RP \subseteq NP$
- coRP := $\{\overline{L} \mid L \in \mathbb{RP}\}$
- **RP** unchanged if we replace $\geq 3/4$ by $\geq n^{-k}$ or $\geq 1 2^{-n^k}$ (k > 0).

Definition of RP

Definition (Randomized P (RP))

 $L \in \mathbb{RP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$$

- $P \subseteq RP \subseteq NP$
- coRP := $\{\overline{L} \mid L \in \mathbb{RP}\}$
- **RP** unchanged if we replace $\geq 3/4$ by $\geq n^{-k}$ or $\geq 1 2^{-n^k}$ (k > 0).
- Realistic model of computation? How to obtain random bits?
 - "Slightly random sources": see e.g. Papadimitriou p. 261

Definition of RP

Definition (Randomized P (RP))

 $L \in \mathbb{RP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$$

- $\mathbf{P} \subseteq \mathbf{RP} \subseteq \mathbf{NP}$
- coRP := $\{\overline{L} \mid L \in \mathbb{RP}\}$
- **RP** unchanged if we replace $\geq 3/4$ by $\geq n^{-k}$ or $\geq 1 2^{-n^k}$ (k > 0).
- Realistic model of computation? How to obtain random bits?
 - "Slightly random sources": see e.g. Papadimitriou p. 261
- One-sided error probabiliy for RP:
 - False negatives: if $x \in L$, then $\Pr[R_{M,x}] \le 1/4$.
 - If M(x, u) = 1, output $x \in L$; else output probably, $x \notin L$
 - Error reduction by rerunning a polynomial number of times.

coRP, ZPP

Lemma (coRP)

 $L \in \text{coRP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow Pr[A_{M,x}] = 1$$
 and $x \notin L \Rightarrow Pr[A_{M,x}] \le 1/4$.

- One-sided error probability for coRP:
 - False positives: if $x \notin L$, then $\Pr[A_{M,x}] \le 1/4$.
 - If M(x, u) = 1, output probably, $x \in L$; else output $x \notin L$
coRP, ZPP

Lemma (coRP)

 $L \in \text{coRP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow Pr[A_{M,x}] = 1$$
 and $x \notin L \Rightarrow Pr[A_{M,x}] \leq 1/4$.

- One-sided error probability for coRP:
 - False positives: if $x \notin L$, then $\Pr[A_{M,x}] \le 1/4$.
 - If M(x, u) = 1, output probably, $x \in L$; else output $x \notin L$

Definition ("Zero Probability of Error"-P (ZPP))

 $ZPP := RP \cap coRP$

• If $L \in ZPP$, then we have both an RP- and a coRP-TM for L.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP
 - Definitions √
 - Monte Carlo and Las Vegas algorithms
 - Examples: ZEROP and perfect matchings
- Power of randomization with two-sided error: PP, BPP

RP-algorithms

- Assume $L \in \mathbb{RP}$ decided by TM $M(\cdot, \cdot)$.
- Given input x:
 - Choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random.
 - Run M(x, u).
 - If M(x, u) = 1, output: yes, $x \in L$.
 - If M(x, u) = 0, output: probably, $x \notin L$.
- Called Monte Carlo algorithm.

RP-algorithms

- Assume $L \in \mathbb{RP}$ decided by TM $M(\cdot, \cdot)$.
- Given input x:
 - Choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random.
 - Run M(x, u).
 - If M(x, u) = 1, output: yes, $x \in L$.
 - If M(x, u) = 0, output: probably, $x \notin L$.
- Called Monte Carlo algorithm.
- If we rerun this algorithm exactly *k*-times:
 - If $x \in L$, probability that at least once yes, $x \in L$

$$\geq 1 - (1 - 3/4)^k = 1 - 4^{-k}$$

• but if $x \notin L$, we will never know for sure.

RP-algorithms

- Assume $L \in \mathbb{RP}$ decided by TM $M(\cdot, \cdot)$.
- Given input x:
 - Choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random.
 - Run *M*(*x*, *u*).
 - If M(x, u) = 1, output: yes, $x \in L$.
 - If M(x, u) = 0, output: probably, $x \notin L$.
- Called Monte Carlo algorithm.
- If we rerun this algorithm exactly *k*-times:
 - If $x \in L$, probability that at least once yes, $x \in L$

$$\geq 1 - (1 - 3/4)^k = 1 - 4^{-k}$$

- but if $x \notin L$, we will never know for sure.
- Expected running time if we rerun till output yes, $x \in L$:
 - If $x \in L$:
 - Number of reruns geometrically distributed with success prob. \geq 3/4, i.e.,
 - the expected number of reruns is at most 4/3.
 - Expected running time also polynomial.
 - If *x ∉ L*:
 - We run forever.

- Assume $L \in \mathbb{ZPP}$.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \overline{L}$.
- Given x:
 - Run both algorithms once.
 - If both reply probably, then output don't know.
 - Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm

- Assume $L \in \mathbb{ZPP}$.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \overline{L}$.
- Given x:
 - Run both algorithms once.
 - If both reply probably, then output don't know.
 - Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm
- If we rerun this algorithm exactly *k*-times:
 - If $x \in L$ ($x \in \overline{L}$), probability that at least once yes, $x \in L$ (yes, $x \in \overline{L}$)

$$\geq 1 - (1 - 3/4)^k = 1 - 4^{-k}$$

- Assume *L* ∈ ZPP.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \overline{L}$.
- Given x:
 - Run both algorithms once.
 - If both reply probably, then output don't know.
 - Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm
- If we rerun this algorithm exactly *k*-times:
 - If $x \in L$ ($x \in \overline{L}$), probability that at least once yes, $x \in L$ (yes, $x \in \overline{L}$)

$$\geq 1 - (1 - 3/4)^k = 1 - 4^{-k}$$

- Expected running time if we rerun till output yes:
 - In both cases expected number of reruns at most 4/3.
 - So, randomized algorithm which decides *L* in expected polynomial time.

- Assume *L* ∈ ZPP.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \overline{L}$.
- Given x:
 - Run both algorithms once.
 - If both reply probably, then output don't know.
 - Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm
- If we rerun this algorithm exactly *k*-times:
 - If $x \in L$ ($x \in \overline{L}$), probability that at least once yes, $x \in L$ (yes, $x \in \overline{L}$)

$$\geq 1 - (1 - 3/4)^k = 1 - 4^{-k}$$

- Expected running time if we rerun till output yes:
 - In both cases expected number of reruns at most 4/3.
 - So, randomized algorithm which decides *L* in expected polynomial time.
- More on expected running time vs. exact running time later on.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP
 - Definitions √
 - Monte Carlo and Las Vegas algorithms \checkmark
 - Examples: ZEROP and perfect matchings
- Power of randomization with two-sided error: PP, BPP

- Given: Multivariate polynomial $p(x_1, ..., x_k)$, not necessarily expanded, but evaluable in polynomial time.
- Wanted: Decide if $p(x_1, \ldots, x_k)$ is the zero polynomial.

$$\begin{vmatrix} 0 & y^2 & xy \\ z & 0 & y \\ 0 & yz & xz \end{vmatrix} = -y^2(z \cdot xz - 0) + xy(z \cdot yz - 0) = -xy^2z^2 + xy^2z^2 = 0$$

- ZEROP := "All zero polynomials evaluable in polynomial time".
- E.g. determinant: substitute values for variables, then use Gauß-elemination.
- Not known to be in P.

Lemma (cf. Papadimitriou p. 243)

Let $p(x_1, ..., x_k)$ be a nonzero polynomial with each variable x_i of degree at most d. Then for $M \in \mathbb{N}$:

 $|\{(x_1,\ldots,x_k)\in\{0,1,\ldots,M-1\}^k \mid p(x_1,\ldots,x_k)=0\}| \le kdM^{k-1}.$

Lemma (cf. Papadimitriou p. 243)

Let $p(x_1, ..., x_k)$ be a nonzero polynomial with each variable x_i of degree at most d. Then for $M \in \mathbb{N}$:

$$|\{(x_1,\ldots,x_k)\in\{0,1,\ldots,M-1\}^k \mid p(x_1,\ldots,x_k)=0\}| \le kdM^{k-1}$$

Let X_1, \ldots, X_k be independent random variables, each uniformly distributed on $\{0, 1, \ldots, M-1\}$. Then for M = 4kd:

$$p \notin \text{ZEROP} \Rightarrow \Pr[p(X_1, \dots, X_k) = 0] \le \frac{kdM^{k-1}}{M^k} = \frac{kd}{M} = \frac{1}{4}$$

Lemma (cf. Papadimitriou p. 243)

Let $p(x_1, ..., x_k)$ be a nonzero polynomial with each variable x_i of degree at most d. Then for $M \in \mathbb{N}$:

$$|\{(x_1,\ldots,x_k)\in\{0,1,\ldots,M-1\}^k \mid p(x_1,\ldots,x_k)=0\}| \le kdM^{k-1}$$

Let X_1, \ldots, X_k be independent random variables, each uniformly distributed on $\{0, 1, \ldots, M-1\}$. Then for M = 4kd:

$$p \notin \text{ZEROP} \Rightarrow \Pr[p(X_1, \dots, X_k) = 0] \le \frac{kdM^{k-1}}{M^k} = \frac{kd}{M} = \frac{1}{4}$$

- So we can decide *p* ∈ ZEROP in coRP if
 - we can evaluate $p(\cdot)$ in polynomial time, and
 - *d* is polynomial in the representation of *p*.

Lemma (cf. Papadimitriou p. 243)

Let $p(x_1, ..., x_k)$ be a nonzero polynomial with each variable x_i of degree at most d. Then for $M \in \mathbb{N}$:

$$|\{(x_1,\ldots,x_k)\in\{0,1,\ldots,M-1\}^k \mid p(x_1,\ldots,x_k)=0\}| \le kdM^{k-1}$$

Let X_1, \ldots, X_k be independent random variables, each uniformly distributed on $\{0, 1, \ldots, M-1\}$. Then for M = 4kd:

$$p \notin \text{ZEROP} \Rightarrow \Pr[p(X_1, \dots, X_k) = 0] \le \frac{kdM^{k-1}}{M^k} = \frac{kd}{M} = \frac{1}{4}$$

- So we can decide *p* ∈ ZEROP in coRP if
 - we can evaluate $p(\cdot)$ in polynomial time, and
 - *d* is polynomial in the representation of *p*.
- See Arora p. 130 for work around if d is exponential
 - E.g. $p(x) = (\dots ((x-1)^2)^2 \dots)^2$.

• Given: bipartite graph G = (U, V, E) with

$$|U| = |V| = n$$
 and $E \subseteq U \times V$

• Wanted: $M \subseteq E$ such that

 $\forall (u, v), (u', v') \in M : u \neq u' \land v \neq v' \text{ (matching)}$

• Given: bipartite graph G = (U, V, E) with

$$|U| = |V| = n$$
 and $E \subseteq U \times V$

• Wanted: $M \subseteq E$ such that

 $\forall (u, v), (u', v') \in M : u \neq u' \land v \neq v' \text{ (matching)}$

• Given: bipartite graph G = (U, V, E) with

$$|U| = |V| = n$$
 and $E \subseteq U \times V$

• Wanted: $M \subseteq E$ such that

 $\forall (u, v), (u', v') \in M : u \neq u' \land v \neq v' \text{ (matching)}$

- Problem is known to be solvable in time $O(n^5)$ (and better).
- So it is in RP.

• Given: bipartite graph G = (U, V, E) with

$$|U| = |V| = n$$
 and $E \subseteq U \times V$

• Wanted: $M \subseteq E$ such that

 $\forall (u, v), (u', v') \in M : u \neq u' \land v \neq v' \text{ (matching)}$

- Problem is known to be solvable in time $O(n^5)$ (and better).
- So it is in RP.
- Still, some "easy" randomized algorithm relying on ZEROP.

• For bipartite graph G = (U, V, E) define square matrix *M*:

$$M_{ij} = \begin{cases} x_{ij} & \text{if } (u_i, v_j) \in E \\ 0 & \text{else} \end{cases}$$

- Output:
 - "has perfect matching" if det(M) ∉ ZEROP
 - "might not have perfect matching" if det(M) ∈ ZEROP

$$\begin{array}{c} u_{1} \bullet & v_{1} \\ u_{2} \bullet & v_{2} \\ u_{3} \bullet & v_{3} \end{array} \qquad \left| \begin{pmatrix} 0 & x_{1,2} & x_{1,3} \\ x_{2,1} & 0 & x_{2,3} \\ 0 & x_{3,2} & 0 \end{pmatrix} \right| = x_{1,3} x_{2,1} x_{3,2}$$

• Relies on Leibniz formula: det $M = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n M_{i,\sigma(i)}$.

• For bipartite graph G = (U, V, E) define square matrix *M*:

$$M_{ij} = \begin{cases} x_{ij} & \text{if } (u_i, v_j) \in E \\ 0 & \text{else} \end{cases}$$

- Output:
 - "has perfect matching" if det(M) ∉ ZEROP
 - "might not have perfect matching" if det(M) ∈ ZEROP

$$\begin{array}{c} u_{1} \bullet & v_{1} \\ u_{2} \bullet & v_{2} \\ u_{3} \bullet & v_{3} \end{array} \qquad \left| \begin{pmatrix} 0 & x_{1,2} & x_{1,3} \\ x_{2,1} & 0 & x_{2,3} \\ 0 & x_{3,2} & 0 \end{pmatrix} \right| = x_{1,3} x_{2,1} x_{3,2}$$

• Relies on Leibniz formula: det $M = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n M_{i,\sigma(i)}$.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
 - Definitions √
 - Monte Carlo and Las Vegas algorithms \checkmark
 - Examples: ZEROP and perfect matchings √
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives
 - Comparison: NP, RP, coRP, ZPP, BPP, PP
 - Probabilistic Turing machines
 - Expected running time
 - Error reduction for BPP
 - Some kind of derandomization for BPP
 - BPP in the polynomial hierarchy

Probability of error for both $x \in L$ and $x \notin L$

- RP obtained from NP by
 - choosing certificate u uniformly at random
 - requiring a fixed fraction of accept-certificates if $x \in L$

 $x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$

• **RP**-algorithms can only make errors for $x \in L$.

Probability of error for both $x \in L$ and $x \notin L$

- RP obtained from NP by
 - choosing certificate u uniformly at random
 - requiring a fixed fraction of accept-certificates if $x \in L$

 $x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$

- **RP**-algorithms can only make errors for $x \in L$.
- · By allowing both errors for both cases, can we obtain a class that is
 - larger than RP,
 - but still more realistic than NP?

Probability of error for both $x \in L$ and $x \notin L$

- RP obtained from NP by
 - choosing certificate *u* uniformly at random
 - requiring a fixed fraction of accept-certificates if $x \in L$

 $x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$

- **RP**-algorithms can only make errors for $x \in L$.
- · By allowing both errors for both cases, can we obtain a class that is
 - larger than RP,
 - but still more realistic than NP?
- Assume we change the definition of RP to:

 $x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$

- Two-sided error probabilities:
 - False negatives: If $x \in L$: $\Pr[R_{M,x}] \le 1/4$
 - False positives: If $x \notin L$: Pr $[A_{M,x}] < 3/4$
 - Outputs: probably, $x \in L$ and probably, $x \notin L$

Definition (PP)

 $L \in \mathbf{PP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$

Definition (PP)

 $L \in \mathbf{PP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$$

Definition (PP)

 $L \in \mathbf{PP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$

- One can show:
 - May replace ≥ by >.
 - May replace 3/4 by 1/2.
 - PP = coPP

Definition (PP)

 $L \in \mathbf{PP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$

- One can show:
 - May replace ≥ by >.
 - May replace 3/4 by 1/2.
 - PP = coPP
- **PP**: " $x \in L$ iff x is accepted by a majority"
 - If $x \notin L$, then x is not accepted by a majority (\neq a majority rejects x!)

Definition (PP)

 $L \in \mathbf{PP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$

- One can show:
 - May replace ≥ by >.
 - May replace 3/4 by 1/2.
 - PP = coPP
- **PP**: " $x \in L$ iff x is accepted by a majority"
 - If $x \notin L$, then x is not accepted by a majority (\neq a majority rejects x!)
- Next: PP is at least as untractable as NP.

Theorem

- Assume TM M(x, u) for $L \in \mathbb{NP}$ uses certificates u of length p(|x|).
- Consider TM N(x, w) with |w| = p(|x|) + 2:
 - If w = 00u, define N(x, w) := M(x, u).
 - Else N(x, w) = 1 iff $w \neq 11...1$.

Theorem

- Assume TM M(x, u) for $L \in \mathbb{NP}$ uses certificates u of length p(|x|).
- Consider TM N(x, w) with |w| = p(|x|) + 2:
 - If w = 00u, define N(x, w) := M(x, u).
 - Else N(x, w) = 1 iff $w \neq 11...1$.
- Choose w uniformly on $\{0, 1\}^{p(|x|)+2}$ at random:
 - If $x \in L$: $\Pr[A_{N,x}] \ge$
 - If $x \notin L$: $\Pr[A_{N,x}] =$

Theorem

- Assume TM M(x, u) for $L \in \mathbb{NP}$ uses certificates u of length p(|x|).
- Consider TM N(x, w) with |w| = p(|x|) + 2:
 - If w = 00u, define N(x, w) := M(x, u).
 - Else N(x, w) = 1 iff $w \neq 11...1$.
- Choose w uniformly on $\{0, 1\}^{p(|x|)+2}$ at random:
 - If $x \in L$: Pr $[A_{N,x}] \ge 3/4 2^{-p(|x|)-2} + 2^{-p(|x|)-2} = 3/4$
 - If $x \notin L$: Pr $[A_{N,x}] =$

Theorem

- Assume TM M(x, u) for $L \in \mathbb{NP}$ uses certificates u of length p(|x|).
- Consider TM N(x, w) with |w| = p(|x|) + 2:
 - If w = 00u, define N(x, w) := M(x, u).
 - Else N(x, w) = 1 iff $w \neq 11...1$.
- Choose w uniformly on $\{0, 1\}^{p(|x|)+2}$ at random:
 - If $x \in L$: Pr $[A_{N,x}] \ge 3/4 2^{-p(|x|)-2} + 2^{-p(|x|)-2} = 3/4$
 - If $x \notin L$: Pr $[A_{N,x}] = 3/4 2^{-p(|x|)-2} < 3/4$

"Bounded probability of error"-P (BPP)

- By the previous result:
 - PP does not seem to capture realistic computation.

"Bounded probability of error"-P (BPP)

- By the previous result:
 - PP does not seem to capture realistic computation.
- Proof relied on the dependency of the two error bounds:
 - · We traded one-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 2^{-p(|x|)} \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0$$

for two-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] < 3/4$$

by adding enough accept-certificates, i.e.,
"Bounded probability of error"-P (BPP)

- By the previous result:
 - PP does not seem to capture realistic computation.
- Proof relied on the dependency of the two error bounds:
 - · We traded one-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 2^{-p(|x|)} \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0$$

for two-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] < 3/4$$

by adding enough accept-certificates, i.e.,

- we increased the probability for false positives,
- while decreasing the probability for false negatives.

"Bounded probability of error"-P (BPP)

- By the previous result:
 - PP does not seem to capture realistic computation.
- Proof relied on the dependency of the two error bounds:
 - · We traded one-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 2^{-p(|x|)} \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0$$

for two-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] < 3/4$$

by adding enough accept-certificates, i.e.,

- we increased the probability for false positives,
- while decreasing the probability for false negatives.
- Possible fix:
 - Require bounds on both error probabilities.
 - "Bounded error probability of error"-P

Definition (BPP)

 $L \in BPP$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

- $RP \subseteq BPP = coBPP \subseteq PP$
 - Reminder: if $L \in \mathbf{PP}$, then $x \notin L \Rightarrow \Pr[A_{M,x}] < 3/4$.

Definition (BPP)

 $L \in BPP$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

• $RP \subseteq BPP = coBPP \subseteq PP$

- Reminder: if $L \in \mathbf{PP}$, then $x \notin L \Rightarrow \Pr[A_{M,x}] < 3/4$.
- Two-sided error probabilities:
 - False negatives: If $x \in L$, then $\Pr[R_{M,x}] \le 1/4$.
 - False positives: If $x \notin L$, then $\Pr[A_{M,x}] \le 1/4$.
 - Outputs: probably, $x \in L$ and probably, $x \notin L$.
 - Error reduction to 2⁻ⁿ by rerunning (later).

Definition (BPP)

 $L \in BPP$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

• $RP \subseteq BPP = coBPP \subseteq PP$

- Reminder: if $L \in \mathbf{PP}$, then $x \notin L \Rightarrow \Pr[A_{M,x}] < 3/4$.
- Two-sided error probabilities:
 - False negatives: If $x \in L$, then $\Pr[R_{M,x}] \le 1/4$.
 - False positives: If $x \notin L$, then $\Pr[A_{M,x}] \le 1/4$.
 - Outputs: probably, $x \in L$ and probably, $x \notin L$.
 - Error reduction to 2⁻ⁿ by rerunning (later).
- It is unknown whether **BPP** = **NP** or even **BPP** = **P**!
 - Under some non-trivial but "very reasonable" assumptions: BPP = P!

Definition (BPP)

 $L \in BPP$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

• $RP \subseteq BPP = coBPP \subseteq PP$

- Reminder: if $L \in \mathbf{PP}$, then $x \notin L \Rightarrow \Pr[A_{M,x}] < 3/4$.
- Two-sided error probabilities:
 - False negatives: If $x \in L$, then $\Pr[R_{M,x}] \le 1/4$.
 - False positives: If $x \notin L$, then $\Pr[A_{M,x}] \le 1/4$.
 - Outputs: probably, $x \in L$ and probably, $x \notin L$.
 - Error reduction to 2^{-n} by rerunning (later).
- It is unknown whether BPP = NP or even BPP = P!
 - Under some non-trivial but "very reasonable" assumptions: BPP = P!
- BPP = "most comprehensive, yet plausible notion of realistic computation" (Papadimitriou p. 259)

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives \checkmark
 - Comparison: NP, RP, coRP, ZPP, BPP, PP
 - Probabilistic Turing machines
 - Expected running time
 - Error reduction for BPP
 - Some kind of derandomization for BPP
 - **BPP** in the polynomial hierarchy

- $L \in NP$:
 - if $x \in L$: at least one •
 - if *x* ∉ *L*: all ●

- $L \in NP$:
 - if $x \in L$: at least one •
 - if *x* ∉ *L*: all ●

- *L* ∈ **RP**:
 - if $x \in L$: at least 75% •
 - if *x* ∉ *L*: all ●

- *L* ∈ **RP**:
 - if $x \in L$: at least 75% •
 - if *x* ∉ *L*: all ●

- *L* ∈ coRP:
 - if $x \in L$: all •
 - if *x* ∉ *L*: at least 75% ●

- *L* ∈ coRP:
 - if $x \in L$: all •
 - if *x* ∉ *L*: at least 75% ●

- *L* ∈ **ZPP**:
 - if *x* ∈ *L*: no ●
 - if *x* ∉ *L*: no ●

- *L* ∈ **ZPP**:
 - if *x* ∈ *L*: no ●
 - if *x* ∉ *L*: no ●

- *L* ∈ **BPP**:
 - if $x \in L$: at least 75% •
 - if *x* ∉ *L*: at least 75% ●

- *L* ∈ **BPP**:
 - if $x \in L$: at least 75% •
 - if *x* ∉ *L*: at least 75% ●

- *L* ∈ **PP**:
 - if $x \in L$: at least 75% •
 - if $x \notin L$: less than 75% •

- *L* ∈ **PP**:
 - if $x \in L$: at least 75% •
 - if $x \notin L$: less than 75% •

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives \checkmark
 - Comparison: NP, RP, coRP, ZPP, BPP, PP ✓
 - Probabilistic Turing machines
 - Expected running time
 - Error reduction for BPP
 - Some kind of derandomization for BPP
 - **BPP** in the polynomial hierarchy

Definition (PTM)

We obtain from an NDTM $M = (\Gamma, Q, \delta_1, \delta_2)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of *M* on *x* of length exactly *I* occurs with probability 2^{-I} . A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if *M* halts on *x* within at most T(|x|) steps regardless of the random choices it makes.

Definition (PTM)

We obtain from an NDTM $M = (\Gamma, Q, \delta_1, \delta_2)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of *M* on *x* of length exactly *I* occurs with probability 2^{-I} . A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if *M* halts on *x* within at most T(|x|) steps regardless of the random choices it makes.

Corollary

 $L \in \mathbb{RP}$ iff there is a poly-time PTM M s.t. for all $x \in \{0, 1\}^*$:

$$x \in L \Rightarrow Pr[M(x) = 1] \ge 3/4$$
 and $x \notin L \Rightarrow Pr[M(x) = 1] = 0$.

Definition (PTM)

We obtain from an NDTM $M = (\Gamma, Q, \delta_1, \delta_2)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of *M* on *x* of length exactly *I* occurs with probability 2^{-I} . A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if *M* halts on *x* within at most T(|x|) steps regardless of the random choices it makes.

Corollary

 $L \in \text{coRP}$ iff there is a poly-time PTM M s.t. for all $x \in \{0, 1\}^*$:

$$x \in L \Rightarrow Pr[M(x) = 1] = 1$$
 and $x \notin L \Rightarrow Pr[M(x) = 1] \le 1/4$.

Definition (PTM)

We obtain from an NDTM $M = (\Gamma, Q, \delta_1, \delta_2)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of *M* on *x* of length exactly *I* occurs with probability 2^{-I} . A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if *M* halts on *x* within at most T(|x|) steps regardless of the random choices it makes.

Corollary

 $L \in BPP$ iff there is a poly-time PTM M s.t. for all $x \in \{0, 1\}^*$:

$$x \in L \Rightarrow Pr[M(x) = 1] \ge 3/4$$
 and $x \notin L \Rightarrow Pr[M(x) = 1] \le 1/4$.

Definition (PTM)

We obtain from an NDTM $M = (\Gamma, Q, \delta_1, \delta_2)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of *M* on *x* of length exactly *I* occurs with probability 2^{-I} . A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if *M* halts on *x* within at most T(|x|) steps regardless of the random choices it makes.

Corollary

 $L \in PP$ iff there is a poly-time PTM M s.t. for all $x \in \{0, 1\}^*$:

$$x \in L \Rightarrow Pr[M(x) = 1] \ge 3/4$$
 and $x \notin L \Rightarrow Pr[M(x) = 1] < 3/4$.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives \checkmark
 - Comparison: NP, RP, coRP, ZPP, BPP, PP√
 - Probabilistic Turing machines√
 - Expected running time
 - Error reduction for BPP
 - Some kind of derandomization for BPP
 - **BPP** in the polynomial hierarchy

Expected vs. Exact Running Time

- Recall: if *L* ∈ ZPP
 - **RP**-algorithms for L and \overline{L} .
 - Rerun both algorithms on x until one outputs yes.
 - This decides *L* in expected polynomial time.
 - But might run infinitely long in the worst case.
- So, is expected time more powerful than exact time?

Definition (Expected running time of a PTM)

For a PTM *M* let $T_{M,x}$ be the random variable that counts the steps of a computation of *M* on *x*, i.e., $\Pr[T_{M,x} \le t]$ is the probability that *M* halts on *x* within at most *t* steps.

We say that *M* runs in expected time T(n) if $\mathbb{E}[T_{M,x}] \leq T(|x|)$ for every *x*.

Definition (Expected running time of a PTM)

For a PTM *M* let $T_{M,x}$ be the random variable that counts the steps of a computation of *M* on *x*, i.e., $\Pr[T_{M,x} \le t]$ is the probability that *M* halts on *x* within at most *t* steps.

We say that *M* runs in expected time T(n) if $\mathbb{E}[T_{M,x}] \leq T(|x|)$ for every *x*.

Possibly infinite runs.

Definition (Expected running time of a PTM)

For a PTM *M* let $T_{M,x}$ be the random variable that counts the steps of a computation of *M* on *x*, i.e., $\Pr[T_{M,x} \le t]$ is the probability that *M* halts on *x* within at most *t* steps.

We say that *M* runs in expected time T(n) if $\mathbb{E}[T_{M,x}] \leq T(|x|)$ for every *x*.

- · Possibly infinite runs.
- So, certificates would need to be unbounded.

Definition (Expected running time of a PTM)

For a PTM *M* let $T_{M,x}$ be the random variable that counts the steps of a computation of *M* on *x*, i.e., $\Pr[T_{M,x} \le t]$ is the probability that *M* halts on *x* within at most *t* steps.

We say that *M* runs in expected time T(n) if $\mathbb{E}[T_{M,x}] \leq T(|x|)$ for every *x*.

- · Possibly infinite runs.
- So, certificates would need to be unbounded.

Definition (BPeP)

A language *L* is in **BPeP** if there is a polynomial $T : \mathbb{N} \to \mathbb{N}$ and a PTM *M* such that for every $x \in \{0, 1\}^*$:

$$x \in L \Rightarrow \Pr[M(x) = 1] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[M(x) = 0] \ge 3/4$$

and $\mathbb{E}[T_{M,x}] \leq T(|x|)$.

- Assume $L \in BPeP$.
 - PTM *M* deciding *L* within expected running time T(n).

- Assume $L \in BPeP$.
 - PTM *M* deciding *L* within expected running time T(n).
- Probability that *M* does more than *k* steps on input *x*:

$$\Pr\left[T_{M,x} \ge k\right] \le \frac{\mathbb{E}\left[T_{M,x}\right]}{k} \le \frac{T(|x|)}{k}$$

by Markov's inequality.

- Assume $L \in BPeP$.
 - PTM *M* deciding *L* within expected running time *T*(*n*).
- Probability that *M* does more than *k* steps on input *x*:

$$\Pr\left[T_{M,x} \ge k\right] \le \frac{\mathbb{E}\left[T_{M,x}\right]}{k} \le \frac{T(|x|)}{k}$$

by Markov's inequality.

• So, for k = 10T(|x|) (polynomial in |x|):

 $\Pr\left[T_{M,x} \ge 10T(|x|)\right] \le 0.1$

for every input x.

- New algorithm *M*:
 - Simulate *M* for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of *M*.
 - Otherwise, choose reply uniformly at random.

- New algorithm *M*:
 - Simulate *M* for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of *M*.
 - Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- New algorithm *M*:
 - Simulate *M* for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of *M*.
 - Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
 - Assume $x \in L$.
 - If simulation halts:
 - Otherwise:

- New algorithm *M*:
 - Simulate *M* for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of *M*.
 - Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
 - Assume $x \in L$.
 - If simulation halts: ≤ 1/4
 - Otherwise:

- New algorithm *M*:
 - Simulate *M* for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of M.
 - Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
 - Assume $x \in L$.
 - If simulation halts: ≤ 1/4
 - Otherwise: = 1/2

- New algorithm *M*:
 - Simulate *M* for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of M.
 - Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
 - Assume $x \in L$.
 - If simulation halts: ≤ 1/4
 - Otherwise: = 1/2
 - In total: $1/4 \cdot \Pr[T_{M,x} \le 10T(|x|)] + 1/2 \cdot (1 \Pr[T_{M,x} \le 10T(|x|)]) \le 0.3$

≤0.1

- New algorithm *M*:
 - Simulate *M* for at most 10*T*(|*x*|) steps.
 - If simulation terminates, forward the reply of M.

<1

- Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- · Error probabilities:
 - Assume x ∈ L.
 - If simulation halts: ≤ 1/4
 - Otherwise: = 1/2
 - In total: $1/4 \cdot \Pr[T_{M,x} \le 10T(|x|)] + 1/2 \cdot (1 \Pr[T_{M,x} \le 10T(|x|)]) \le 0.3$

< 0.1

Lemma

BPP = BPeP

Lemma

 $L \in ZPP$ iff L is decided by some PTM in expected polynomial time.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives \checkmark
 - Comparison: NP, RP, coRP, ZPP, BPP, PP√
 - Probabilistic Turing machines√
 - Expected running time√
 - Error reduction for BPP
 - Some kind of derandomization for BPP
 - **BPP** in the polynomial hierarchy

Error reduction

- Consider: $L \in \mathbb{RP}$:
 - Probability for error after *r* reruns:
 - if $x \notin L$: = 0
 - if $x \in L$: $\leq 4^{-r}$, i.e., *r*-times probably, $x \notin L$.

Error reduction

- Consider: $L \in \mathbb{RP}$:
 - Probability for error after *r* reruns:
 - if $x \notin L$: = 0
 - if $x \in L$: $\leq 4^{-r}$, i.e., *r*-times probably, $x \notin L$.
- Similarly for $L \in coRP$ and $L \in ZPP$.

Error reduction

- Consider: $L \in \mathbb{RP}$:
 - Probability for error after r reruns:
 - if $x \notin L$: = 0
 - if $x \in L$: $\leq 4^{-r}$, i.e., *r*-times probably, $x \notin L$.
- Similarly for $L \in coRP$ and $L \in ZPP$.
- What if *L* ∈ BPP?
 - We cannot wait for a yes
 - Instead use the majority.

Error reduction for BPP

Definition (BPP(*f*))

Let $f : \mathbb{N} \to \mathbb{Q}$ be a function. $L \in \mathbf{BPP}(f)$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM *M* such that for every $x \in \{0, 1\}^*$

 $x \in L \Rightarrow \Pr[A_{M,x}] \ge f(|x|) \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge f(|x|).$

Theorem (Error reduction for BPP) For any c > 0: BPP = BPP($1/2 + n^{-c}$)

• The longer the input, the less dominant the "majority" has to be.

- Assume $L \in BPP$, and
- Choose any c > 0.

- Assume $L \in BPP$, and
- Choose any c > 0.
- There exists certainly an n_0 s.t. for all $n \ge n_0$:

$$1/2 + n^{-c} \le 3/4.$$

- Assume $L \in BPP$, and
- Choose any c > 0.
- There exists certainly an n_0 s.t. for all $n \ge n_0$:

$$1/2 + n^{-c} \le 3/4.$$

• So: $L \cap \{0, 1\}^{\geq n_0} \in \mathsf{BPP}(1/2 + n^{-c}).$

- Assume $L \in BPP$, and
- Choose any c > 0.
- There exists certainly an n_0 s.t. for all $n \ge n_0$:

$$1/2 + n^{-c} \le 3/4$$

- So: $L \cap \{0, 1\}^{\geq n_0} \in \mathsf{BPP}(1/2 + n^{-c}).$
- Thus, $BPP(1/2 + n^{-c})$ -algorithm for L:
 - If $|x| < n_0$, decide $x \in L$ in **P** (error prob. = 0)
 - Else run BPP-algorithm (error prob. ≤ 1/4)

• Let $L \in BPP(1/2 + n^{-c})$ for some c > 0.

- Let $L \in BPP(1/2 + n^{-c})$ for some c > 0.
- Run $1/2 + n^{-c}$ -algorithm *r*-times on input *x*:
 - Outputs: $y = y_1 y_2 y_3 \dots y_r$
 - with $y_i \in \{0, 1\}$ and $y_i = 1$ if output probably, $x \in L$
 - $Y_1 = \sum_{i=1}^r y_i$ number of 1s
 - $Y_0 = r Y_1$ number of 0s

- Let $L \in BPP(1/2 + n^{-c})$ for some c > 0.
- Run $1/2 + n^{-c}$ -algorithm *r*-times on input *x*:
 - Outputs: $y = y_1 y_2 y_3 ... y_r$
 - with $y_i \in \{0, 1\}$ and $y_i = 1$ if output probably, $x \in L$
 - $Y_1 = \sum_{i=1}^r y_i$ number of 1s
 - $Y_0 = r Y_1$ number of 0s
- Probability of $y_i = 1$ if $x \in L$, resp. $y_i = 0$ if $x \notin L$:

 $x \in L$: $\Pr[y_i = 1] \ge 1/2 + |x|^{-c}$ resp. $x \notin L$: $\Pr[y_i = 0] \ge 1/2 + |x|^{-c}$

(yi indepedent, Bernoulli distributed RVs)

- Let $L \in BPP(1/2 + n^{-c})$ for some c > 0.
- Run $1/2 + n^{-c}$ -algorithm *r*-times on input *x*:
 - Outputs: $y = y_1 y_2 y_3 ... y_r$
 - with $y_i \in \{0, 1\}$ and $y_i = 1$ if output probably, $x \in L$
 - $Y_1 = \sum_{i=1}^r y_i$ number of 1s
 - $Y_0 = r Y_1$ number of 0s
- Probability of $y_i = 1$ if $x \in L$, resp. $y_i = 0$ if $x \notin L$:

 $x \in L$: $\Pr[y_i = 1] \ge 1/2 + |x|^{-c}$ resp. $x \notin L$: $\Pr[y_i = 0] \ge 1/2 + |x|^{-c}$

(y_i indepedent, Bernoulli distributed RVs)

• Expected number of 1s for $x \in L$, resp. of 0s if $x \notin L$:

 $x \in L : \mathbb{E}[Y_1] \ge r/2 + r|x|^{-c}$ resp. $x \notin L : \mathbb{E}[Y_0] \ge r/2 + r|x|^{-c}$

- Let $L \in BPP(1/2 + n^{-c})$ for some c > 0.
- Run $1/2 + n^{-c}$ -algorithm *r*-times on input *x*:
 - Outputs: $y = y_1 y_2 y_3 ... y_r$
 - with $y_i \in \{0, 1\}$ and $y_i = 1$ if output probably, $x \in L$
 - $Y_1 = \sum_{i=1}^r y_i$ number of 1s
 - $Y_0 = r Y_1$ number of 0s
- Probability of $y_i = 1$ if $x \in L$, resp. $y_i = 0$ if $x \notin L$:

 $x \in L$: $\Pr[y_i = 1] \ge 1/2 + |x|^{-c}$ resp. $x \notin L$: $\Pr[y_i = 0] \ge 1/2 + |x|^{-c}$

(y_i indepedent, Bernoulli distributed RVs)

• Expected number of 1s for $x \in L$, resp. of 0s if $x \notin L$:

 $x \in L : \mathbb{E}[Y_1] \ge r/2 + r|x|^{-c}$ resp. $x \notin L : \mathbb{E}[Y_0] \ge r/2 + r|x|^{-c}$

• Intuitively, for e.g. $r = |x|^{c+d}$ for some $d \in \mathbb{N}$ we get:

 $x \in L : \mathbb{E}[Y_1 - Y_0] \ge 2|x|^d$ resp. $x \notin L : \mathbb{E}[Y_0 - Y_1] \ge 2|x|^d$

i.e., expect significant majority in favor of correct answer.

• Idea: let majority decide, i.e., output $x \in L$ iff $Y_1 > Y_0$.

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_1 > Y_0$.
- Assume $x \in L$ in the following
 - Case *x* ∉ *L* symmetric:
 - set $z_i := 1 y_i$ and consider Y_0 instead of Y_1

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_1 > Y_0$.
- Assume $x \in L$ in the following
 - Case *x* ∉ *L* symmetric:
 - set $z_i := 1 y_i$ and consider Y_0 instead of Y_1
- Probability that "majority" wrongly says *x* ∉ *L*:

 $\Pr\left[Y_1 \le Y_0\right] = \Pr\left[Y_1 \le r/2\right]$

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_1 > Y_0$.
- Assume $x \in L$ in the following
 - Case $x \notin L$ symmetric:
 - set $z_i := 1 y_i$ and consider Y_0 instead of Y_1
- Probability that "majority" wrongly says *x* ∉ *L*:

$$\Pr[Y_1 \le Y_0] = \Pr[Y_1 \le r/2]$$

• Chernoff bound: for $X \sim Bin(n; p)$ with $\mu := \mathbb{E}[X]$ and $\delta \in (0, 1)$

$$\Pr\left[X \le (1-\delta)\mu\right] \le e^{-\mu\delta^2/2}$$

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_1 > Y_0$.
- Assume $x \in L$ in the following
 - Case *x* ∉ *L* symmetric:
 - set $z_i := 1 y_i$ and consider Y_0 instead of Y_1
- Probability that "majority" wrongly says *x* ∉ *L*:

$$\Pr[Y_1 \le Y_0] = \Pr[Y_1 \le r/2]$$

• Chernoff bound: for $X \sim Bin(n; p)$ with $\mu := \mathbb{E}[X]$ and $\delta \in (0, 1)$

$$\Pr\left[X \le (1-\delta)\mu\right] \le e^{-\mu\delta^2/2}$$

• Thus:

$$\Pr[Y_1 \le r/2] = \Pr[Y_1 \le (1 - (1 - r/(2\mu)))\mu] \le e^{-\mu\delta^2/2}$$

as long as $\delta := 1 - r/(2\mu) \in (0, 1)$.

• Bounds on $\delta = 1 - r/(2\mu)$:

$$0 < \delta < 1 \Leftrightarrow 0 < r/2 < \mu \leftarrow r/2 + r|x|^{-c} \le \mu$$

• Thus, choose r s.t.

$$\Pr[Y_1 \le r/2] \le e^{-\mu \delta^2/2} \le 1/4.$$

i.e.,

$$\mu\delta^2 \ge 2\log_e 4.$$

With

$$\mu \ge r/2 + r|x|^{-c}$$

we obtain:

$$\mu\delta^{2} = (\mu - r/2)(1 - (r/2)/\mu)^{2} \ge r|x|^{-c} \left(1 - \frac{r/2}{r/2 + r|x|^{-c}}\right)^{2} = r \cdot \frac{|x|^{-3c}}{(1/2 + |x|^{-c})^{2}}$$

• So, choose $r \ge (\log_e 4) \cdot (|x|^{3c}/2 + 2|x|^{2c} + 2|x|^c)$.

• For $x \notin L$ we obtain analogously:

$$\Pr\left[Y_0 \le Y_1\right] \le 1/4 \text{ if } r \ge \left(|x|^{3c}/2 + 2|x|^{2c} + 2|x|^c\right).$$

- So, a polynomial number of rounds suffices to reduce error probability to at most 1/4.
- Proof also yields:

Theorem (Error reduction for BPP)

For any d > 0:

 $\mathbf{BPP} = \mathbf{BPP}(1 - 2^{-n^d})$

• For $x \notin L$ we obtain analogously:

$$\Pr\left[Y_0 \le Y_1\right] \le 1/4 \text{ if } r \ge \left(|x|^{3c}/2 + 2|x|^{2c} + 2|x|^c\right).$$

- So, a polynomial number of rounds suffices to reduce error probability to at most 1/4.
- Proof also yields:

Theorem (Error reduction for BPP)

For any d > 0:

$$\mathbf{BPP} = \mathbf{BPP}(1 - 2^{-n^d})$$

• Ex.: Show the theorem.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives \checkmark
 - Comparison: NP, RP, coRP, ZPP, BPP, PP√
 - Probabilistic Turing machines√
 - Expected running time√
 - Error reduction for BPP√
 - Some kind of derandomization for BPP
 - **BPP** in the polynomial hierarchy

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n). Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

 $x \in L$ iff $M(x, u_n) = 1$.

Theorem

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: **BPP** = **BPP** $(1 4^{-n})$
- For a given *n* let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.

Theorem

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: **BPP** = **BPP** $(1 4^{-n})$
- For a given *n* let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let *B_x* be the event of bad certificates for *x*:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n). Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

 $x \in L$ iff $M(x, u_n) = 1$.

- Error reduction: **BPP** = **BPP** $(1 4^{-n})$
- For a given *n* let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let *B_x* be the event of bad certificates for *x*:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

• $\Pr[B_x] \leq$

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n). Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: **BPP** = **BPP** $(1 4^{-n})$
- For a given *n* let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let *B_x* be the event of bad certificates for *x*:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

• $\Pr[B_x] \le 4^{-n}$

Theorem

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: **BPP** = **BPP** $(1 4^{-n})$
- For a given *n* let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let *B_x* be the event of bad certificates for *x*:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

- $\Pr[B_x] \le 4^{-n}$
- $\Pr\left[\bigcup_{|x|=n} B_x\right] \leq$

Theorem

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: **BPP** = **BPP** $(1 4^{-n})$
- For a given *n* let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let *B_x* be the event of bad certificates for *x*:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

- $\Pr[B_x] \le 4^{-n}$
- $\Pr\left[\bigcup_{|x|=n} B_x\right] \leq \sum_{|x|=n} \Pr\left[B_x\right] \leq 2^n \cdot 4^{-n} = 2^{-n}$

Theorem

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: **BPP** = **BPP** $(1 4^{-n})$
- For a given *n* let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let *B_x* be the event of bad certificates for *x*:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

- $\Pr[B_x] \le 4^{-n}$
- $\Pr\left[\bigcup_{|x|=n} B_x\right] \leq \sum_{|x|=n} \Pr\left[B_x\right] \leq 2^n \cdot 4^{-n} = 2^{-n}$
- $\Pr\left[\bigcap_{|x|=n}\overline{B}_x\right] \ge$
Some Kind of Derandomization

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n). Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: **BPP** = **BPP** $(1 4^{-n})$
- For a given *n* let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let *B_x* be the event of bad certificates for *x*:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

- $\Pr[B_x] \le 4^{-n}$
- $\Pr\left[\bigcup_{|x|=n} B_x\right] \leq \sum_{|x|=n} \Pr\left[B_x\right] \leq 2^n \cdot 4^{-n} = 2^{-n}$
- $\Pr\left[\bigcap_{|x|=n}\overline{B}_x\right] \ge 1 2^{-n} > 0$

Some Kind of Derandomization

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n). Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: **BPP** = **BPP** $(1 4^{-n})$
- For a given *n* let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let *B_x* be the event of bad certificates for *x*:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

- $\Pr[B_x] \le 4^{-n}$
- $\Pr\left[\bigcup_{|x|=n} B_x\right] \leq \sum_{|x|=n} \Pr\left[B_x\right] \leq 2^n \cdot 4^{-n} = 2^{-n}$
- $\Pr\left[\bigcap_{|x|=n}\overline{B}_x\right] \ge 1 2^{-n} > 0$
- Seems unlikely for NP.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives \checkmark
 - Comparison: NP, RP, coRP, ZPP, BPP, PP√
 - Probabilistic Turing machines√
 - Expected running time√
 - Error reduction for BPP√
 - Some kind of derandomization for BPP√
 - **BPP** in the polynomial hierarchy

 $x \in L$ iff $\exists u \in \{0, 1\}^{p(|x|)} \forall v \in \{0, 1\}^{p(|x|)} : M(x, u, v) = 1.$

• Definition of $L \in \Pi_2^p$:

$$x \in L$$
 iff $\forall u \in \{0, 1\}^{p(|x|)} \exists v \in \{0, 1\}^{p(|x|)} : M(x, u, v) = 1$

 $x \in L$ iff $\exists u \in \{0, 1\}^{p(|x|)} \forall v \in \{0, 1\}^{p(|x|)} : M(x, u, v) = 1.$

Definition of *L* ∈ Π^p₂:

 $x \in L$ iff $\forall u \in \{0, 1\}^{p(|x|)} \exists v \in \{0, 1\}^{p(|x|)} : M(x, u, v) = 1.$

As BPP = coBPP it suffices to show BPP ⊆ Σ₂^p:

 $L \in \mathsf{BPP} \Rightarrow \overline{L} \in \mathsf{BPP} \Rightarrow \overline{L} \in \Sigma_2^p \Rightarrow L \in \Pi_2^p$

- We use again that $BPP = BPP(1 4^{-n})$.
- Let $p(\cdot)$ be the polynomial bounding the certificate length.
- Recall A_{M,x}: "accept-certificates"

$$A_{M,x} := \{ u \in \{0,1\}^{p(|x|)} \mid M(x,u) = 1 \}$$

• Then

$$x \in L \Rightarrow |A_{M,x}| \ge (1 - 4^{-|x|})2^{p(|x|)}$$
 and $x \notin L \Rightarrow |A_{M,x}| \le 4^{-n} \cdot 2^{p(|x|)}$

Need a formula to distinguish the two cases.

- Assume |x| = 1 and p(|x|) = 3,
- i.e., possible certificates in $\{0, 1\}^3$.
- If $x \in L$, then $|A_{M,x}| \ge 3/4 \cdot 2^3 = 6$.
- If $x \notin L$, then $|A_{M,x}| \le 1/4 \cdot 2^3 = 2$.

• Assume $x \notin L$, i.e., $|A_{M,x}| \le 1/4 \cdot 8 = 2$

- Assume $x \notin L$, i.e., $|A_{M,x}| \le 1/4 \cdot 8 = 2$
- Choose any $u_1, u_2 \in \{0, 1\}^3$.

- Assume $x \notin L$, i.e., $|A_{M,x}| \le 1/4 \cdot 8 = 2$
- Choose any $u_1, u_2 \in \{0, 1\}^3$.
- By chance, we might hit $A_{M,x}$.

- Assume $x \notin L$, i.e., $|A_{M,x}| \le 1/4 \cdot 8 = 2$
- Choose any $u_1, u_2 \in \{0, 1\}^3$.
- By chance, we might hit $A_{M,x}$.
- Claim: But there is some $r \in \{0, 1\}^3$ s.t.

 $\{u_1 \oplus r, u_2 \oplus r\} \cap A_{M,x} = \emptyset.$

(⊕: bitwise xor)

Note:

 $u_i \oplus r \in A_{M,x}$ iff $r \in A_{M,x} \oplus u_i$.

Note:

$$u_i \oplus r \in A_{M,x}$$
 iff $r \in A_{M,x} \oplus u_i$.

So, choose

 $r \in \overline{A_{M,x} \oplus u_1 \cup A_{M,x} \oplus u_2} = \overline{\{000, 011\} \cup \{101, 110\}}.$

Note:

$$u_i \oplus r \in A_{M,x}$$
 iff $r \in A_{M,x} \oplus u_i$.

• So, choose

$$r \in \overline{A_{M,x} \oplus u_1 \cup A_{M,x} \oplus u_2} = \overline{\{000, 011\} \cup \{101, 110\}}.$$

• E.g. *r* = 001.

Note:

$$u_i \oplus r \in A_{M,x}$$
 iff $r \in A_{M,x} \oplus u_i$.

So, choose

$$r \in \overline{A_{M,x} \oplus u_1 \cup A_{M,x} \oplus u_2} = \overline{\{000, 011\} \cup \{101, 110\}}.$$

• E.g. *r* = 001.

• Assume $x \in L$, i.e., $|A_{M,x}| \ge 6$.

- Assume $x \in L$, i.e., $|A_{M,x}| \ge 6$.
- Claim: We can choose u_1, u_2 s.t. for any $r \in \{0, 1\}^3$

 $\{u_1 \oplus r, u_2 \oplus r\} \cap A_{M,x} \neq \emptyset.$

• Note: this is exactly the negation of the previous claim.

• E.g., take $u_1 = 000$.

- E.g., take $u_1 = 000$.
- Then $u_1 \oplus r \in R_{M,x}$ iff $r \in u_1 \oplus R_{M,x} = \{100, 110\}.$

- E.g., take $u_1 = 000$.
- Then $u_1 \oplus r \in R_{M,x}$ iff $r \in u_1 \oplus R_{M,x} = \{100, 110\}$.
- So, take $u_2 \notin 100 \oplus R_{M,x} \cup 110 \oplus R_{M,x}$.

- E.g., take $u_1 = 000$.
- Then $u_1 \oplus r \in R_{M,x}$ iff $r \in u_1 \oplus R_{M,x} = \{100, 110\}.$
- So, take $u_2 \notin 100 \oplus R_{M,x} \cup 110 \oplus R_{M,x}$.

- E.g., take $u_1 = 000$.
- Then $u_1 \oplus r \in R_{M,x}$ iff $r \in u_1 \oplus R_{M,x} = \{100, 110\}$.
- So, take $u_2 \notin 100 \oplus R_{M,x} \cup 110 \oplus R_{M,x}$.
- E.g., *u*₂ = 011.

• Summary:

$$x \in L \cap \{0, 1\}^1$$
 iff $\exists u_1, u_2 \in \{0, 1\}^3 \forall r \in \{0, 1\}^3$: $\bigvee_{i=1,2} u_i \oplus r \in A_{M,x}$.

Reminder: $u_i \oplus r \in A_{M,x}$ iff $M(x, u_i \oplus r) = 1$.

• Summary:

$$x \in L \cap \{0,1\}^1$$
 iff $\exists u_1, u_2 \in \{0,1\}^3 \forall r \in \{0,1\}^3$: $\bigvee_{i=1,2} u_i \oplus r \in A_{M,x}$.

Reminder: $u_i \oplus r \in A_{M,x}$ iff $M(x, u_i \oplus r) = 1$.

- So, this is in Σ^p₂.
- And works also for |x| > 1 and arbitrary p(|x|).

Claim: Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then: $x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$

- Note, the certificate $u_1 u_2 \dots u_k$ has length polynomial in |x|.
- So, this formula represents a computation in Σ₂^p.

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \ldots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^{k} M(x, u_i \oplus r) = 1.$$

• Assume $x \notin L$: To show there is always an r s.t.

$$\bigwedge_{i=1}^{k} r \oplus u_{i} \notin A_{M,x} \equiv r \notin \bigcup_{i=1}^{k} u_{i} \oplus A_{M,x}.$$

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L$$
 iff $\exists u_1, \ldots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)}$: $\bigvee_{i=1}^{k} M(x, u_i \oplus r) = 1.$

• Assume $x \notin L$: To show there is always an r s.t.

$$\bigwedge_{i=1}^{k} r \oplus u_{i} \notin A_{M,x} \equiv r \notin \bigcup_{i=1}^{k} u_{i} \oplus A_{M,x}.$$

· Size of the complement of this set:

$$\left| \bigcup_{i=1}^{k} u_{i} \oplus A_{M,x} \right| \leq \sum_{i=1}^{k} \left| u_{i} \oplus A_{M,x} \right| = k \left| A_{M,x} \right| \leq k 4^{-|x|} 2^{p(|x|)} < 2^{p(|x|)}.$$

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L$$
 iff $\exists u_1, \ldots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)}$: $\bigvee_{i=1}^{k} M(x, u_i \oplus r) = 1.$

• Assume $x \notin L$: To show there is always an r s.t.

$$\bigwedge_{i=1}^{k} r \oplus u_{i} \notin A_{M,x} \equiv r \notin \bigcup_{i=1}^{k} u_{i} \oplus A_{M,x}.$$

· Size of the complement of this set:

$$\left| \bigcup_{i=1}^{k} u_{i} \oplus A_{M,x} \right| \leq \sum_{i=1}^{k} \left| u_{i} \oplus A_{M,x} \right| = k \left| A_{M,x} \right| \leq k 4^{-|x|} 2^{p(|x|)} < 2^{p(|x|)}.$$

• So, this set cannot be empty no matter how we choose u_1, \ldots, u_k .

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L$$
 iff $\exists u_1, \ldots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)}$: $\bigvee_{i=1}^{\kappa} M(x, u_i \oplus r) = 1.$

$$\forall r : \bigvee_{i=1}^{k} u_i \oplus r \in A_{M,x} \equiv \neg \exists r : \bigwedge_{i=1}^{k} u_i \in r \oplus R_{M,x}.$$

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L$$
 iff $\exists u_1, \ldots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)}$: $\bigvee_{i=1}^{\kappa} M(x, u_i \oplus r) = 1.$

• Assume $x \in L$: To show there are u_1, \ldots, u_k s.t.

$$\forall r : \bigvee_{i=1}^{k} u_i \oplus r \in A_{M,x} \equiv \neg \exists r : \bigwedge_{i=1}^{k} u_i \in r \oplus R_{M,x}.$$

Let U₁,..., U_k be independent random variables, uniformly distributed on {0, 1}^{p(|x|)}. (Doesn't matter if some coincide!)

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \ldots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^{\kappa} M(x, u_i \oplus r) = 1.$$

$$\forall r : \bigvee_{i=1}^{k} u_i \oplus r \in A_{M,x} \equiv \neg \exists r : \bigwedge_{i=1}^{k} u_i \in r \oplus R_{M,x}.$$

- Let U₁,..., U_k be independent random variables, uniformly distributed on {0, 1}^{p(|x|)}. (Doesn't matter if some coincide!)
- For any given *r*: $\Pr[U_i \in r \oplus R_{M,x}] = \frac{|r \oplus R_{M,x}|}{2^{p(|x|)}} = \frac{|R_{M,x}|}{2^{p(|x|)}} \le 4^{-n}.$

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \ldots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^{\kappa} M(x, u_i \oplus r) = 1.$$

$$\forall r : \bigvee_{i=1}^{k} u_i \oplus r \in A_{M,x} \equiv \neg \exists r : \bigwedge_{i=1}^{k} u_i \in r \oplus R_{M,x}.$$

- Let U₁,..., U_k be independent random variables, uniformly distributed on {0, 1}^{p(|x|)}. (Doesn't matter if some coincide!)
- For any given *r*: $\Pr[U_i \in r \oplus R_{M,x}] = \frac{|r \oplus R_{M,x}|}{2^{p(|x|)}} = \frac{|R_{M,x}|}{2^{p(|x|)}} \le 4^{-n}.$
- $\Pr\left[\bigwedge_{i=1}^{k} U_i \in r \oplus R_{M,x}\right] = \Pr\left[U_1 \in r \oplus R_{M,x}\right]^k \le 4^{-kn}.$

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \ldots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^{k} M(x, u_i \oplus r) = 1.$$

$$\forall r : \bigvee_{i=1}^{k} u_i \oplus r \in A_{M,x} \equiv \neg \exists r : \bigwedge_{i=1}^{k} u_i \in r \oplus R_{M,x}.$$

- Let U₁,..., U_k be independent random variables, uniformly distributed on {0, 1}^{p(|x|)}. (Doesn't matter if some coincide!)
- For any given *r*: $\Pr[U_i \in r \oplus R_{M,x}] = \frac{|r \oplus R_{M,x}|}{2^{p(|x|)}} = \frac{|R_{M,x}|}{2^{p(|x|)}} \le 4^{-n}.$
- $\Pr\left[\bigwedge_{i=1}^{k} U_i \in r \oplus R_{M,x}\right] = \Pr\left[U_1 \in r \oplus R_{M,x}\right]^k \le 4^{-kn}.$
- $\Pr\left[\exists r : \bigwedge_{i=1}^{k} U_i \in r \oplus R_{M,x}\right] \le \sum_{r \in \{0,1\}^*} 4^{-kn} = 2^{p(|x|)-2kn} < 1.$

Claim: Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then: $x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$

- For both cases there is an n_0 s.t. the bounds hold for all x with $|x| > n_0$.
- $L \cap \{0, 1\}^{\leq n_0}$ can be decided trivially in **P**.

Summary

- Obtain **RP** from **NP** by
 - choosing the certificate (transition function) uniformaly at random
 - requiring a bound on $\Pr[A_{M,x}]$ if $x \in L$ s.t.
 - error prob. can be reduced within a polynomial number of reruns.
- Obtain RP from NP by
 - choosing the certificate (transition function) uniformaly at random
 - requiring a bound on $\Pr[A_{M,x}]$ if $x \in L$ s.t.
 - error prob. can be reduced within a polynomial number of reruns.
- One-sided probability of error:
 - RP: false negatives
 - coRP: false postives
 - Monte Carlo algorithms: ZEROP ∈ coRP, perfect matchings ∈ RP

- Obtain RP from NP by
 - choosing the certificate (transition function) uniformaly at random
 - requiring a bound on $\Pr[A_{M,x}]$ if $x \in L$ s.t.
 - error prob. can be reduced within a polynomial number of reruns.
- One-sided probability of error:
 - RP: false negatives
 - coRP: false postives
 - Monte Carlo algorithms: ZEROP ∈ coRP, perfect matchings ∈ RP
- ZPP := RP ∩ coRP can be decided in expected polynomial time
 - · Zero probability of error (if we wait for the definitive answer)
 - Las Vegas algorithms

- Obtained PP from RP by
 - allowing also for false positives
 - Error probabilities depend on each other: $\leq 1/4$ and < 1 1/4
 - NP ⊆ PP: "PP allows for trading one error prob. for the other"

- Obtained PP from RP by
 - allowing also for false positives
 - Error probabilities depend on each other: ≤ 1/4 and < 1 1/4
 - NP ⊆ PP: "PP allows for trading one error prob. for the other"
- Obtained BPP from PP by
 - bounding both error prob. independently of each other.
 - Papadimitriou: "most comprehensive, yet plausible notion of realistic computation"
 - Conjecture: BPP = P
 - Expected running time as powerful as exact running time.
 - One certificate u_n for all x with |x| = n.
 - Error reduction to 2^{-n^k} within a polynomial number of reruns.

- $\Pi_2^p \cap \Sigma_2^p \subseteq PP$ unknown.
- **NP** \cup **coNP** \subseteq **PP** known.

- Gödel Prize (1998) for Toda's theorem (1989): PH ⊆ P^{PP}
 - PPP: poly-time TMs having access to a PP-oracle.
 - If $PP \subseteq \Sigma_k^p$ for some k, then $PH = \Sigma_k^p$.
 - If PP ⊆ PH, then PH collapses at some finite level as PP has complete problems (see exercises).

Syntactic and Semantic Complexity Classes

- Just mentioned: PP has complete probems
 - φ ∈ MAJSAT iff at least 2ⁿ⁻¹ + 1 satisfying assignments of 2ⁿ possible (see exercises).
- Unknown if there are complete problems for ZPP, RP, BPP.

Syntactic and Semantic Complexity Classes

- Just mentioned: PP has complete probems
 - φ ∈ MAJSAT iff at least 2ⁿ⁻¹ + 1 satisfying assignments of 2ⁿ possible (see exercises).
- Unknown if there are complete problems for ZPP, RP, BPP.
- Reason to believe that there are none:
 - P, NP, coNP are syntatic complexity classes (complete problems).
 - ZPP, RP, coRP, BPP are semantic complexity classes.
- Example:
 - NP:

$$x \in L \Leftrightarrow \Pr[A_{M,x}] > 0.$$

Every poly-time TM M(x, u) defines a language in NP.

• BPP:

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

Not every poly-time TM M(x, u) defines a language in BPP.

Syntactic and Semantic Complexity Classes

- Just mentioned: PP has complete probems
 - φ ∈ MAJSAT iff at least 2ⁿ⁻¹ + 1 satisfying assignments of 2ⁿ possible (see exercises).
- Unknown if there are complete problems for ZPP, RP, BPP.
- Reason to believe that there are none:
 - P, NP, coNP are syntatic complexity classes (complete problems).
 - ZPP, RP, coRP, BPP are semantic complexity classes.
- Example:
 - NP:

$$x \in L \Leftrightarrow \Pr[A_{M,x}] > 0.$$

Every poly-time TM M(x, u) defines a language in NP.

• BPP:

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

Not every poly-time TM M(x, u) defines a language in BPP.

• Ex.: What about PP?

Definition

For a poly-time M(x, u) using certificates $u \in \{0, 1\}^{p(|x|)}$ set

 $L_M(x) := y_0 y_1 \dots y_{2^{p(|x|)}-1}$ with $y_i = M(x, u_i)$ and $(u_i)_2 = i$

The leaf-language of *M* is then $L_M := \{L_M(x) \mid x \in \{0, 1\}^*\}$.

For $A, R \subseteq \{0, 1\}^*$ with $A \cap R = \emptyset$ the class $\mathbb{C}[A, R]$ consists of all language *L* for which there is a TM M(x, u) s.t. $\forall x \in \{0, 1\}^*$:

 $x \in L \Rightarrow L_M(x) \in A$ and $x \notin L \Rightarrow L_M(x) \in R$.

Definition (cont'd)

C[A, R] is called syntactic if $A \cup R = \{0, 1\}^*$, otherwise it is called semantic.

• $NP = C[(0+1)^*1(0+1)^*, 0^*]$

• $NP = C[(0+1)^*1(0+1)^*, 0^*]$

- $NP = C[(0+1)^*1(0+1)^*, 0^*]$
- $\mathbf{RP} = \mathbf{C}[\{w \in \{0,1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, 0^*]$

- $NP = C[(0+1)^*1(0+1)^*, 0^*]$
- $\mathbf{RP} = \mathbf{C}[\{w \in \{0, 1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, 0^*]$

- $\mathsf{PP} = \mathsf{C}[\{w \in \{0,1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, \{w \in \{0,1\}^* \mid \frac{\#_1 w}{\#_0 w} < 3\}]$
- $\mathbf{RP} = \mathbf{C}[\{w \in \{0, 1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, 0^*]$
- $NP = C[(0 + 1)^*1(0 + 1)^*, 0^*]$

- $\mathsf{PP} = \mathsf{C}[\{w \in \{0,1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, \{w \in \{0,1\}^* \mid \frac{\#_1 w}{\#_0 w} < 3\}]$
- **RP** = **C**[{ $w \in \{0, 1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, 0^*$]
- $NP = C[(0 + 1)^*1(0 + 1)^*, 0^*]$

• What about P?

- What about P?
- $\mathbf{P} = \mathbf{C}[1(0+1)^*, 0(0+1)^*].$

- What about P?
- $\mathbf{P} = \mathbf{C}[1(0+1)^*, 0(0+1)^*].$

- What about P?
- $\mathbf{P} = \mathbf{C}[1(0+1)^*, 0(0+1)^*].$
- Certificate 0...0 can always be used (compare this to BPP)

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 28, 2019

1

Lecture 14 Interactive Proofs

Intro

Overview

NP certificates or proof of membership

Intro

Overview

NP certificates or proof of membership ↓ RP proofs chosen at random

Overview

Example: job interview, interactive vs. fixed questions

Intro

Agenda

- interactive proof examples
 - socks
 - graph coloring
 - graph non-isomorphism
- definition of interactive proof complexity
 - IP
 - public coins: AM

Different socks

Example

P wants to convince V that she has a red sock and a yellow sock. V is blind and has a coin.

Interactive Proof

- 1. P tells V which sock is red
- 2. V holds red sock in her right hand, left sock in her yellow hand
- 3. P turns away from V
- 4. V tosses a coin
 - 4.1 heads: keep socks
 - 4.2 tails: switch socks
- 5. V asks P where the red sock is

Observations

- If P tells the truth (different colors), she will always answer correctly
- If P lies

Observations

- If P tells the truth (different colors), she will always answer correctly
- If P lies
 - she can only answer correctly with probability 1/2
 - after k rounds, she gets caught lying with probability $1 2^{-k}$

Observations

- If P tells the truth (different colors), she will always answer correctly
- If P lies
 - she can only answer correctly with probability 1/2
 - after k rounds, she gets caught lying with probability $1 2^{-k}$
- random choices are crucial
- P has more computational power (vision) than V
- P must not see V's coin (private coin)

Graph 3-Coloring

- P claims: G is 3-colorable
- How can she prove it to V?

Graph 3-Coloring

- P claims: G is 3-colorable
- How can she prove it to V?
- provide certificate (since 3−Col ∈ NP), V checks it
- possible for all *L* ∈ NP with one round if P has NP power

What if actual coloring should be secret?

- given a graph (V, E) with |V| = n
- P claims 3-colorability
- P wants to convince V of coloring $c: V \to C$ (= {R, G, B})
What if actual coloring should be secret?

- given a graph (V, E) with |V| = n
- P claims 3-colorability
- P wants to convince V of coloring $c: V \to C$ (= {R, G, B})

- **1.** P randomly picks a permutation $\pi : C \to C$ and puts $\pi(c(v_i))$ in envelope *i* for each $1 \le i \le n$
- V randomly picks edge (u_i, u_j) and opens envelopes i and j to find colors c_i and c_j
- **3.** V accepts iff $c_i \neq c_j$

- the protocol has two rounds
- a round is an uninterrupted sequence of messages from one party

- the protocol has two rounds
- a round is an uninterrupted sequence of messages from one party
- if G is not 3-colorable, P will be caught lying after $O(n^3)$ rounds with probability $1 2^{-n}$

- the protocol has two rounds
- a round is an uninterrupted sequence of messages from one party
- if G is not 3-colorable, P will be caught lying after $O(n^3)$ rounds with probability $1 2^{-n}$
- V learns nothing about the actual coloring
- ⇒ zero-knowledge protocol
 - by reductions, all NP languages have ZK protocols

- the protocol has two rounds
- a round is an uninterrupted sequence of messages from one party
- if G is not 3-colorable, P will be caught lying after $O(n^3)$ rounds with probability $1 2^{-n}$
- V learns nothing about the actual coloring
- ⇒ zero-knowledge protocol
 - by reductions, all NP languages have ZK protocols
 - private coins

Graph Non-Isomorphism

- NP languages have succinct, deterministic proofs
- coNP languages possibly don't
- graph isomorphism, GI, is in NP
- hence $GNI = \{ \langle G_1, G_2 \rangle \mid G_1 \not\cong G_2 \}$ is in **coNP**
- GNI has a succinct interactive proof

Interactive Proof for GNI

given: graphs G1, G2

- V pick $i \in_R \{1, 2\}$, random permutation π
- **V** use π to permute nodes of G_i to obtain graph **H**
- V send H to P
- **P** check which of G_1 , G_2 was used to obtain H
- P let G_j be that graph and send j to V
- **V** accept iff i = j

Intuition

- same idea as for socks protocol
- P has unlimited computational power
- if $G_1 \cong G_2$ then P answers correctly with probability at most 1/2
- probability can be improved by sequential or parallel repetition
- if $G_1 \not\cong G_2$ then P answers correctly with probability 1
- privacy of coins crucial

Agenda

- interactive proof examples \checkmark
 - socks \checkmark
 - graph coloring \checkmark
 - graph non-isomorphism \checkmark
- definition of interactive proof complexity
 - IP
 - public coins: AM

Interaction

Definition (Interaction)

Let $f, g : \{0, 1\}^* \to \{0, 1\}^*$ be functions and $k \ge 0$ an integer that may depend on the input size. A *k*-round interaction of *f* and *g* on input $x \in \{0, 1\}^*$ is the sequence $\langle f, g \rangle(x)$ of strings $a_1, \ldots, a_k \in \{0, 1\}^*$ defined by

$$a_{1} = f(x)$$

$$a_{2} = g(x, a_{1})$$
...
$$a_{2i+1} = f(x, a_{1}, ..., a_{2i}) \quad \text{for } 2i < k$$

$$a_{2i+2} = g(x, a_{1}, ..., a_{2i+1}) \quad \text{for } 2i + 1 < k$$

The output of *f* at the end of the interaction is defined by $out_f(f, g)(x) = f(x, a_1, ..., a_k)$ and assumed to be in {0, 1}.

This is a deterministic interaction, we need to add randomness.

Adding Randomness

Definition (IP)

For an integer $k \ge 1$ that may depend on the input size, a language *L* is in IP[*k*], if there is a probabilistic polynomial-time TM *V* that can have a *k*-round interaction with a function $P : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that

Completeness

 $x \in L \implies \exists P.Pr[out_V \langle V, P \rangle(x) = 1] \ge 2/3$

Soundness

 $x \notin L \implies \forall P.Pr[out_V \langle V, P \rangle(x) = 1] \le 1/3$

We define $IP = \bigcup_{c \ge 1} IP[n^c]$.

- V has access to a random variable $r \in_R \{0, 1\}^m$
- e.g. $a_1 = f(x, r)$ and $a_3 = f(x, a_1, r)$
- g cannot see r
- $\Rightarrow out_V \langle V, P \rangle(x)$ is a random variable where all probabilities are over the choice of *r*

Definitions

Arthur-Merlin Protocols

Definition (AM)

 For every k the complexity class AM[k] is defined as the subset of IP[k] obtained when the verfier's messages are random bits only and also the only random bits used by V.

Such an interactive proof is called an Arthur-Merlin proof or a public coin proof.

Definitions

Agenda

- interactive proof examples \checkmark
 - socks \checkmark
 - graph coloring \checkmark
 - graph non-isomorphism \checkmark
- · definition of interactive proof complexity
 - IP √
 - public coins: AM \checkmark

Basic Properties

- NP ⊆ IP
- for every polynomial p(n) the acceptance bounds in the definition of IP can be changes to
 - 2^{-p(n)} for soundness
 - $1 2^{-p(n)}$ for completeness
- the requirement for completeness can be changed to require probability 1 yielding perfect completeness
- perfect soundness collapses IP to NP

Conclusion

What have we learnt?

- IP[k]: languages that have k-round interactive proofs
- interaction and randomization possibly add power
 - randomization alone: BPP (possibly equals P)
 - deterministic interaction: NP
 - ⇒ interactive proofs more succinct
- prover has unlimited computational power
- verifier is a BPP machine (poly-time with coins)
- coins can be private or public
- zero-knowledge protocols do exist for all NP languages
- soundness and completeness thresholds can be adapted

Conclusion

What's next?

- AM[2] = AM[k] AM hierarchy collapses
- AM[k+2] = IP[k]

private coins don't help

- if graph isomorphism is NP-complete, the polynomial hierarchy collapses
- IP = PSPACE

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 28, 2019

Lecture 15

Public Coins and Graph (Non)Isomorphism

Goal and Plan

Goal

- understand public coins and their relation to private coins
- get a reason why graph isomorphism might not be NP-complete

Goal and Plan

Goal

- understand public coins and their relation to private coins
- get a reason why graph isomorphism might not be NP-complete

Plan

- show that graph non-isomorphism has a two round Arthur-Merlin proof; formally: GNI ∈ AM[2]
- show that this implies GI is not NP-complete unless $\Sigma_2^p = \Pi_2^p$

Agenda

- IP and AM recap
- graph non-isomorphism as a problem about set sizes
- tool: pairwise independent hash functions
- an AM[2] protocol for GNI
- improbability of NP-completeness of GI

IP

Definition (IP)

For an integer $k \ge 1$ that may depend on the input size, a language *L* is in IP[*k*], if there is a probabilistic polynomial-time TM *V* that can have a *k*-round interaction with a function $P : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that

Completeness

 $x \in L \implies \exists P.Pr[out_V \langle V, P \rangle(x) = 1] \ge 2/3$

Soundness

 $x \notin L \implies \forall P.Pr[out_V \langle V, P \rangle(x) = 1] \le 1/3$

We define $IP = \bigcup_{c \ge 1} IP[n^c]$.

- V has access to a random variable $r \in_R \{0, 1\}^m$
- e.g. $a_1 = f(x, r)$ and $a_3 = f(x, a_1, r)$
- g cannot see r

 \Rightarrow out_V $\langle V, P \rangle$ (x) is a random variable where all probabilities are

AM

Definition (AM)

 For every k the complexity class AM[k] is defined as the subset of IP[k] obtained when the verfier's messages are random bits only and also the only random bits used by V.

Such an interactive proof is called an Arthur-Merlin proof or a public coin proof.

Agenda

- IP and AM recap ✓
- graph non-isomorphism as a problem about set sizes
- tool: pairwise independent hash functions
- an AM[2] protocol for GNI
- improbability of NP-completeness of GI

Recasting GNI

- let G_1, G_2 be graphs with nodes $\{1, \ldots, n\}$ each
- we define a set S such that
 - if $G_1 \cong G_2$ then |S| = n!
 - if $G_1 \not\cong G_2$ then |S| = 2n!

Recasting GNI

- let G_1, G_2 be graphs with nodes $\{1, \ldots, n\}$ each
- we define a set S such that
 - if $G_1 \cong G_2$ then |S| = n!
 - if $G_1 \not\cong G_2$ then |S| = 2n!
- idea: S is the set of graphs that are isomorphic to G₁ OR to G₂
- if $G_1 \cong G_2$, this set is small, otherwise not

Recasting GNI

- let G_1, G_2 be graphs with nodes $\{1, \ldots, n\}$ each
- we define a set S such that
 - if $G_1 \cong G_2$ then |S| = n!
 - if $G_1 \not\cong G_2$ then |S| = 2n!
- idea: S is the set of graphs that are isomorphic to G₁ OR to G₂
- if $G_1 \cong G_2$, this set is small, otherwise not
- problem: automorphisms
 - an automorphism of G_1 is a permutation $\pi : \{1, ..., n\} \rightarrow \{1, ..., n\}$ such that $\pi(G) = G$
 - all automorphisms of graph G written aut(G)

GNI is an AM

The infamous set S

$S = \{(H, \pi) \mid H \cong G_1 \text{ or } H \cong G_2, \pi \in aut(H)\}$

The infamous set S

$S = \{(H, \pi) \mid H \cong G_1 \text{ or } H \cong G_2, \pi \in aut(H)\}$

- to convince the verifier that G₁ ≇ G₂ the prover has to convince the verifier that |S| = 2n! rather than n!
- that is the verifier should accept with high probability if $|S| \ge K$ for some K
- it should reject if $|S| \le \frac{K}{2}$

Agenda

- IP and AM recap ✓
- graph non-isomorphism as a problem about set sizes \checkmark
- tool: pairwise independent hash functions
- an AM[2] protocol for GNI
- improbability of NP-completeness of GI

Hash functions

- goal: store a set $S \subseteq \{0, 1\}^m$ to efficiently answer membership $x \in S$
- S could change dynamically
- |S| much smaller than 2^m , possibly around 2^k for $k \le m$

Hash functions

- goal: store a set $S \subseteq \{0, 1\}^m$ to efficiently answer membership $x \in S$
- S could change dynamically
- |S| much smaller than 2^m , possibly around 2^k for $k \le m$
- to create a hash table of size 2^k
 - select a hash function $h: \{0, 1\}^m \rightarrow \{0, 1\}^k$
 - store x at h(x)
- collision: h(x) = h(y) for $x \neq y$
- choosing hash functions randomly from a collection, one can expect *h* to be almost bijective if |S| ≈ 2^k

Pairwise independent hash functions

Definition

Let $\mathcal{H}_{m,k}$ be a collection of functions from $\{0,1\}^m$ to $\{0,1\}^k$. We say that $\mathcal{H}_{m,k}$ is pairwise independent if

- for every $x \neq x' \in \{0, 1\}^m$ and
- for every $y, y' \in \{0, 1\}^k$ and

 $Pr_{h\in_{\mathcal{R}}\mathcal{H}_{m,k}}[h(x) = y \wedge h(x') = y'] = 2^{-2k}$

- when h is choosen randomly (h(x), h(x')) is distributed uniformly over {0, 1}^k × {0, 1}^k
- such collections exist
- here: we only assume the existence

Agenda

- IP and AM recap ✓
- graph non-isomorphism as a problem about set sizes \checkmark
- tool: pairwise independent hash functions \checkmark
- an AM[2] protocol for GNI
- improbability of NP-completeness of GI

Goldwasser-Sipser Set Lower Bound Protocol

- S ⊆ {0, 1}^m
- both parties know a K
- prover wants to convince verifier that $|S| \ge K$
- verifier rejects with high probability if $|S| \leq \frac{K}{2}$
- let k be an integer such that $2^{k-2} < K \le 2^{k-1}$

V

Goldwasser-Sipser Set Lower Bound Protocol

The following protocol has two rounds and uses public coins!

- randomly choose *h*: {0,1}^{*m*} → {0,1}^{*k*} from a pairwise independent collection of hash functions *H*_{*m,k*}
 - randomly choose $y \in \{0, 1\}^k$
 - send h and y to prover
- find an $x \in S$ such that h(x) = y
 - send x to V together with a certificate of membership of x in S

V if h(x) = y and $x \in S$ accept; otherwise reject
Why the protocol works?

Intuition: If S is big enough (non-isomorphic case) then the prover has a good chance to find a pre-image.

Why the protocol works?

Intuition: If *S* is big enough (non-isomorphic case) then the prover has a good chance to find a pre-image.

Formally:

- show that there exists a p̂ such that
 - if $|S| \ge K$ then $Pr[\exists x \in S.h(x) = y]$ is greater than $\frac{3}{4}\hat{p}$
 - if $|S| \le \frac{\kappa}{2}$ then $Pr[\exists x \in S.h(x) = y]$ is lower than $\frac{\hat{p}}{2}$
- this is a probability gap which can be amplified by repetition
- one can choose $\hat{p} = \frac{K}{2^k}$
 - soundness: easy (not enough elements even if injective)
 - completeness: by inclusion-exclusion principle $\geq \sum_{x} Pr[h(x) = y] - \frac{1}{2} \sum_{x \neq x} Pr[h(x) = y, h(x') = y]$ by pairwise independence $\frac{|S|}{2^{k}} - \frac{|S|^2}{2^{2k+1}} \ge \frac{3}{4}\hat{p}$

Putting it together

AM[2] public coin protocol for GNI

- compute S (automorphisms) as above
- prover and verifier run set lower bound protocol several times
- verifier accepts by majority vote
- using Chernoff bounds, this gives the desired completeness and soundness probabilities
- observe: only a constant number of iterations necessary which can be executed in parallel
- ⇒ number of rounds stays at 2

Details: Arora-Barak, section 8.2

Agenda

- IP and AM recap ✓
- graph non-isomorphism as a problem about set sizes \checkmark
- tool: pairwise independent hash functions \checkmark
- an AM[2] protocol for GNI ✓
- improbability of NP-completeness of GI

Graph Isomorphism

Theorem

If $GI = \{ \langle G_1, G_2 \rangle \mid G_1 \cong G_2 \}$ is NP-complete then $\Sigma_2^p = \Pi_2^p$.

Proof idea ($\Sigma_2^p \subseteq \Pi_2^p$):

- $\exists \vec{x} \forall \vec{y} \varphi(x, y)$ equivalent to
- $\exists \vec{x} g(x) \in \text{GNI}$ equivalent to (GNI $\in \text{AM}$)
- $\exists \vec{x} \forall \vec{r} \exists \vec{m} A(g(x), r, m) = 1$ equivalent to
- $\forall \vec{r} \exists \vec{x} \exists \vec{m} A(g(x), r, m) = 1$

(perfect completeness \implies satisfiable soundness with $2^{-n} \implies$ single string *r*) Conclusion

What have we learnt?

- graph isomorphism is not NP-complete unless the (polynomial) hierarchy collapses
- public coins are as expressive as private coins
 - proof of GNI ∈ AM[2] generalizes to IP[k] = AM[k + 2] (without proof)
 - one can also show AM[k] = AM[k + 1] for k ≥ 2 (collapse) intuitively AM more powerful than MA, because in AM Merlin gets to look at the random bits before deciding on his answer
 - also not shown: perfect completeness for AM
- Goldwasser-Sipser set lower bound protocol (in AM[2])
- hash functions as a useful tool

Up next: IP = PSPACE

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 28, 2019

Lecture 16 IP = PSPACE

Goal

• IP = PSPACE

Plan

- **1. PSPACE** \subseteq **IP** by showing QBF \in **IP**
- IP ⊆ PSPACE by computing optimal prover strategies in polynomial space

Agenda

- arithmetization of Boolean formulas
- arithmetization of quantified formulas by linearization
- interactive protocol for QBF

Agenda

- arithmetization of Boolean formulas
- arithmetization of quantified formulas by linearization
- interactive protocol for QBF

Afternoon

- optimal prover strategy to show IP ⊆ PSPACE
- a note on graph isomorphism
- summary: interactive proofs incl. further reading and context
- outlook: approximation and PCP theorem

Show that $QBF \in IP$.

This implies **PSPACE** \subseteq **IP** because

Proof Idea

Show that $QBF \in IP$.

This implies **PSPACE** \subseteq **IP** because

- QBF is **PSPACE**-complete
- IP closed under polynomial reductions

Show that $QBF \in IP$.

This implies **PSPACE** \subseteq **IP** because

- QBF is **PSPACE**-complete
- IP closed under polynomial reductions

Technique

Turn formulas into polynomials, similar to reduction from 3SAT to ILP: arithmetization.

- let $\Phi = Q_1 x_1 \dots Q_n x_n \varphi(x_1, \dots, x_n)$ be a quantified boolean formula, where φ is in 3CNF with *m* clauses
- Φ is either true or false
- running example: Φ₌ = ∀x∃y (x ∨ ȳ) ∧ (x̄ ∨ y), where the body is written φ₌
- deciding truth value of Φ is **PSPACE**-complete

• $x \land y$ is satisfied iff $x \cdot y = 1$ for $x, y \in \{0, 1\}$

- $x \land y$ is satisfied iff $x \cdot y = 1$ for $x, y \in \{0, 1\}$
- \overline{x} is satisfied iff 1 x = 1

- $x \land y$ is satisfied iff $x \cdot y = 1$ for $x, y \in \{0, 1\}$
- \overline{x} is satisfied iff 1 x = 1
- $x \lor y$ is satisfied iff $x + y \ge 1$

- $x \land y$ is satisfied iff $x \cdot y = 1$ for $x, y \in \{0, 1\}$
- \overline{x} is satisfied iff 1 x = 1
- $x \lor y$ is satisfied iff $x + y \ge 1$
- note that $x \lor y \equiv x \land \overline{y} \lor \overline{x} \land y \lor x \land y$

- $x \land y$ is satisfied iff $x \cdot y = 1$ for $x, y \in \{0, 1\}$
- \overline{x} is satisfied iff 1 x = 1
- $x \lor y$ is satisfied iff $x + y \ge 1$
- note that $x \lor y \equiv x \land \overline{y} \lor \overline{x} \land y \lor x \land y$
- \Rightarrow x \lor y is satisfied iff x + y xy = 1

Arithmetization of Boolean formulas

For Boolean formula $\varphi(x_1, ..., x_n)$ we define $ari_{\varphi}(x_1, ..., x_n)$ such that $\varphi(x_1, ..., x_n)$ is satisfied iff $ari_{\varphi}(x_1, ..., x_n)$ is 1 for satisfying assignment of x_i to true/false and the corresponding x_i .

Arithmetization of Boolean formulas

Arithmetization of Boolean formulas

Example

$$\begin{aligned} \varphi_{=} &= (x \lor \overline{y}) \land (\overline{x} \lor y) \\ ari_{\varphi_{=}}(x, y) &= (x + (1 - y) - x(1 - y)) \cdot ((1 - x) + y - (1 - x)y) \\ &= (1 - y + xy) \cdot (1 - x + xy) \\ &= 1 - x - y + 3xy - xy^{2} - x^{2}y + x^{2}y^{2} \\ &=: f_{=}(x, y) \end{aligned}$$

- degree of arithmetization is $\leq 3m$
- crucial for polynomial representation of formulas

What about quantification?

Intuition

- universal quantification corresponds to conjunction corresponds to multiplication
- existential quantification corresponds to disjunction corresponds to addition

What about quantification?

Intuition

- universal quantification corresponds to conjunction corresponds to multiplication
- existential quantification corresponds to disjunction corresponds to addition

- $ari_{\forall x_i,\varphi}(x_1,\ldots,x_i,\ldots,x_n)$ equals $ari_{\varphi}(x_1,\ldots,0,\ldots,x_n) \cdot ari_{\varphi}(x_1,\ldots,1,\ldots,x_n)$
- $ari_{\exists x_i,\varphi}(x_1,\ldots,x_i,\ldots,x_n)$ equals $ari_{\varphi}(x_1,\ldots,0,\ldots,x_n) + ari_{\varphi}(x_1,\ldots,1,\ldots,x_n) - ari_{\varphi}(x_1,\ldots,0,\ldots,x_n) \cdot ari_{\varphi}(x_1,\ldots,1,\ldots,x_n)$

Running Example

Example

$$ari_{\Phi_{=}}(x, y) = ari_{\exists y, \varphi_{=}}(0, y) \cdot ari_{\exists y, \varphi_{=}}(1, y)$$

= $(f_{=}(0, 0) + f_{=}(0, 1) - f_{=}(0, 0)f_{=}(0, 1)) \cdot ...$
= ...
= 1

Lessons learnt

- $\Phi_{=}$ is true
- degree of polynomial might get exponential in n
- · coefficients too

Lessons learnt

- Φ₌ is true
- degree of polynomial might get exponential in n
- coefficients too

Rescue

- over $\{0, 1\}$ we have $x^c = x$
- gives rise to linearization
- to get rid of large coefficients: compute over some sufficiently small finite field

- arithmetization of Boolean formulas \checkmark
- arithmetization of quantified formulas by linearization
- interactive protocol for QBF

Linearization

Linearization means reducing all exponents in polynomial to 1.

- $L_y(f(x,y)) = f(x,1) \cdot y + f(x,0) \cdot (1-y)$
- $L_y(f(x, y)$ is linear in y
- $L_y(f(x, y))$ is equivalent to f(x, y) over $\{0, 1\}^2$

Example

$$L_y(f_{=}(x,y)) = L_y(1-x-y+3xy-xy^2-x^2y+x^2y^2)$$

= $(1-y)(1-x) + y \cdot (-x+3x-x-x^2+x^2)$
= $1-x-y+2xy$

General form

$$L_{j}(f(x_{1},...,x_{j},...,x_{n})) = f(x_{1},...,1,...,x_{k})x_{j} + f(x_{1},...,0,...,x_{k})(1-x_{j})$$

Arithmetization

- 1. arithmetize Boolean body of formula
- 2. linearize all variables
- **3.** for innermost quantifier apply $ari_{\forall}x$ (resp. $ari_{\exists}x$)
- 4. repeat from 2.

Recursive definition of general arithmetization

$$f_{n,n}(x_1,...,x_n) := ari_{\varphi}(x_1,...,x_n)$$

$$f_{i,j}(x_1,...,x_i) = L_{j+1}(f_{i,j+1}(x_1,...,x_i))$$

$$f_{i,i}(x_1,...,x_i) := f_{i+1,0}(x_1,...,x_i,0)f_{i+1,0}(x_1,...,x_i,1)$$

$$if x_{i+1} \text{ universal}$$

$$f_{i,i}(x_1,...,x_i) := f_{i+1,0}(x_1,...,x_i,0) + f_{i+1,0}(x_1,...,x_i,1)$$

$$-f_{i+1,0}(x_1,...,x_i,0)f_{i+1,0}(x_1,...,x_i,1)$$

$$if x_{i+1} \text{ existential}$$

- there are $O(n^2)$ functions $f_{...}$
- functions f_n, have degree at most 3m
- all other functions have degree of each variable at most 2
- *f*_{0,0} = 1 iff Φ ∈ QBF

- arithmetization of Boolean formulas \checkmark
- arithmetization of quantified formulas by linearization \checkmark
- interactive protocol for QBF

Protocol intuition

- V accepts if $f_{0,0} = 1$
- P needs to convince V of that fact by iterating over all f_{i,j}
- V challenges P by choosing random values from a finite field
- P inserts these values into polynomials and return linear function
- V checks that functions adhere to recursive scheme
Initialization

- verifier and prover agree on prime p such that $12|\Phi|^2$
- all polynomials will be computed in $\mathbb{Z}/p\mathbb{Z}$
- this is a range, where linear functions can be polynomially represented and evaluated
- start: P sends f_{0,0}, the prime and the primality proof
- if f_{0,0} = 1 then iterate from i = 1 and j = 0 until both reach n; otherwise reject
- $\Rightarrow O(n^2)$ rounds

Quantor case j = 0

- V asks for $f_{i,0}(r_1, ..., r_{i-1}, x_i)$
- P sends $f_{i,0}(r_1, ..., r_{i-1}, x_i)$
- if x_i is universally quantified, V checks whether

$$f_{i,0}(r_1,\ldots,r_{i-1},0)f_{i,0}(r_1,\ldots,r_{i-1},1) \\ \equiv_p \\ f_{i-1,i-1}(r_1,\ldots,r_{i-1})$$

• if x_i is existentially quantified, V checks

$$f_{i,0}(r_1, \dots, r_{i-1}, 0) + f_{i,0}(r_1, \dots, r_{i-1}, 1) -f_{i,0}(r_1, \dots, r_{i-1}, 0) f_{i,0}(r_1, \dots, r_{i-1}, 1) \equiv_p f_{i-1,i-1}(r_1, \dots, r_{i-1})$$

• V picks random number $r_i \in \mathbb{Z}/p\mathbb{Z}$ and set *j* to 1

Linearization case *j* > 0

- V asks for $f_{i,j}(r_1, ..., x_j, ..., r_i)$
- P sends $f_{i,j}(r_1, ..., x_j, ..., r_i)$
- V checks

$$(1 - r_j)f_{i,j}(r_1, \dots, 0, \dots, r_i) + r_jf_{i,j}(r_1, \dots, 1, \dots, r_i) \\ \equiv_p \\ f_{i,j-1}(r_1, \dots, r_i)$$

V picks r_j at random and increases j (or sets j to 0 and increases i)

P tests whether

 $ari_{\varphi}(r_1,\ldots,r_n) \equiv_{\rho} f_{n,n}(r_1,\ldots,r_n)$

- P only sends linear functions
- total message length still polynomial
- V can compute linear functions in Z/pZ
- if Φ ∈ QBF P can always convince V by sending correct polynomials
- ⇒ perfect completeness
 - we have public coins

What if $\Phi \notin QBF$?

An honest prover admits this fact.

A cheating prover can try to send forged polynomials $g_{i,j}(x)$ instead of $f_{i,j}(x_1, \ldots, x, \ldots, x_i)$.

For soundness P must fail to convince V with high probability.

Soundness

- P can cheat in round (i,j) iff $f_{i,j}(x_1, \ldots, x, \ldots, x_i) g_{i,j}(x) \equiv_p 0$
- that is: iff V by chance picks a root r_k of a polynomial

Soundness

- P can cheat in round (i,j) iff $f_{i,j}(x_1, \dots, x, \dots, x_i) g_{i,j}(x) \equiv_p 0$
- that is: iff V by chance picks a root *r_k* of a polynomial
- probability to do so in round (*i*, *j*) is q_{i,j} ≤ deg(f_{i,j})/p since polynomials of degree n have at most n roots

Soundness

- P can cheat in round (i,j) iff $f_{i,j}(x_1, \dots, x, \dots, x_i) g_{i,j}(x) \equiv_p 0$
- that is: iff V by chance picks a root r_k of a polynomial
- probability to do so in round (*i*, *j*) is q_{i,j} ≤ deg(f_{i,j})/p since polynomials of degree n have at most n roots
- f_{n,} have degree at most 3m
- *f*_{i<n}, have degree at most 2

Ρ

• there are (n+1)(n+2)/2 polynomials, n+1 large ones

$$P[P \text{ cheats}] \leq \sum_{i=1}^{n} \sum_{j=0}^{i} q_{i,j}$$
$$\leq \frac{3m(n+1)}{p} + \frac{2n(n+1)}{2p}$$
$$\leq \frac{4|\Phi|^2}{p}$$

 \leq 1/3

Agenda

- arithmetization of Boolean formulas \checkmark
- arithmetization of quantified formulas by linearization \checkmark
- interactive protocol for QBF \checkmark

Agenda

- arithmetization of Boolean formulas \checkmark
- arithmetization of quantified formulas by linearization \checkmark
- interactive protocol for QBF \checkmark

Afternoon

- optimal prover strategy to show IP ⊆ PSPACE
- a note on grpah isomorphism
- summary: interactive proofs incl further reading and context
- outlook: approximation and PCP theorem
- evaluation

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 28, 2019

Lecture 17 IP = PSPACE (2)

Goal and Plan

Goal

• IP = PSPACE

Plan

- **1. PSPACE** \subseteq **IP** by showing QBF \in **IP** \checkmark
- IP ⊆ PSPACE by computing optimal prover strategies in polynomial space

- optimal prover strategy to show IP ⊆ PSPACE
- summary and further reading
- outlook: approximation and PCP theorem

Definition recap

L is in IP iff

- 1. there exists a polynomial *p* and
- 2. there exists a poly-time, randomized verifier V

Definition recap

L is in IP iff

1. there exists a polynomial p and

2. there exists a poly-time, randomized verifier V

such that for all words $x \in \{0, 1\}^*$ holds

- if $x \in L$ then there exists a prover P such that $Pr[out_V \langle P, V \rangle(x) = 1] \ge 2/3$
- if $x \notin L$ then for all provers P holds that $Pr[out_V \langle P, V \rangle(x) = 1] \le 1/3$

Definition recap

L is in IP iff

1. there exists a polynomial p and

2. there exists a poly-time, randomized verifier V

such that for all words $x \in \{0, 1\}^*$ holds

- if $x \in L$ then there exists a prover P such that $Pr[out_V \langle P, V \rangle(x) = 1] \ge 2/3$
- if x ∉ L then for all provers P holds that Pr[out_V⟨P, V⟩(x) = 1] ≤ 1/3

Moreover, the following is bounded by p(|x|)

- the number of random bits chosen by V
- the number of rounds
- the length of each message

Let $L \in IP$ be arbitrary, we need to show that $L \in PSPACE$.

Let $L \in IP$ be arbitrary, we need to show that $L \in PSPACE$. We know that there exist V and p according to definition on previous slide.

Let $L \in IP$ be arbitrary, we need to show that $L \in PSPACE$. We know that there exist V and p according to definition on previous slide.

For $x \in \{0, 1\}^n$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

Let $L \in IP$ be arbitrary, we need to show that $L \in PSPACE$. We know that there exist V and p according to definition on previous slide.

For $x \in \{0, 1\}^n$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

 $Z := \max_{P} \{ Pr[out_V \langle P, V \rangle(x) = 1] \mid P \text{ is any prover for } L \}$

Let $L \in IP$ be arbitrary, we need to show that $L \in PSPACE$. We know that there exist V and p according to definition on previous slide.

For $x \in \{0, 1\}^n$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

$$Z := \max_{P} \{ Pr[out_V \langle P, V \rangle(x) = 1] \mid P \text{ is any prover for } L \}$$

z is acceptance probability of optimal prover, inducing the error probability.

Let $L \in IP$ be arbitrary, we need to show that $L \in PSPACE$. We know that there exist V and p according to definition on previous slide.

For $x \in \{0, 1\}^n$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

$$Z := \max_{P} \{ Pr[out_V \langle P, V \rangle(x) = 1] \mid P \text{ is any prover for } L \}$$

z is acceptance probability of optimal prover, inducing the error probability.

- if $z \le 1/3$ then $x \notin L$
- if $z \ge 2/3$ then $x \in L$
- since $L \in IP$ other z cannot occur
- maximum taken over finitely many provers for a given x

Recursive computation of z

If we can compute *z* in polynomial space, we are done.

Recursive computation of z

If we can compute *z* in polynomial space, we are done.

Recursive algorithm:

- simulate V branching on
 - each random choice of V
 - each possible response of P
- count
 - accepting branches produced by P's optimal response
 - total number of branches
- ratio is z

Doable in polynomial space?

- recursion depth: p(n)
- total number of branches: $p(n)^{p(n)}$
- ⇒ requires polynomially many bits only
 - can manage both counters and current branch with a PSPACE machine

- optimal prover strategy to show IP \subseteq PSPACE \checkmark
- summary and further reading
- outlook: approximation and PCP theorem

• IP = PSPACE

- PSPACE has short interactive proofs (certificates)
- proof of IP ⊇ PSPACE also showed that we can have
 - public coins
 - perfect completeness

for each $L \in IP$

 interaction plus randomization seem to add power, whereas each in isolation seemingly does not

Further Reading

- interactive proofs defined in 1985 by Goldwasser, Micali, Rackoff. The knowledge complexity of interactive proof systems. SIAM Journal on Computing archive. Volume 18 (1)(1989).
- public coins: *L. Babai* Trading group theory for randomness. STOC 1985.
- survey book: Oded Goldreich Computational Complexity. A Conceptual Perspective. http://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

Further Reading

- Adi Shamir. IP=PSPACE. Journal of the ACM v.39 n.4, p.878-880.
- outline here followed lecture notes from Brown university: A detailed proof that IP=PSPACE. http://www.cs.brown.edu/courses/gs019/papers/ip.pdf
- also nice: Michael Sipser's book Introduction to the Theory of Computation
- essentially covered 8.1 and 8.2 from Arora-Barak book
- an entertaining survey about the development in the beginning of the 90s by *L. Babai.* Transparent proofs and limits to approximations. First European Congress of Mathematicians. 1994.

Outlook

In the beginning of the 90s a lot of things happened quickly...

- Shamir proved that IP = PSPACE
- one can also allow multiple provers which leads to the complexity class MIP
- one accepts only if provers agree
- MIP = NEXP
- lead to the notion of PCP[q, r], where one checks only r entries in a table of answer/query pairs of size 2^q
- it was then shown that PCP[poly, poly] = NEXP and PCP[log n, O(1)] = NP
- which yields strong results about approximation of NP-complete problems
- for instance: consider a 7/8 approximation of 3SAT

Block structure of lecture

- basic complexity classes
- probabilistic TMs and randomization
- interactive proofs
- approximations and PCP
- parallelization
 - NC
 - circuits
 - descriptive complexity

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 28, 2019

Lecture 18 Approximation

Approximations

Goal

- decision → optimization
- formal definition of approximation
- hardness of approximation

Plan

- vertex cover: VC
- set cover: SC
- travelling salesman problem: TSP
Planes

Example

Given a set of airports, *S*, assign gas stations to a smallest subset, *C*, where planes can cover at most two legs without re-filling.

Formal model

- airports ~ nodes in a graph
- legs ~ undirected edges
- find a smallest set of nodes that covers all edges
- important problem in networks

Vertex Cover

Definition (Cover)

```
Let G = (V, E) be an undirected graph. A set C \subseteq V is a cover of S if

\forall (u, v) \in E. \ u \in C \ \lor \ v \in C
```

Decision problem

```
VC = \{ \langle G, k \rangle \mid G \text{ has a cover } C \text{ and } |C| \leq k \}
```

Optimization problem Min – VC

- given: G = (V, E) undirected
- find: a minimal cover C

MinVC is NP-hard

Observation

- C is a cover iff $V \setminus C$ is an independent set.
- C is a minimal cover iff $V \setminus C$ is a maximal independent set. Proof

•
$$\forall (u, v). u \in C \lor v \in C$$

 $\Leftrightarrow \forall (u, v). u \notin V \setminus C \lor v \notin V \setminus C$
 $\Leftrightarrow \neg \exists (u, v). u \in V \setminus C \land v \in V \setminus C$

Some optimization problems

- many decision problems we have seen have optimization versions
- both minimization and maximization
- algorithms return best solution with respect to optimization parameter ρ

Examples

problem	min/max	parameter
3SAT	max	number of satisfiable clauses
Indset	max	size of independent set
VC	min	size of cover

Approximation

Computing precise solutions is often NP-hard for decision and optimization.

Instead of optimal solutions, in practice it often suffices to come up with approximations.

Definition (ρ **-approximation)**

A ρ -approximation for a minimization (maximization) problem with optimal solution O, returns a solution that is $\leq \rho O$ ($\geq \rho O$).

Note: ρ may depend on input size.

VC approximation algorithm

1. $C \leftarrow \emptyset$

- 2. while C not a cover
- **3.** pick $(u, v) \in E$ s.t. $u, v \notin C$
- $4. \qquad C \leftarrow C \cup \{u, v\}$
- 5. return C

Theorem

Algorithm runs in polynomial time and returns a 2-approximation.

Proof Edges picked contain no common vertices. Optimal vertex cover must contain at least one of the nodes, where the algorithm adds both.

Example

All your friends belong to one or several teams. You want to invite all of them but team-wise. What is the least number of invitations necessary?

Set Cover

- given: finite set U and a family *F* of subsets that covers U:
 ∪ *F* ⊇ U
- find: a smallest family $C \subseteq \mathcal{F}$ that covers U

Set Cover

Set Cover is NP-hard

Proof by reduction from vertex cover.

- let G = (V, E) be an undirected graph
- $f(G) = (E, \mathcal{F})$
- $\mathcal{F} = \{E_v \mid v \in V\}$
- $E_v = \{\{u, v\} \in E\}$

Greedy algorithm for SC

- **1.** $C \leftarrow \emptyset, U' \leftarrow U$
- **2.** while $U' \neq \emptyset$
- **3.** pick $S \in \mathcal{F}$ maximizing $|S \cap U'|$
- 4. $C \leftarrow C \cup \{S\}$
- 5. $U' \leftarrow U' \setminus S$
- 6. return C
 - greedy algorithms pick the best local options
 - algorithm runs in polynomial time

Roadmap

Just seen

- vertex cover
- 2-approximation algorithm for VC
- set cover
- approximation algorithm

Up next

- show that algorithm is a ln n approximation
- show that algorithm is a ln |S| approximation for largest set S
- TSP

What is the approximation ratio?

Need to compare result returned by algorithm with the unknown optimal solution

Observation If U has a k cover, then every subset of U has a k cover too!

Consequence Each step of greedy algorithm covers at least 1/k of the uncovered elements!

Set Cover

First bound: In n

- let S₁,..., S_t be the sequence of sets picked by algorithm
- let U_i be U' after i stages (uncovered)
- observe: $|U_{i+1}| = |U_i \setminus S_{i+1}| \le |U_i|(1 1/k)$
- hence: $|U_{ik}| \le |U_0|(1-1/k)^{ik} \le \frac{|U|}{e^i}$
- thus $e^{\frac{t-1}{k}} \leq \frac{|U|}{|U_{t-1}|} \leq n$
- therefore: $t \le k \ln(n) + 1$

Note: The bound depends on the input length. We say that the greedy algorithm approximates SC to within a logarithmic factor.

Better bound: ln |S|

Theorem

Greedy algorithm approximates the optimal set cover to within a factor of $H(\max\{|S| \mid S \in \mathcal{F}\})$ where $H(n) = \sum_{i=1}^{n} \frac{1}{i}$

Proof

- imagine a price to be paid by each team
- at each stage 1 euro has to be paid by newly invited team members, split evenly
- *t* ≤ total amount paid
- X for each $S \in \mathcal{F}$ selected by the greedy algorithm the total amount paid by its members is at most $\ln |S|$
- ⇒ the total amount paid (hence *t*) is less than $k \cdot \ln |S|$ for the largest *S* selected

For an arbitrary set *S* at any stage of the algorithm holds:

- if *m* members are uncovered, the algorithm chooses a subset covering at least *m* elements
- \Rightarrow each will pay $\leq 1/m$
 - members pay the most, if they are covered one by one
- \Rightarrow harmonic series

Travelling Salesman Problem

Example (TSP)

Given a complete, weighted, undirected graph G = (V, E) with non-negative weights. Find a Hamiltonian cycle of minimal cost.

Theorem TSP is NP-hard.

Proof: Reduce from Hamilton cycle (HC) by giving a large weight to non-edges.

Just seen

- NP-hard optimization problems
- approximation to within a certain factor
- complexity of approximation for any factor?

Up next

- approximation algorithm for special case of TSP
- Inapproximability results

Triangle Equality Instance

In practice, TSP is applied on graphs that satisfy the triangle inequality:

 $\forall u, v, w \in V.c(u, v) \leq c(u, w) + c(w, v)$

Approximation algorithm for such geographical graphs

- 1. find minimum spanning tree T_G for G = (V, E)
- 2. traverse along depth-first search of T_G , jump over visited nodes
 - algorithm is polynomial
 - 2-approximation
 - $c(T_G) \leq \text{minimal tour}$
 - algorithm traversal costs 2 · c(T_G) since jumping over costs at most the sum of traversed edges

Just seen

special TSP instance with polynomial 2-approximation

Up next

- show it is NP-hard to approximate general TSP to within any factor ρ ≥ 1
- introduce gap version of TSP

gap-TSP

Given a complete, weighted, undirected graph G = (V, E) and some constant $h \ge 1$.

Definition (gap-TSP)

A solution to the gap problem, gap - TSP[|V|, h|V|], is an algorithm that return

YES if there exists a Hamiltonian cycle of cost < |V|

NO if all Hamiltonian cycles have cost > h|V|

For all other cases, it may return either yes or no.

Observation: An efficient *h*-approximation for TSP decides gap - TSP[C, hC] for any *C*.

gap-TSP is NP-hard

Theorem For any $h \ge 1$, HC \le_p gap – TSP[|V|, h|V|]

Proof: Like HC \leq_P TSP, where non-edge weights are h|V|.

 \Rightarrow Approximating TSP to within any factor is **NP**-hard.

What have we learnt?

- some NP-hard decision problems have optimization problems that can be efficiently approximated
 - vertex cover within factor 2
 - · set cover within a logarithmic factor
 - geographical travelling salesman problem within factor 2
- some other problems are even NP-hard to approximate, for instance, general TSP
- gap problems are a useful tool to establish inapproximablity

Further Reading

Two books on approximation algorithms

- Dorit Hochbaum, Approximation Algorithms for NP-Hard Problems, PWS Publishing.
- Vijay Vazirani, Approximation algorithms, Springer.

Lecture Notes

Slides are adapted from a CC course by *Muli Safra*: http://www.cs.tau.ac.il/~safra/Complexity/Complexity.htm

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

June 3, 2019

Lecture 19 Hardness of Approximation

Recap: optimization

- many decision problems we have seen have optimization versions
- both minimization and maximization
- algorithms return best solution with respect to optimization parameter

ρ

Recap: optimization

- many decision problems we have seen have optimization versions
- both minimization and maximization
- algorithms return best solution with respect to optimization parameter ρ

Examples

problem	min/max	parameter
3SAT	max	fraction of satisfiable clauses
Indset	max	size of independent set
VC	min	size of cover

Recap: approximation results

- vertex cover has a 2-approximation
 - possibly NP-hard to approximate to within 2ϵ for all $\epsilon > 0$
 - currently known: NP-hard to approximate to within $10\sqrt{5} 21$;
 - I. Dinur, S. Safra, The importance of being biased, STOC 2002.

Recap: approximation results

- vertex cover has a 2-approximation
 - possibly NP-hard to approximate to within 2ϵ for all $\epsilon > 0$
 - currently known: NP-hard to approximate to within $10\sqrt{5} 21$;
 - I. Dinur, S. Safra, The importance of being biased, STOC 2002.
- set cover has a ln n approximation
 - this is optimal; it is NP-hard to approximate to within $(1 \epsilon) \ln n$
 - U. Feige, A threshold of In n for approximating set cover, STOC 1996.

Recap: approximation results

- vertex cover has a 2-approximation
 - possibly NP-hard to approximate to within 2ϵ for all $\epsilon > 0$
 - currently known: NP-hard to approximate to within $10\sqrt{5} 21$;
 - I. Dinur, S. Safra, The importance of being biased, STOC 2002.
- set cover has a ln n approximation
 - this is optimal; it is NP-hard to approximate to within $(1 \epsilon) \ln n$
 - U. Feige, A threshold of In n for approximating set cover, STOC 1996.
- TSP also hard to approximate to within any $1 + \epsilon$

Polynomial time approximation schemes

A problem has a polynomial time approximation scheme if for all $\epsilon > 0$ it can be efficiently approximated to within a factor of $1 - \epsilon$ for maximization and $1 + \epsilon$ for minimization.

Polynomial time approximation schemes

A problem has a polynomial time approximation scheme if for all $\epsilon > 0$ it can be efficiently approximated to within a factor of $1 - \epsilon$ for maximization and $1 + \epsilon$ for minimization.

Examples

- knapsack
- bin packing
- subset sum
- a number of other scheduling problems

Polynomial time approximation schemes

A problem has a polynomial time approximation scheme if for all $\epsilon > 0$ it can be efficiently approximated to within a factor of $1 - \epsilon$ for maximization and $1 + \epsilon$ for minimization.

Examples

- knapsack
- bin packing
- subset sum
- a number of other scheduling problems

Which NP-complete problems do have PTAS? Which don't? How to prove results on previous slide?

An algorithm to solve the gap problem needs to:

- if *G* has a shortest tour of length < |*V*| then *G* is accepted by the gap algorithm
- if the shortest tour of G is > h|V| then G is rejected
- otherwise: don't care

An algorithm to solve the gap problem needs to:

- if *G* has a shortest tour of length < |*V*| then *G* is accepted by the gap algorithm
- if the shortest tour of G is > h|V| then G is rejected
- otherwise: don't care

Theorem: For any $h \ge 1$ gap – TSP[|V|, h|V|] is NP-hard by reduction from Hamiltonian cycle

An algorithm to solve the gap problem needs to:

- if *G* has a shortest tour of length < |*V*| then *G* is accepted by the gap algorithm
- if the shortest tour of G is > h|V| then G is rejected
- otherwise: don't care

Theorem: For any $h \ge 1$ gap – TSP[|V|, h|V|] is **NP**-hard by reduction from Hamiltonian cycle

 \Rightarrow It is NP-hard to approximate TSP to within any factor $h \ge 1$.

An algorithm to solve the gap problem needs to:

- if *G* has a shortest tour of length < |*V*| then *G* is accepted by the gap algorithm
- if the shortest tour of G is > h|V| then G is rejected
- otherwise: don't care

Theorem: For any $h \ge 1$ gap – TSP[|V|, h|V|] is **NP**-hard by reduction from Hamiltonian cycle

 \Rightarrow It is NP-hard to approximate TSP to within any factor $h \ge 1$.

The reduction is called gap-producing.
Agenda

- gap 3SAT[ρ, 1]
- 7/8 approximation for max3SAT
- · PCP theorem: hardness of approximation view
- gap-preserving reductions
- hardness of approximating Indset and VC

gap-3SAT[ρ, 1]

- gap $3SAT[\rho, 1]$ is the gap version of max3SAT which computes the largest fraction of satisfiable clauses
- a 3CNF with *m* clauses is accepted if it is satisfiable
- it is rejected if $< \rho \cdot m$ clauses are satisfiable
- until 1992 it was an open problem whether max3SAT could be approximated to within any factor > 7/8
- why 7/8?

A 7/8 approximation of max3SAT

Theorem

For all 3CNF with exactly three independent literals per clause, there exists an assignment that satisfies $\geq 7/8$ of the clauses.

A 7/8 approximation of max3SAT

Theorem

For all 3CNF with exactly three independent literals per clause, there exists an assignment that satisfies $\geq 7/8$ of the clauses.

Proof

- for a random assignment let Y_i be the random variable that is true if clause C_i is true under the assignment
- then $N = \sum_{i=1}^{m} Y_i$ is the number of satisfied clauses
- $E[Y_i] = 7/8$ for all *i*
- $\Rightarrow E[N] = 7/8 \cdot m$
 - by the law of average (probabilistic method basic principle) there must exist an assignment that makes 7/8 of the clauses true

A 7/8 approximation of max3SAT

Theorem

For all 3CNF with exactly three independent literals per clause, there exists an assignment that satisfies $\geq 7/8$ of the clauses.

Proof

- for a random assignment let Y_i be the random variable that is true if clause C_i is true under the assignment
- then $N = \sum_{i=1}^{m} Y_i$ is the number of satisfied clauses
- $E[Y_i] = 7/8$ for all *i*
- $\Rightarrow E[N] = 7/8 \cdot m$
 - by the law of average (probabilistic method basic principle) there must exist an assignment that makes 7/8 of the clauses true

Can we do any better than 7/8?

No!

Theorem For every $\epsilon > 0$ gap – 3SAT[7/8 + ϵ , 1] is NP-hard.

- this is a PCP theorem by *J. Håstad*, Some optimal inapproximability results, STOC 1997.
- as a consequence, if there exists a 7/8 + ε approximation of max3SAT then P = NP
- we will later prove a much weaker PCP theorem

Agenda

- gap 3SAT[ρ, 1] ✓
- 7/8 approximation for max3SAT \checkmark
- · PCP theorem: hardness of approximation view
- gap-preserving reductions
- hardness of approximating Indset and VC

THE PCP theorem

Håstads result is one in a series of inapproximability results based on the PCP theorem.

Theorem (PCP: hardness of approximation)

There exists a $\rho < 1$ such that gap – 3SAT[ρ , 1] is NP-hard.

- Safra: One of the deepest and most complicated proofs in computer science with a matching impact.
- original proof in two papers:
 - Arora, Safra, Probabilistic checking of proofs, FOCS 92
 - Arora, Lund, Motwani, Sudan, Szegedy, Proof verification and the hardness of approximations, FOCS 92.
- virtually all inapproximability results depend on the PCP theorem and the notion of gap preserving reductions by Papadimitriou and Yannakakis

Probabilistically checkable proofs

- the PCP theorem is equivalent to the statement NP = PCP[log n, 1]
- PCP stands for probabilistically checkable proofs and is related to interactive proofs and MIP = NEXP
- · equivalence of two views shown in next lecture
- NP = PCP[poly(n), 1] shown after that

Agenda

- gap 3SAT[ρ, 1] ✓
- 7/8 approximation for max3SAT \checkmark
- PCP theorem: hardness of approximation view \checkmark
- gap-preserving reductions
- · hardness of approximating Indset and VC

Gap-producing and preserving reductions

PCP theorem states that for every $L \in NP$ there exists a gap-producing reduction *f* to gap – 3SAT[ρ , 1]:

- $x \in L \implies f(x)$ is satisfiable
- x ∉ L ⇒ less than ρ of the f(x)'s clauses can be satisfied at the same time

Gap-producing and preserving reductions

PCP theorem states that for every $L \in NP$ there exists a gap-producing reduction *f* to gap – 3SAT[ρ , 1]:

- $x \in L \implies f(x)$ is satisfiable
- x ∉ L ⇒ less than ρ of the f(x)'s clauses can be satisfied at the same time

Observation

 in order to show inapproximability of other problems, we want to preserve gaps by reductions

$gap - 3SAT[\rho, 1] \leq_{gap} gap - IS[\rho, 1]$

Consider the proof of $3SAT \leq_p Indset$ (nodes are satisfying assignments for each clause, edges between incompatible ones).

The reduction f used there is actually gap-preserving, we write

 $gap - 3SAT[\rho, 1] \leq_{gap} gap - IS[\rho, 1]$

- if 3CNF ψ with m clauses is satisfiable then graph f(ψ) has an independent set of size m
- if less than ρ of ψ's clauses can be satisfied, the largest independent set has less than ρ ⋅ m nodes
- hence: if we can approximate Indest to within ρ, then we can approximate max3SAT to within ρ, then we can decide any L ∈ NP

What about vertex cover?

The same reduction *f* from independent set can be used to show hardness of approximating vertex cover to within $(7 - \rho)/6$ for the same ρ used in max3SAT and Indset.

What about vertex cover?

The same reduction *f* from independent set can be used to show hardness of approximating vertex cover to within $(7 - \rho)/6$ for the same ρ used in max3SAT and Indset.

- 🌵 satisfiable
- $\Rightarrow f(\psi)$ has i.s. of size *m*
- $\Rightarrow f(\psi)$ has a v.c. of size 6m

What about vertex cover?

The same reduction *f* from independent set can be used to show hardness of approximating vertex cover to within $(7 - \rho)/6$ for the same ρ used in max3SAT and Indset.

- 🌵 satisfiable
- $\Rightarrow f(\psi)$ has i.s. of size m
- $\Rightarrow f(\psi)$ has a v.c. of size 6m

- only $\rho \cdot m$ of ψ 's clauses satisfiable
- $\Rightarrow f(\psi)$ has largest i.s. smaller than ρm
- $\Rightarrow f(\psi)$ has smallest v.c. of size larger than $(7 \rho)m$

• For both independent set and vertex cover, we know that there exist a $\rho < 1$ such that neither can be approximated to within ρ (resp. $1/\rho$)

- For both independent set and vertex cover, we know that there exist a $\rho < 1$ such that neither can be approximated to within ρ (resp. $1/\rho$)
- optimal solutions are intimately related: if vc is the smallest vertex cover and is the largest independent set then vc = is - n

- For both independent set and vertex cover, we know that there exist a $\rho < 1$ such that neither can be approximated to within ρ (resp. $1/\rho$)
- optimal solutions are intimately related: if vc is the smallest vertex cover and is the largest independent set then vc = is - n
- but: approximation is different; using the *ρ* app. for independent set, yields a ^{n-ρ·is}/_{n-is} approximation for set cover

- For both independent set and vertex cover, we know that there exist a $\rho < 1$ such that neither can be approximated to within ρ (resp. $1/\rho$)
- optimal solutions are intimately related: if vc is the smallest vertex cover and is the largest independent set then vc = is - n
- but: approximation is different; using the ρ app. for independent set, yields a $\frac{n-\rho \cdot is}{n-is}$ approximation for set cover
- for independent set we can show NP-hardness of approximation to within any factor ρ < 1 by gap amplification

Gap amplification

- given instance G = (V, E)
- construct $G' = (V \times V, E')$ where

 $E' = \{(u, v), (u', v') \mid (u, u') \in E \lor (v, v') \in E\}$

- if *I* ⊆ *V* is an i.s. of *G* then *I* × *I* is an i.s. of *G*'; hence opt(*G*') ≥ opt(*G*)²
- if *I*' is an optimal i.s. in *G*' with vertices (*u*₁, *v*₁),..., (*u_j*, *v_j*) then the *u_i* and the *v_i* are each i.s. in *G* with at most *opt*(*G*) vertices; hence *opt*(*G*') ≤ *opt*(*G*)²
- hence i.s. is also hard to approximate within ρ^2
- this can be done any constant k times to obtain the result

PCP Application

What have we learnt?

- 7/8 approximation for max3SAT
- PCP theorem: hardness of approximating max3SAT
- · gap-preserving reductions to obtain more inapproximability results
- NP-hardness of approximating Indset to within any $\rho < 1$
- NP-hardness of approximating VC to within some ρ > 1 (yet unknown)
- but: many NP-complete problems can still be approximated to within any factor $1 + \epsilon$

Up next

- · PCP: hardness of approximation vs. prob. checkable proofs
- proof of a weaker PCP theorem

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

June 3, 2019

Lecture 20 Probabilistically checkable proofs

Goal and plan

Goal

- understand probabilistically checkable proofs,
- know some examples, and
- see the relation (in fact, equivalence) between PCP and hardness of approximation

Plan

- PCP for GNI
- definition: intuition and formalization
- PCP theorem and some obvious consequences
- tool: a more general 3SAT, constraint satisfaction CSP
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \implies PCP theorem

PCP: an intuition

What does probabilistically checkable mean?

PCP: an intuition

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

PCP: an intuition

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

Which proofs?

PCP: an intuition

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

Which proofs?

• typically membership in a language

PCP: an intuition

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

Which proofs?

• typically membership in a language

Why should I care?

PCP: an intuition

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

Which proofs?

• typically membership in a language

Why should I care?

• because it gives you a tool to prove hardness of approximation

How can it be done?

How can it be done?

Example

- Susan picks some $0 \le n \le 10$, Matt wants to know which *n*
- problem: his vision is blurred, he only sees up to ± 5

How can it be done?

Example

- Susan picks some $0 \le n \le 10$, Matt wants to know which *n*
- problem: his vision is blurred, he only sees up to ± 5

Solution

• Matt: Hey, Susan, why don't you show me 100 · n instead?

Can you say this more formally?

- blurred vision ~ we cannot see all bits of a proof
- \Rightarrow we can check only a few bits
 - proofs can be spread out such that wrong proofs are wrong everywhere
 - the definition of PCP will require existence of a proof only
 - a correct proof must always be accepted (completeness 1)
 - a wrong proof must be rejected with high probability (soundness ρ)

Does it work for real problems?
Does it work for real problems?

- yes, here is a PCP for graph non-isomorphism
- we use our familiar notion of verifier and prover
- albeit both face some limitations (later)

PCP for GNI

Input: graphs G_0 , G_1 with *n* nodes

Verifier

Proof π

PCP for GNI

Input: graphs G_0 , G_1 with *n* nodes

Verifier

Proof π

- an array π indexed by all graphs with n nodes
- π[H] contains a if
 H ≅ G_a
- otherwise 0 or 1

PCP for GNI

Input: graphs G_0 , G_1 with *n* nodes

Verifier

- picks *b* ∈ {0, 1} at random
- picks random permutation $\sigma: [n] \rightarrow [n]$
- asks for $b' = \pi[\sigma(G_b)]$
- accepts iff b' = b

an array π indexed by all graphs with n nodes

Proof π

- π[H] contains a if
 H ≅ G_a
- otherwise 0 or 1

Analysis

- $|\pi|$ is exponential in *n*
- verifier asks for only one bit
- verifier needs O(n) random bits
- verifier is a polynomial time TM
- if π is correct, the verifier always accepts
- if π is wrong (e.g. because $G_0 \cong G_1$, then verifier accepts with probability 1/2

Agenda

- PCP for GNI \checkmark
- definition: intuition and formalization
- · PCP theorem and some obvious consequences
- tool: a more general 3SAT, constraint satisfaction CSP
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \implies PCP theorem

PCP system for $L \subseteq \{0, 1\}^*$

	Input: word $x \in \{0, 1\}^n$	
Verifier		Prover

- **1.** pick r(n) random bits
- 2. pick q(n) positions/bits in π
- 3. based on x and random bits, compute $\Phi : \{0, 1\}^{q(n)} \rightarrow \{0, 1\}$
- 4. after receiving proof bits $\pi_1, \ldots, \pi_{q(n)}$ output $\Phi(\pi_1, \ldots, \pi_{q(n)})$
- V is a polynomial-time TM
- if $x \in L$ then there exists a proof π s.t. V always accepts
- if $x \notin L$ then V accepts with probability $\leq 1/2$ for all proofs π

- creates a proof π that $x \in L$
- $|\pi| \in 2^{r(n)}q(n)$
- on request, sends bits of π

Definition

A language $L \in \{0, 1\}^*$ is in PCP[r(n), q(n)] iff there exists a PCP system with $c \cdot r(n)$ random bits and $d \cdot q(n)$ queries for constants c, d > 0.

Definition

A language $L \in \{0, 1\}^*$ is in PCP[r(n), q(n)] iff there exists a PCP system with $c \cdot r(n)$ random bits and $d \cdot q(n)$ queries for constants c, d > 0.

Theorem (THE PCP theorem) $PCP[\log n, 1] = NP.$

- GNI \in **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- **PCP**[0, 0]

- GNI \in **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0, 0] = P
- **PCP**[0, log(*n*)]

- GNI \in **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0, 0] = P
- **PCP**[0, $\log(n)$] = **P**
- **PCP**[0, *poly*(*n*)]

- GNI \in **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0, 0] = P
- PCP[0, log(n)] = P
- **PCP**[0, *poly*(*n*)] = **NP**
- $PCP[r(n), q(n)] \subseteq NTIME(2^{O(r(n))}q(n))$

- GNI \in **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0, 0] = P
- PCP[0, log(n)] = P
- **PCP**[0, *poly*(*n*)] = **NP**
- $PCP[r(n), q(n)] \subseteq NTIME(2^{O(r(n))}q(n))$
- \Rightarrow **PCP**[log *n*, 1] \subseteq **NP**
 - every problem in NP has a polynomial sized proof (certificate), of which we need to check only a constant number of bits
 - for 3SAT (and hence for all!) as low as 3!

More remarks

• the Cook-Levin reduction does not suffice to prove the PCP theorem

- because of soundness
- even for $x \notin L$, almost all clauses are satisfiable
- because they describe acceptable computations

More remarks

the Cook-Levin reduction does not suffice to prove the PCP theorem

- because of soundness
- even for $x \notin L$, almost all clauses are satisfiable
- because they describe acceptable computations
- PCP is inherently different from IP
 - proofs can be exponential in PCP
 - PCP: restrictions on queries and random bits
 - IP: restrictions on total message length
 - \Rightarrow **PCP**[*poly*(*n*), *poly*(*n*)] \supseteq **IP** = **PSPACE** (in fact equal to **NEXP**)

Agenda

- PCP for GNI \checkmark
- definition: intuition and formalization \checkmark
- PCP theorem and some obvious consequences \checkmark
- tool: a more general 3SAT, constraint satisfaction CSP
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \implies PCP theorem

Constraint satisfaction

U	1
 <i>n</i> Boolean variables <i>m</i> clauses each clause has 3 variables 	 <i>n</i> Boolean variables <i>m</i> general constraints each constraint is over <i>q</i> variables

CSP remarks

- one can define the fraction of simultaneously satisfiable clauses just as for max3SAT
- each constraint represents a function $\{0, 1\}^q \rightarrow \{0, 1\}$
- we may assume that all variables are used: $n \leq qm$
- ⇒ a qCSP instance can be represented using $mq \log(n)2^q$ bits (polynomial in n, m)

Definition

gap – qCSP[ρ , 1] is NP-hard if for every $L \in NP$ there is a gap-producing reduction *f* such that

- $x \in L \implies f(x)$ is satisfiable
- x ∉ L ⇒ at most ρ constraints of f(x) are satisfiable (at the same time)

Agenda

- PCP for GNI \checkmark
- definition: intuition and formalization \checkmark
- PCP theorem and some obvious consequences \checkmark
- tool: a more general 3SAT, constraint satisfaction CSP \checkmark
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \implies PCP theorem

PCP ⇔ Hardness of approximation

Theorem

The following two statements are equivalent.

- **NP** = **PCP**[log *n*, 1]
- there exist $0 < \rho < 1$ and $q \in \mathbb{N}$ such that gap $-qCSP[\rho, 1]$ is NP-hard.

PCP ⇔ Hardness of approximation

Theorem

The following two statements are equivalent.

- **NP** = **PCP**[log *n*, 1]
- there exist 0 < ρ < 1 and q ∈ N such that gap qCSP[ρ, 1] is NP-hard.

- this formalizes the equivalence of probabilistically checkable proofs and hardness of approximation
- this is why the PCP theorem was a breakthrough in inapproximability
- gap preservation from CSP to 3SAT is not hard but omitted

 show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits
- define $f(x) = \{\psi_r : \{0,1\}^q \to \{0,1\} \mid r \in \{0,1\}^{c \log n}\}$ such that
- $\psi_r(b_1,...,b_q) = 1$ if V accepts the bits from proof π given by r

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits
- define $f(x) = \{\psi_r : \{0, 1\}^q \to \{0, 1\} \mid r \in \{0, 1\}^{c \log n}\}$ such that
- $\psi_r(b_1,...,b_q) = 1$ if V accepts the bits from proof π given by r
- f(x) is a qCSP of size 2^{c log n} ∈ O(n), representable and computable in poly time

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits
- define $f(x) = \{\psi_r : \{0, 1\}^q \to \{0, 1\} \mid r \in \{0, 1\}^{c \log n}\}$ such that
- $\psi_r(b_1,...,b_q) = 1$ if V accepts the bits from proof π given by r
- f(x) is a qCSP of size 2^{c log n} ∈ O(n), representable and computable in poly time
- if $x \in 3$ SAT then there exists proof π s.t. f(x) is satisfiable

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits
- define $f(x) = \{\psi_r : \{0, 1\}^q \to \{0, 1\} \mid r \in \{0, 1\}^{c \log n}\}$ such that
- $\psi_r(b_1,...,b_q) = 1$ if V accepts the bits from proof π given by r
- f(x) is a qCSP of size 2^{c log n} ∈ O(n), representable and computable in poly time
- if $x \in 3$ SAT then there exists proof π s.t. f(x) is satisfiable
- if $x \notin 3SAT$ then all proofs π satisfy at most 1/2 of f(x)'s constraints

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits
- define $f(x) = \{\psi_r : \{0, 1\}^q \to \{0, 1\} \mid r \in \{0, 1\}^{c \log n}\}$ such that
- $\psi_r(b_1, \ldots, b_q) = 1$ if V accepts the bits from proof π given by r
- f(x) is a qCSP of size 2^{c log n} ∈ O(n), representable and computable in poly time
- if $x \in 3$ SAT then there exists proof π s.t. f(x) is satisfiable
- if $x \notin 3SAT$ then all proofs π satisfy at most 1/2 of f(x)'s constraints
- \Rightarrow f is gap-producing

• show that for $L \in NP$, there exists a PCP system

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction *f* from *L* to gap – qCSP[ρ, 1] for some *q* and ρ

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction *f* from *L* to gap – qCSP[ρ, 1] for some *q* and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction *f* from *L* to gap – qCSP[ρ, 1] for some *q* and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable
- on input x the PCP verifier
 - computes f(x)
 - expects proof π to be assignment to f(x)'s n variables
 - picks $1 \le j \le m$ at random (needs $\log m$ bits!)
 - sets $\Phi = \psi_j$
 - asks for value of q variables of ψ_i

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction *f* from *L* to gap – qCSP[ρ, 1] for some *q* and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable
- on input x the PCP verifier
 - computes f(x)
 - expects proof π to be assignment to f(x)'s n variables
 - picks $1 \le j \le m$ at random (needs $\log m$ bits!)
 - sets $\Phi = \psi_j$
 - asks for value of q variables of ψ_j
- if $x \in L$ then V accepts with prob. 1
- if $x \notin L$ then V accepts with prob. ρ

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction *f* from *L* to gap – qCSP[ρ, 1] for some *q* and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable
- on input x the PCP verifier
 - computes f(x)
 - expects proof π to be assignment to f(x)'s n variables
 - picks $1 \le j \le m$ at random (needs $\log m$ bits!)
 - sets $\Phi = \psi_j$
 - asks for value of q variables of ψ_j
- if $x \in L$ then V accepts with prob. 1
- if $x \notin L$ then V accepts with prob. ρ
- ρ can be amplified to soundness error at most 1/2 by constant number of repetitions
Recap: Two views of the PCP theorem

prob. checkable proofs		hardness of approximation
PCP verifier V	\leftrightarrow	CSP instance
proof π	\leftrightarrow	variable assignment
π	\leftrightarrow	number of variables in CSP
number of random bits	\leftrightarrow	log <i>m</i> , where <i>m</i> is number of clauses
number of queries	\leftrightarrow	arity of constraints

What have we learnt?

- probabilistically checkable proofs are proofs with restrictions on the verifier's number of random bits and the number of proof bits queried
- yields a new, robust characterization of NP
- is equivalent to NP-hardness of gap qCSP[ρ, 1]
- hence to NP-hardness of gap $3SAT[\rho, 1]$
- hence to NP-hardness of approximation for many problems in NP (previous lecture)

```
Up next: Prove that NP \subseteq PCP[poly(n), 1]
```

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

June 4, 2019

Lecture 21 NP \subseteq PCP[poly(n), 1]

Recap: Two views of the PCP theorem

prob. checkable proofs		hardness of approximation
PCP verifier V	\leftrightarrow	CSP instance
proof π	\leftrightarrow	variable assignment
π	\leftrightarrow	number of variables in CSP
number of random bits	\leftrightarrow	log <i>m</i> , where <i>m</i> is number of clauses
number of queries	\leftrightarrow	arity of constraints

Goal and plan

Goal

- proof a weaker PCP theorem
- · learn interesing encoding/decoding schemes useful in such proofs

Plan

- proof
 - an NP-complete language: Quadeq
 - Walsh-Hadamard encodings
 - a PCP[poly, 1] system for Quadeq
- summary: PCP and hardness of approximation

Weak PCP

Theorem **NP** \subseteq **PCP**[*poly*, 1]

Proof: It suffices to come up with a PCP system for one NP-complete language, where the verifier

- uses polynomially many random bits (exponentially long proofs)
- makes a constant number of queries to that proof

Plan:

- an NP-complete language: Quadeq
- Walsh-Hadamard encodings
- a PCP[poly, 1] system for Quadeq

All arithmetic today will be modulo 2, that is, over the field $\{0, 1\}$!

- 1 + 1 = 0
- $x^2 = x$
- x + y = x y

Quadeq

- satisfiable quadratic equations over {0, 1}
- *n* variables/*m* equations
- no purely linear terms
- NP-complete (exercise!)

Example (Running example)

$$xy + xz = 1$$

 $y^2 + yz + z^2 = 1$
 $x^2 + yx + z^2 = 0$

Quadeq

- satisfiable quadratic equations over {0, 1}
- *n* variables/*m* equations
- no purely linear terms
- NP-complete (exercise!)

Example (Running example)

$$xy + xz = 1$$

 $y^2 + yz + z^2 = 1$
 $x^2 + yx + z^2 = 0$

Solution: x = 1, y = 0, z = 1as a vector: **s** = (1 0 1)

Be smart, use vector notation

$$xy + xz = 1y2 + yz + z2 = 1x2 + yx + z2 = 0s = (1 0 1)$$

Be smart, use vector notation

$$xy + xz = 1y2 + yz + z2 = 1x2 + yx + z2 = 0s = (1 0 1)$$

vector notation: for a given $m \times n^2$ matrix A and m vector **b** find solution $\mathbf{u} = (x \ y \ z)$ such that

 $A(\mathbf{u}\otimes\mathbf{u})=\mathbf{b}$

u⊗u	<i>x</i> ²	хy	ХZ	ух	y ²	уz	ZX	zy	Z^2	
$S \otimes S$	1	0	1	0	0	0	1	0	1	b
Α	0	1	1	0	0	0	0	0	0	1
	0	0	0	0	1	1	0	0	1	1
	1	0	0	1	0	0	0	0	1	0

Overview

- Quadeq is the language of satisfiable systems of quadratic equations over {0, 1}
- natural PCP system expects a solution u and checks whether it is valid
- but this yields superconstant number of queries!
- how can we encode a solution such that a constant number of queries suffices?

Overview

- Quadeq is the language of satisfiable systems of quadratic equations over {0, 1}
- natural PCP system expects a solution u and checks whether it is valid
- but this yields superconstant number of queries!
- how can we encode a solution such that a constant number of queries suffices?
- use longer proofs!
- an NP-complete language: Quadeq √
- Walsh-Hadamard encodings
- a PCP[poly, 1] system for Quadeq

PCP for Quadeq

Input: $m \times n^2$ matrix A, m vector b					
Verifier	Proof <i>π</i>				
 check that <i>f</i>, <i>g</i> are linear functions check that <i>g</i> = WH(u ⊗ u) where <i>f</i> = WH(u) check that <i>g</i> encodes a satisfying assignment 	 π ∈ {0, 1}^{2ⁿ+2^{n²}} π is a pair of linear functions ⟨f, g⟩, i.e. strings from {0, 1}^{2ⁿ} and {0, 1}^{2^{n²}}, resp. if u satisfies A(u ⊗ u) = b then f = WH(u) and g = WH(u ⊗ u) are Walsh-Hadamard encodings 				

Walsh-Hadamard encoding

Definition (WH)

Let $\mathbf{u} \in \{0, 1\}^n$ be a vector. The Walsh-Hadamard encoding of \mathbf{u} written $WH(\mathbf{u})$ is the truth table of the linear function $f : \{0, 1\}^n \to \{0, 1\}$ with $f(\mathbf{x}) = \mathbf{u} \odot \mathbf{x}$ where $(u_1 \ldots u_n) \odot (x_1 \ldots x_n) = \sum_{i=1}^n u_i x_i$.

Walsh-Hadamard encoding

Definition (WH)

Let $\mathbf{u} \in \{0, 1\}^n$ be a vector. The Walsh-Hadamard encoding of \mathbf{u} written $WH(\mathbf{u})$ is the truth table of the linear function $f : \{0, 1\}^n \to \{0, 1\}$ with $f(\mathbf{x}) = \mathbf{u} \odot \mathbf{x}$ where $(u_1 \ldots u_n) \odot (x_1 \ldots x_n) = \sum_{i=1}^n u_i x_i$.

Example

The solution to our running example is $s = (1 \ 0 \ 1)$. We have

 $WH(\mathbf{s}) = (0\ 1\ 0\ 1\ 1\ 0\ 1\ 0)$

Note: $|WH(\mathbf{u})| = 2^{|\mathbf{u}|}$

Properties (without proof)

Random subsum principle

- if $\mathbf{u} \neq \mathbf{v}$ then for 1/2 of the choices of \mathbf{x} we have $\mathbf{u} \odot \mathbf{x} \neq \mathbf{v} \odot \mathbf{x}$
- if $\mathbf{u} \neq \mathbf{v}$ then $WH(\mathbf{u})$ and $WH(\mathbf{v})$ differ on at least half their bits

Properties (without proof)

Random subsum principle

- if $\mathbf{u} \neq \mathbf{v}$ then for 1/2 of the choices of \mathbf{x} we have $\mathbf{u} \odot \mathbf{x} \neq \mathbf{v} \odot \mathbf{x}$
- if $\mathbf{u} \neq \mathbf{v}$ then $WH(\mathbf{u})$ and $WH(\mathbf{v})$ differ on at least half their bits

Local linearity testing

• we say that $f, g: \{0, 1\}^n \rightarrow \{0, 1\}$ are ρ -close if

 $Pr_{\mathbf{x}\in_{R}\{0,1\}^{n}}[f(\mathbf{x})=g(\mathbf{x})]\geq\rho$

• if there exists a $\rho > 1/2$ s.t.

$$Pr_{\mathbf{x},\mathbf{y}\in_{R}\{0,1\}^{n}}[f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})]\geq
ho$$

then *f* is ρ -close to a linear function

PCP for Quadeq

Local linearity testing

- we test the linearity condition (f(x + y) = f(x) + f(y)) independently $1/\delta > 2$ times, and accept if all tests pass
- we accept a linear function with probability 1
- if f is not 1δ -close to a linear function
 - all tests are passed with probability at most $(1 \delta)^{(1/\delta)}$
 - \Rightarrow such a function is rejected with probability at least 1 1/e > 1/2
- for instance, we could make a 0.999 linearity test using 1000 trials

Local decoding

- it might happen, that we accept non-linear functions that are very close to linear functions
- · in this case we treat them as if they were linear
- if we want to query f(x)
 - **1.** we choose $\mathbf{x}' \in \{0, 1\}^n$ at random
 - 2. set x'' = x + x'
 - 3. let $\mathbf{y}' = f(\mathbf{x}')$ and $\mathbf{y}'' = f(\mathbf{x}'')$
 - **4.** output **y**' + **y**''
- this makes two queries instead of one
- and recovers the value of the closest linear function with high probability

PCP for Quadeq

Check WH encodings

Test 10 times for random $\mathbf{r}, \mathbf{r}' \in \{0, 1\}^n$

 $f(\mathbf{r})f(\mathbf{r}') = g(\mathbf{r}\otimes\mathbf{r}')$

Check WH encodings

Test 10 times for random $\mathbf{r}, \mathbf{r}' \in \{0, 1\}^n$

 $f(\mathbf{r})f(\mathbf{r}')=g(\mathbf{r}\otimes\mathbf{r}')$

If the proof is correct we always accept:

$$f(\mathbf{r})f(\mathbf{r}') = (\sum_{i \in [n]} u_i r_i) (\sum_{j \in [n]} u_j r_j')$$

$$= \sum_{i,j \in [n]} u_i u_j r_i r_j'$$

$$= ((\mathbf{u} \otimes \mathbf{u}) \odot (\mathbf{r} \otimes \mathbf{r}'))$$

$$= g(\mathbf{r} \otimes \mathbf{r}')$$

Check WH encodings

Test 10 times for random $\mathbf{r}, \mathbf{r}' \in \{0, 1\}^n$

 $f(\mathbf{r})f(\mathbf{r}')=g(\mathbf{r}\otimes\mathbf{r}')$

If the proof is correct we always accept:

$$f(\mathbf{r})f(\mathbf{r}') = (\sum_{i \in [n]} u_i r_i) (\sum_{j \in [n]} u_j r_j')$$

$$= \sum_{i,j \in [n]} u_i u_j r_i r_j'$$

$$= ((\mathbf{u} \otimes \mathbf{u}) \odot (\mathbf{r} \otimes \mathbf{r}'))$$

$$= g(\mathbf{r} \otimes \mathbf{r}')$$

If the proof is wrong we reject with probability at least 1/4 by applying the random subsum principle twice, because in esence we compute rUr' and rWr' for different matrices U and W.

PCP for Quadeq

Is the assignment satisfying?

- for each of *m* equations we can check g(z) at some place z corresponding to the coefficients in matrix A
- but this is not constant queries!

Is the assignment satisfying?

- for each of *m* equations we can check g(z) at some place z corresponding to the coefficients in matrix A
- but this is not constant queries!
- instead multiply each equation by a random bit and take the sum of all equations
- if g encodes a solution, we will always have a solution to the sum
- otherwise, we have a solution with probability 1/2 only

Is the system in PCP[poly(n), 1]?

1. $\pi \in \{0, 1\}^{2^n + 2^{n^2}}$

- 2. check that f, g are linear functions
 - $2(1-\delta) \cdot n$ random bits, $2(1-\delta)$ queries
- **3.** check that $g = WH(\mathbf{u} \otimes \mathbf{u})$ where $f = WH(\mathbf{u})$
 - 20*n* random bits, 20 queries
- 4. check that g encodes a satisfying assignment
 - *m* random bits (one per equation), 1 query

Is the system in PCP[poly(n), 1]?

1. $\pi \in \{0, 1\}^{2^n + 2^{n^2}}$

- 2. check that f, g are linear functions
 - $2(1-\delta) \cdot n$ random bits, $2(1-\delta)$ queries
- **3.** check that $g = WH(\mathbf{u} \otimes \mathbf{u})$ where $f = WH(\mathbf{u})$
 - 20n random bits, 20 queries
- 4. check that g encodes a satisfying assignment
 - *m* random bits (one per equation), 1 query

Yes!

Conclusion

PCP and hardness of approximation

- computing approximate solutions to NP-hard problems is important
- the classical Cook-Levin reduction does not rule out efficient approximations
- many nontrivial approximation algorithms exist (2-app for metric TSP, knapsack, 2-app for vertex cover)
- PCP theorem shows hardness of approximating max3SAT to within any constant factor if P ≠ NP
- we showed hardness of approximation for Indset as well
- this is equivalent to having a probabilistically checkable proof system with logarithmic randomness and constant queries
- PCP proofs involve intricate encoding schemes like Walsh-Hadamard

Further Reading Luca Trevisan, Inapproximability of Combinatorial Optimization Problems, available from http://www.cs.berkeley.edu/~luca/pubs/inapprox.pdf Next and final topic: Parallelism

Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

June 4, 2019

Lecture 22

Models of Parallel Computation

Goal

- · introduce two models of parallel computation
- understand why they are equivalent

Plan

- PRAM: parallel random access machine
- circuits
- some complexity class definitions

Random access machine

RAM: more realistic model of sequential computation, which can be simulated by standard TMs with polynomial overhead.

- computation unit with user-defined program
- read-only input tape, write-only output tape, unbounded number of local memory cells
- memory cells can hold unbounded integers
- instructions include
 - moving data between memory cells
 - comparisons and branches
 - simple arithmetic operations
- all operations take unit time
Parallel random access machine

PRAM: parallel extension of RAM

- unbounded collection of RAM processors without tapes: *P*₀, *P*₁, *P*₂, ...
- unbounded collection of shared memory cells: $M[0], M[1], M[2], \dots$
- each *P_i* has its own local memory (registers)
- input: *n* items stored in *M*[0], ..., *M*[*n* − 1]
- output stored on some designated part of memory
- instructions execute in 3-phase cycles
 - read from shared memory
 - local computation
 - write to shared memory
- processors execute cycles synchronously
- P₀ starts and halts execution

Read/write conflicts

It may happen that several processors want to read from or write to the same memory cell in one cycle.

Read/write conflicts

It may happen that several processors want to read from or write to the same memory cell in one cycle.

Three policies:

- **EREW** : exclusive read/exclusive write
- CREW : concurrent read/exclusive write allows for simultaneous reads
- **CRCW** : simultaneous read and write allowed

Practical concerns

- idealized: PRAMs are an abstract, idealized formalism
 - unbounded integers
 - communication between any two processors in constant time due to shared memory (in reality: interconnection networks)
 - too many processors
- CRCW and CREW hard to build technically but easier to design algorithms
- still useful as benchmark
 - if there is no good PRAM algorithm, probably the problem is hard to parallelize

Time and space complexity

- time complexity: number of steps of P₀
- space complexity: number of shared memory cells accessed
- one can show that the weakest PRAM (EREW) can simulate the strongest with logarithmic overhead; cf. search-example
- efficient parallel computation
 - polynomially many processors
 - polylogarithmic time, where $polylog(n) = \bigcup_{k \ge 1} \log^k n$
- problems with efficient parallel algorithms are said to be in NC
- NC is robust wrt different PRAM models (and circuits)

Given *n* items on the shared memory tape and p + 1 < nprocessors. For some $x \in \mathbb{N}$ P_0 wants to know, whether there exists an $0 \le i < n$ such that M[i] = x.

Given *n* items on the shared memory tape and p + 1 < nprocessors. For some $x \in \mathbb{N}$ P_0 wants to know, whether there exists an $0 \le i < n$ such that M[i] = x.

Solution (high level):

- 1. P₀ publishes x
- 2. for $1 \le i \le p$ each P_i searches through $M[\lceil \frac{n}{p} \rceil(i-1)], \ldots, M[\lceil \frac{n}{p} \rceil i-1]$
- **3.** each P_i announces its search result

Analysis

Step 2 need n/p parallel time independently of PRAM model.

Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

- needs O(1) time in CRCW and CREW since P₀ can simply write x on the shared tape which everybody can read simultaneously
- needs log p steps in EREW by binary broadcast tree

Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

- needs O(1) time in CRCW and CREW since P₀ can simply write x on the shared tape which everybody can read simultaneously
- needs log p steps in EREW by binary broadcast tree

Step 3

- needs O(1) time in CRCW only, where all successful processors indicate success in the same memory cell
- otherwise, we need log p time to perform a parallel reduction

Other problems in NC

Many practical problems are known to be in **NC**, for details, take some class on parallel algorithms.

- sorting
- matrix multiplication
- expression evaluation
- connected components of graphs
- string matching

Signpost

Just seen:

- RAMs and PRAMs
- CRCW, CREW, EREW
- simulations between models have at most logarithmic overhead
- efficient parallel ~ polylogarithmic (stable under different PRAM models)

Next:

- Boolean circuits as parallel model of computation
- equivalence with respect to efficient parallel algorithms of PRAM and circuits

Definition

A Boolean circuit, C, is a directed acyclic graph with labeled nodes.

- the input nodes are labeled with a variable x_i or with a constant 0 or 1
- the gate nodes have fan-in *k* > 0 are labeled with one of the Boolean functions
 - \wedge (fan-in k)
 - V (fan-in *k*)
 - ¬ (fan-in 1)
- the output nodes are labeled output and have fan-out 0

Definition

A Boolean circuit, C, is a directed acyclic graph with labeled nodes.

- the input nodes are labeled with a variable x_i or with a constant 0 or 1
- the gate nodes have fan-in *k* > 0 are labeled with one of the Boolean functions
 - \wedge (fan-in k)
 - V (fan-in *k*)
 - ¬ (fan-in 1)
- the output nodes are labeled output and have fan-out 0

Given an assignment $\sigma : \{0, 1\}^m \to \{0, 1\}$ to the *m* variables, $C(\sigma)$ denotes the value of the *o* output nodes. We denote by *size*(*C*) the number of gates and by *depth*(*C*) the maximum distance from an input to an output.

Definition

A Boolean circuit, C, is a directed acyclic graph with labeled nodes.

- the input nodes are labeled with a variable x_i or with a constant 0 or 1
- the gate nodes have fan-in *k* > 0 are labeled with one of the Boolean functions
 - \wedge (fan-in k)
 - V (fan-in *k*)
 - ¬ (fan-in 1)
- the output nodes are labeled output and have fan-out 0

Given an assignment $\sigma : \{0, 1\}^m \to \{0, 1\}$ to the *m* variables, $C(\sigma)$ denotes the value of the *o* output nodes. We denote by *size*(*C*) the number of gates and by *depth*(*C*) the maximum distance from an input to an output.

We distinguish circuits with and without a-priori bounds on fan-in.

Definition

A Boolean circuit, C, is a directed acyclic graph with labeled nodes.

- the input nodes are labeled with a variable x_i or with a constant 0 or 1
- the gate nodes have fan-in *k* > 0 are labeled with one of the Boolean functions
 - \land (fan-in *k*)
 - V (fan-in *k*)
 - ¬ (fan-in 1)
- the output nodes are labeled output and have fan-out 0

Given an assignment $\sigma : \{0, 1\}^m \to \{0, 1\}$ to the *m* variables, $C(\sigma)$ denotes the value of the *o* output nodes. We denote by *size*(*C*) the number of gates and by *depth*(*C*) the maximum distance from an input to an output.

We distinguish circuits with and without a-priori bounds on fan-in. Wlog we assume that all negations appear in the input layer only.

Assume we want to add two *n*-bit integers, that is, we want circuits to compute $+: \{0, 1\}^{2n} \rightarrow \{0, 1\}^{n+1}$

Assume we want to add two *n*-bit integers, that is, we want circuits to compute $+: \{0, 1\}^{2n} \rightarrow \{0, 1\}^{n+1}$

Ripple carry adder

- n sequential full adder
- depth: *O*(*n*)
- size: *O*(*n*)

Assume we want to add two *n*-bit integers, that is, we want circuits to compute $+: \{0, 1\}^{2n} \rightarrow \{0, 1\}^{n+1}$

Ripple carry adder

- *n* sequential full adder
- depth: *O*(*n*)
- size: *O*(*n*)

Conditional sum adder

- depth: *O*(log *n*)
- size: *O*(*n* log *n*)

Assume we want to add two *n*-bit integers, that is, we want circuits to compute $+: \{0, 1\}^{2n} \rightarrow \{0, 1\}^{n+1}$

Ripple carry adder

- n sequential full adder
- depth: *O*(*n*)
- size: *O*(*n*)

Conditional sum adder

- depth: *O*(log *n*)
- size: *O*(*n* log *n*)

Carry lookahead adder

- depth: *O*(log *n*)
- size: *O*(*n*)

Deciding languages with circuits

Definition

A language $L \subseteq \{0, 1\}^*$ is said to be decided by a family of circuits $\{C_n\}$, where C_i takes *i* input variables, iff for all *i* holds: $C_i(x) = 1$ iff $x \in L$.

Deciding languages with circuits

Definition

A language $L \subseteq \{0, 1\}^*$ is said to be decided by a family of circuits $\{C_n\}$, where C_i takes *i* input variables, iff for all *i* holds: $C_i(x) = 1$ iff $x \in L$.

Definition

Let $d, s : \mathbb{N} \to \mathbb{N}$ be functions. We say that a family $\{C_n\}$ has depth d and size s if for all n

- $depth(C_n) \leq d(n)$
- $size(C_n) \leq s(n)$

Example (Parity)

Parity = { $x \in \{0, 1\}^*$ | x has an odd number of 1s}

Example (Parity) Parity = $\{x \in \{0, 1\}^* \mid x \text{ has an odd number of 1s} \}$

- circuits are binary trees of xor gates
- each xor-gate has depth 3
- ⇒ logarithmic depth

Example (Parity) Parity = $\{x \in \{0, 1\}^* \mid x \text{ has an odd number of 1s} \}$

- circuits are binary trees of xor gates
- each xor-gate has depth 3
- \Rightarrow logarithmic depth

Example (UHalt)

UHalt = $\{1^n \mid n$'s binary expansion encodes a pair $\langle M, x \rangle$ such that *M* halts on *x* $\}$

Example (Parity) Parity = $\{x \in \{0, 1\}^* \mid x \text{ has an odd number of } 1s\}$

- circuits are binary trees of xor gates
- each xor-gate has depth 3
- ⇒ logarithmic depth

Example (UHalt)

UHalt = $\{1^n \mid$

n's binary expansion encodes a pair $\langle M, x \rangle$ such that *M* halts on *x*}

- circuit family of linear size decides UHalt even though it is undecidable
- for each *n* with $1^n \in UHalt$ is a tree of and-gates
- otherwise, constant 0 circuit

Problem on previous slide: the description of the circuit family is not computable.

Problem on previous slide: the description of the circuit family is not computable.

Solution: uniformity

Problem on previous slide: the description of the circuit family is not computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, $\{C_n\}$ is logspace-uniform if there exists a logspace TM *M* such that for every *n*, $M(1^n) = desc(C_n)$, where $desc(C_n)$ is the description of C_n .

Problem on previous slide: the description of the circuit family is not computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, $\{C_n\}$ is logspace-uniform if there exists a logspace TM *M* such that for every *n*, $M(1^n) = desc(C_n)$, where $desc(C_n)$ is the description of C_n .

Remarks

- a description could be a list of gates along with type and predecessors
- the circuit family for Parity is logspace-uniform

Just seen:

- circuit definition
- families of circuits decide languages
- there exist families of polynomial size deciding undecidable languages
- ⇒ require logspace-uniformity

Next:

circuits vs PRAMs

Circuits vs PRAMs

For efficient parallel computations only: parallel time on PRAM ~ circuit depth number of processors ~ circuit size

circuits \rightarrow PRAM

- suppose L decided by family {C_n} of polynomial size N and depth O(log^d n)
- a PRAM with N processors decides L:
- compute a description of C_n
- each circuit node \rightarrow one processor
- each processor computes its output and sends it to all other processors that need it (might require logarithmic overhead for non-CR models)
- parallel time ~ circuit depth
- circuit size ~ number of processors

Circuits vs PRAMs

For efficient parallel computations only: parallel time on PRAM ~ circuit depth number of processors ~ circuit size

 $\mathsf{PRAM} \to \mathsf{circuits}$

- circuit with N · D nodes in D layers
- the *i*-th node in the *t*-th layer performs computation of processor *i* at time *t*

NC and AC

Obviously, variations of PRAMs and circuits are robust wrt. polynomial size/number of processors and polylogarithmic depth/parallel run time motivating the following definition.

Definition (NC and AC)

Let $k \ge 0$. $L \in AC^k$ iff L is decided by a logspace-uniform family of circuits with polynomial size and depth $O(\log^k n)$. If the family of circuits is of bounded fan-in, then $L \in NC^k$.

- NC = $\bigcup_{k\geq 0}$ NC^k
- AC = $\bigcup_{k\geq 0}$ AC^k

NC and AC

Obviously, variations of PRAMs and circuits are robust wrt. polynomial size/number of processors and polylogarithmic depth/parallel run time motivating the following definition.

Definition (NC and AC)

Let $k \ge 0$. $L \in AC^k$ iff L is decided by a logspace-uniform family of circuits with polynomial size and depth $O(\log^k n)$. If the family of circuits is of bounded fan-in, then $L \in NC^k$.

- NC = $\bigcup_{k\geq 0}$ NC^k
- AC = $\bigcup_{k \ge 0} AC^k$
- NC is the class of problems with efficient parallel solutions
- AC circuits cannot be build easily in hardware
- it is an open problem whether P = NC, that is, whether all problems in P are efficiently parallelizable (conjecture: no)
- Parity $\in \mathbb{NC}^1$ (but not in \mathbb{AC}^0)

- three variations of a PRAM
- uniform and non-uniform circuit families can decide languages
- efficiently parallelizable: NC
- circuits and PRAM are equivalent wrt NC problems

Up next: small depth circuits (AC and NC)

- their relation to well-known (space) complexity classes
- some lower bounds
Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

June 4, 2019

Lecture 23 NC and AC scrutinized

Recap

Efficient parallel computation

- computable by some PRAM with
- polynomially many processors in
- polylogarithmic time
- robust wrt to underlying PRAM model

Recap

Efficient parallel computation

- computable by some PRAM with
- polynomially many processors in
- polylogarithmic time
- robust wrt to underlying PRAM model

corresponds to

small depth circuits

- of polynomial size
- polylogarithmic depth
- logspace uniform

Recap – NC and AC

If $L \subseteq \{0, 1\}^*$ is decided by a logspace-uniform family $\{C_n\}$ of polynomially sized circuits with bounded fan-in

- and depth $\log^k n$ then $L \in \mathbf{NC}^k$ for $k \ge 0$
- NC = $\bigcup_{k\geq 0}$ NC^k

Recap – NC and AC

If $L \subseteq \{0, 1\}^*$ is decided by a logspace-uniform family $\{C_n\}$ of polynomially sized circuits with bounded fan-in

- and depth $\log^k n$ then $L \in \mathbf{NC}^k$ for $k \ge 0$
- NC = $\bigcup_{k\geq 0}$ NC^k

Intro

If the fan-in is unbounded we obtain the corresponding AC hierarchy.

Find the places of NC and AC among other complexity classes!

- NC versus AC
- NC versus P
- NC¹ versus L
- NC² versus NL

$\textbf{Unbounded} \rightarrow \textbf{bounded fan-in}$

Theorem For all $k \ge 0$ $NC^k \subseteq AC^k \subseteq NC^{k+1}$

$\textbf{Unbounded} \rightarrow \textbf{bounded fan-in}$

Theorem For all $k \ge 0$

$\textbf{NC}^k \subseteq \textbf{AC}^k \subseteq \textbf{NC}^{k+1}$

Proof

- first inclusion trivial
- for the second, assume $L \in AC^k$ by family $\{C_n\}$
- there exists a polynomial p(n) such that
 - C_n has p(n) gates with
 - maximal fan-in of at most p(n)
- each such gate can be simulated by a binary tree of gates of the same kind with depth log(p(n)) = O(log n)
- ⇒ the resulting circuit has size at most size $p(n)^2$, depth at most $\log^{k+1} n$ and maximal fan-in 2

Theorem

AC = NC

Theorem

AC = NC

Remarks

- the inclusions in the theorem on the previous slide are strict for k = 0
- one strict inclusion is trivial, the other one is subject of the next lecture
- for practical relevance, we focus on bounded fan-in, ie. NC

- NC versus AC \checkmark
- NC versus P
- NC¹ versus L
- NC² versus NL

NC versus P

Theorem NC \subset P

Proof

- let $L \in \mathbb{NC}$ by circuit family $\{C_n\}$
- ⇒ there exists a logspace TM *M* that computes $M(1^n) = desc(C_n)$
 - the following P machine decides L
 - on input $x \in \{0, 1\}^n$ simulate *M* to obtain $desc(C_n)$
 - C_n has input variables z_1, \ldots, z_n
 - evaluate C_n under the assignment σ that maps z_i to the i th bit of x
 - output $C_n(\sigma)$
 - all steps take polynomial time (evaluation takes time proportional to circuit size)

Remarks

- P equals the set of languages with logspace-uniform circuits of polynomial size and polynomial depth (exercise)
- it is an open problem whether the previous inclusion is strict
- in fact it is open whether $NC^1 \subset PH$
- problem is important, since it answers whether all problems in P have fast parallel algorithms
- conjecture: strict

Agenda

- NC versus AC \checkmark
- NC versus P \checkmark
- NC¹ versus L
- NC² versus NL

- 1. logspace reductions are transitive
- if L ∈ NC¹ then there exists a logspace uniform family of circuits {C_n} of depth log n
- circuit evaluation of a circuit of depth d and bounded fan-in can be done in space O(d)

What is the theorem?

What is the theorem?

Theorem $NC^1 \subset L$.

Proof

- for a language L ∈ NC¹, we can compute its circuits (step 2) in logspace
- we can evaluate circuits in logspace (step 3)
- the composition of these two algorithms is still logspace (step 1)
- steps 1 and 2 already proven

Proof of Step 3

- evaluate the circuit recursively
- identify gates with paths from output to input node
 - output node:

NC1 vs L

- left predecessor of gate π: π.0
- right predecessor of gate π: π.1

Proof of Step 3

- evaluate the circuit recursively
- identify gates with paths from output to input node
 - output node: e

NC1 vs I

- left predecessor of gate π: π.0
- right predecessor of gate π: π.1
- 1. if π is an input return value
 - **2.** if π denotes an *op* gate, compute value of π .0, value of π .1 and combine
- recursive depth log n, only one global variable holding current path: total log n space
- note that the naive recursion takes log² *n* space!

- NC versus AC \checkmark
- NC versus P √
- NC¹ versus L \checkmark
- NC² versus NL

The theorem

Theorem $NL \subseteq NC^2$

Proof outline

- show that Path ∈ NC²
- let *L* ∈ NL and NL machine *M* deciding it; for a given input *x* ∈ {0, 1}*
- build a circuit C₁ computing the adjacency matrix of M's configuration graph on input x
- build a second circuit C₂ that takes this output and decides whether there is an accepting run
- the composition of C₁ and C₂ decides L
- observe: the composition can be computed in logspace

NC2 vs NL

Path ∈ NC²

- let A be the $n \times n$ adjacency matrix of a graph
- let B = A + I (add self loops)
- compute the square product B²

$$B_{i,j}^2 = \bigvee_k B_{i,k} \wedge B_{k,j}$$

- contains 1 iff there is a path of length at most 2
- can be done in AC⁰ ⊆ NC¹
- log *n* times repeated squaring
- \Rightarrow paths can be computed in NC²

Agenda

- NC versus AC \checkmark
- NC versus P √
- NC¹ versus L \checkmark
- NC² versus NL \checkmark

Summary

Criticism of NC

The notion of NC as efficient parallel computation may be criticized.

- polynomially many processors
 - in the NC hierarchy a $\log n$ algorithm with n^2 processors is favored over one with *n* processors and time $\log^2 n$
 - expensive
- polylogarithmic depth
 - for many practical inputs, sublinear algorithms might be as good or better
 - e.g. n^{0.1} is at most log² n for values up to 2¹⁰⁰

- AC = NC
- $\bullet \ \mathbf{NC}^1 \subseteq \mathbf{L} \subseteq \mathbf{NL} \subseteq \mathbf{NC}^2 \subseteq \mathbf{P}$
- up next: $AC^0 \subset NC^1$

Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science Technical University of Munich Summer 2016

July 11, 2016

Lecture 24 $AC^0 \subset NC^1$

- lower bounds for circuits
- $AC^0 \subset NC^1$
- tool: random restrictions and switching lemma

Circuit lower bounds

- *n* is trivial
- 5n o(n) for NP-complete problems
- special cases: bounded depth
- any Boolean formula by circuit of depth 2 and exponential size
- some proven to require exponential size, not valid for depth 3 any more
- do NP-complete problems have polynomial circuits with constant depth, i.e., AC⁰?

$\boldsymbol{A}\boldsymbol{C}^0\subset\boldsymbol{N}\boldsymbol{C}^1$

No!

$AC^0 \subset NC^1$

No!

Theorem

⊕ ∉ AC⁰

- $\bigoplus \in \mathbb{NC}^1$ by binary " \oplus -tree"
- hence $AC^0 \subset NC^1$

- lower bounds for circuits \checkmark
- $AC^0 \subset NC^1 \checkmark$
- tool: random restrictions and switching lemma

Main idea: random restrictions

- every function with AC⁰ satisfies:
- if vast majority of inputs fixed (randomly) to 0's and 1's
- then with positive probability the resulting function is constant
- but ⊕ is not!

Håstad's switching lemma

Function *f* under a partial assignment ρ is denoted $f|_{\rho}$. Expressibility of *f* in k-CNF (or k-DNF) is denoted by $f \in k$ -CNF (or $f \in k$ -DNF).

Theorem (Håstad's lemma, 1986)

Let $f \in k$ -DNF and ρ random partial assignment to t random input bits. Then $\Pr_{\rho}[f|_{\rho} \notin s$ -CNF] $\leq \left(\frac{(n-t)}{n}k^{10}\right)^{s/2}$ for every $s \geq 2$.

Håstad's switching lemma

Function *f* under a partial assignment ρ is denoted $f|_{\rho}$. Expressibility of *f* in k-CNF (or k-DNF) is denoted by $f \in k$ -CNF (or $f \in k$ -DNF).

Theorem (Håstad's lemma, 1986)

Let $f \in k$ -DNF and ρ random partial assignment to t random input bits. Then $\Pr_{\rho}[f|_{\rho} \notin s$ -CNF] $\leq \left(\frac{(n-t)}{n}k^{10}\right)^{s/2}$ for every $s \geq 2$.

- similarly for CNF
- restriction allows for switching between DNF and CNF without much blowup
- proof idea: 1-to-1 mapping of "bad" partial assignments (non-constant results) to "good" partial completions (constant results)
Proof sketch of $\bigoplus \notin AC^0$

- start with any AC⁰ circuit (in alternating form)
- in *i*th round:
- fix $n_i \sqrt{n_i}$ input bits $(n_0 = n)$
- · switch the two bottom layers into the other normal form
- collapse with the layer one above

Proof sketch of $\bigoplus \notin AC^0$

- start with any AC⁰ circuit (in alternating form)
- in *i*th round:
- fix $n_i \sqrt{n_i}$ input bits $(n_0 = n)$
- · switch the two bottom layers into the other normal form
- collapse with the layer one above
- finally, obtain two-layer DNF
- and make it constant (by fixing $\leq k$ variables in the first clause)

Proof sketch of $\bigoplus \notin AC^0$

- start with any AC⁰ circuit (in alternating form)
- in *i*th round:
- fix $n_i \sqrt{n_i}$ input bits $(n_0 = n)$
- · switch the two bottom layers into the other normal form
- collapse with the layer one above
- finally, obtain two-layer DNF
- and make it constant (by fixing $\leq k$ variables in the first clause)
- but ⊕ cannot be made constant for any partial assignment

What have we learnt?

- lower bounds are hard
- in special simple cases possible
- tool: random partial assignments

Complexity Theory

Mikhail Raskin, Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science Technical University of Munich Summer 2019

June 14, 2019

Lecture 24' $AC^0 \subset NC^1$: original proof

(Furst-Saxe-Sipser 1984)

Tool: still random assignments

Separate arguments for wide and narrow conjunctions/disjunctions

Tool: still random assignments

Separate arguments for wide and narrow conjunctions/disjunctions

- circuits to trees
- make bottom layer fan-in bounded
- make bottom two-layer subtrees bounded
- reduce depth

Poly-size fixed-depth circuits (Cn).

Poly-size fixed-depth circuits (*Cn*). Convert to trees (fan-out 1 except for inputs),

Poly-size fixed-depth circuits (*Cn*). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level,

Poly-size fixed-depth circuits (*Cn*). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers.

Poly-size fixed-depth circuits (*Cn*). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Poly-size fixed-depth circuits (*Cn*). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Paths from root: just a polynomial number (depth is fixed) Copy subgraphs as needed until we get trees Same depth, still polynomial size

Poly-size fixed-depth circuits (*Cn*).

Poly-size fixed-depth circuits (*Cn*). Convert to trees (fan-out 1 except for inputs),

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level,

Poly-size fixed-depth circuits (*Cn*). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers.

Poly-size fixed-depth circuits (*Cn*). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Poly-size fixed-depth circuits (*Cn*). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Negations: push down

Poly-size fixed-depth circuits (*Cn*). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Negations: push down Adjacent conjunctions, adjacent disjunctions: merge

Poly-size fixed-depth circuits (*Cn*). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Negations: push down Adjacent conjunctions, adjacent disjunctions: merge

Depth: number of conjunction/disjunction layers

Assume we have a sequence of minimal depth

- circuits to trees \checkmark
- make bottom layer fan-in bounded
- make bottom two-layer subtrees bounded
- reduce depth

Bounded bottom layer fan-in

Assign * ($Pr = n^{-1/2}$), 0 and 1 (equal probability) to input variables. Circuit size: n^k

Bounded bottom layer fan-in

Assign * ($Pr = n^{-1/2}$), 0 and 1 (equal probability) to input variables. Circuit size: n^k

Goals:

- $\geq \sqrt{n}/2$ variables left free (*)
- all bottom operations have fan-in < c (c will be 8k)

The restricted circuit still calculates parity.

Bounded bottom layer fan-in

Assign * ($Pr = n^{-1/2}$), 0 and 1 (equal probability) to input variables. Circuit size: n^k

Goals:

- $\geq \sqrt{n}/2$ variables left free (*)
- all bottom operations have fan-in < c (c will be 8k)

The restricted circuit still calculates parity.

Estimate for a single operation Separately wide ($\ge c \log n$) and narrow cases

Bottom layer: cases

Wide:

> 1/3 probability per assignment to become constant Avoiding: $(2/3)^{c \log n} = o(n^{-c/4})$

Bottom layer: cases

Wide:

> 1/3 probability per assignment to become constant Avoiding: $(2/3)^{c \log n} = o(n^{-c/4})$

Narrow: Having > c rare * entries $Pr \leq {\binom{c \log n}{c}} \sqrt{n^{-c}} \leq (c \log n)^c n^{-c/2} = o(n^{-c/4})$

Bottom layer: cases

Wide:

> 1/3 probability per assignment to become constant Avoiding: $(2/3)^{c \log n} = o(n^{-c/4})$

Narrow: Having > c rare * entries $Pr \leq {\binom{c \log n}{c}} \sqrt{n^{-c}} \leq (c \log n)^c n^{-c/2} = o(n^{-c/4})$

c = 8k, only n^k sources of problems, union bound

Bottom layer: result

Probability of $< \sqrt{n}/2$ assignments of * is also small By union bound: we still have optimal depth, worse polynomial size

- circuits to trees \checkmark
- make bottom layer fan-in bounded \checkmark
- make bottom two-layer subtrees bounded
- reduce depth

Bottom two layers

Reassign *k* We have minimal-depth n^k -sized tree circuits for parity with fan-in *c* in the bottom layer Assign * ($Pr = n^{-1/2}$), 0 and 1 (equal probability) to input variables. Circuit size: n^k

Bottom two layers

Reassign *k* We have minimal-depth n^k -sized tree circuits for parity with fan-in *c* in the bottom layer Assign * ($Pr = n^{-1/2}$), 0 and 1 (equal probability) to input variables. Circuit size: n^k

Goals:

- $\geq \sqrt{n}/2$ variables left free (*)
- all layer-two operations depend on b(c) variables

The restricted circuit still calculates parity.

Bottom two layers: proof

Induction on c, c = 1 is the previous case $b(c) = k \times 4^c$

Bottom two layers: proof

Induction on *c*, c = 1 is the previous case $b(c) = k \times 4^{c}$

Wide: > *b* log *n* disjoint bottom-level argument nodes Probability of constant: $(1 - 4^{-c})^{b \log n} = n^{b \log 1 - 4^{-c}} \le n^{-b4^{-c}} = o(n^{-k})$

Bottom two layers: proof

Induction on *c*, c = 1 is the previous case $b(c) = k \times 4^{c}$

Wide: > *b* log *n* disjoint bottom-level argument nodes Probability of constant: $(1 - 4^{-c})^{b \log n} = n^{b \log 1 - 4^{-c}} \le n^{-b4^{-c}} = o(n^{-k})$

Narrow: Maximal collection of input-disjoint argument nodes Set of their inputs: HH hits each argument node Fixing values of * in H: by induction, dependency on b(c - 1) inputs
Bottom two layers: proof

Induction on *c*, c = 1 is the previous case $b(c) = k \times 4^{c}$

Wide: > *b* log *n* disjoint bottom-level argument nodes Probability of constant: $(1 - 4^{-c})^{b \log n} = n^{b \log 1 - 4^{-c}} \le n^{-b4^{-c}} = o(n^{-k})$

Narrow: Maximal collection of input-disjoint argument nodes Set of their inputs: *H H* hits each argument node Fixing values of * in *H*: by induction, dependency on b(c-1) inputs $|H| \le b(c)c \log n$; Probably < 4*k* entries of *; dependency on $4k + 2^{4k}b(c-1)$ is OK.

- circuits to trees \checkmark
- make bottom layer fan-in bounded \checkmark
- make bottom *two-layer* subtrees bounded \checkmark
- reduce depth

Second layer elements depend on fixed number of inputs — brute force CNF/DNF, polynomial blowup, lower depth Contradiction!

- circuits to trees \checkmark
- make bottom layer fan-in bounded \checkmark
- make bottom *two-layer* subtrees bounded \checkmark
- reduce depth √

Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science Technical University of Munich Summer 2016

July 11, 2016

Lecture 25 Counting

- examples of counting problems
- definition
- how hard are they?

Deciding is easy, counting is hard

Example (#CYCLE)

Number of simple cycles

- cycle detection in linear time
- if #CYCLE has a polynomial algorithm then P = NP

Deciding is easy, counting is hard

Example (#CYCLE)

Number of simple cycles

- cycle detection in linear time
- if #CYCLE has a polynomial algorithm then P = NP

Example (GraphReliability)

 $\frac{1}{2^n}$ number of subgraphs with a path from s to t

Example (Maximum likelyhood in Bayes nets)

Visible variables are \lor 's of \le 3 hidden variables. What is the fraction of satisfying assignments with $x_1 = 1$?

equivalent to #SAT

Definition

Definition (#P)

A function $f : \{0, 1\}^* \to \mathbb{N}$ is in $\#\mathbb{P}$ if there is a polynomial-time TM *M* and a polynomial *p* such that $\forall x \in \{0, 1\}^*$

$$f(x) = \left| \left\{ y \in \{0, 1\}^{p(|x|)} : M(x, y) = 1 \right\} \right|$$

- counting certificates
- or accepting paths

Definition (FP)

A function $f : \{0, 1\}^* \to \mathbb{N}$ is in **FP** if there is a deterministic polynomial-time TM computing f.

• efficeintly solvable counting

Theorem

FP = #P

Theorem

 $FP = #P \iff$

Theorem $FP = \#P \iff P = PP$

Completeness

Definition A function *f* is #P-complete if $f \in \#P$ and for every $g \in \#P$ we have $g \in FP^{f}$

• #SAT is #P-complete

Completeness

Definition

A function *f* is #P-complete if $f \in \#P$ and for every $g \in \#P$ we have $g \in FP^{f}$

• #SAT is #P-complete

Example (Determinant)

 $det(A) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n A_{i,\sigma(i)}$

· computable in polynomial time

Example (Permanent)

 $perm(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A_{i,\sigma(i)}$

- #P-complete (for 0,1 matrices) [Valiant'79]
- hence $perm \in FP \implies P = NP$

Toda's theorem

Theorem (Toda'91)

 $\mathsf{PH} \subseteq \mathsf{P}^{\#SAT}$

Proof idea

- randomized reduction from PH to ⊕SAT (odd number of satisfying assignments; ⊕P-complete problem)
- derandomization

What have we learnt?

- counting seems harder than deciding
- #P-complete problems arise from NP-complete problems as well as from those in P
- more powerful than alternating quantifiers
- classes PP and ⊕P: most and least significant bits of #P function