Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 22, 2019

Lecture 9

Intro

Agenda

- about logarithmic space
- paths ...
- ... and the absence thereof
- Immerman-Szelepcsényi and others

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of

- pointers into the input
 - for instance node identities (graph problems)
 - head positions
- counters up to input length

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of

- pointers into the input
 - for instance node identities (graph problems)
 - head positions
- counters up to input length

Examples:

- L: basic arithmetic
- NL: paths in graphs

Technical issues

- space usage refers to work tapes only
- read-only input and write-once output is allowed to use more than log *n* cells
- write-once: output head must not move to the left
- logspace reductions (because polynomial time-reductions too powerful)

Logspace reductions

Definition (logspace reduction)

Let $L, L' \subseteq \{0, 1\}^*$ be languages. We say that L is logspace-reducible to L', written $L \leq_{log} L'$ if there is a function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ computed by a deterministic TM using logarithmic space such that $x \in L \Leftrightarrow f(x) \in L'$ for every $x \in \{0, 1\}^*$.

- ≤_{log} is transitive
- $C \in L$ and $B \leq_{log} C$ implies $B \in L$

 NL-hardness and NL-completeness defined in terms of logspace reductions

Logspace reductions

Definition (logspace reduction)

Let $L, L' \subseteq \{0, 1\}^*$ be languages. We say that L is logspace-reducible to L', written $L \leq_{log} L'$ if there is a function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ computed by a deterministic TM using logarithmic space such that $x \in L \Leftrightarrow f(x) \in L'$ for every $x \in \{0, 1\}^*$.

- ≤_{log} is transitive
- $C \in L$ and $B \leq_{log} C$ implies $B \in L$
 - Space does not bound time and output size: possibly $|f(w)| \neq O(\log(|w|))$
- NL-hardness and NL-completeness defined in terms of logspace reductions

Logspace reductions

Definition (logspace reduction)

Let $L, L' \subseteq \{0, 1\}^*$ be languages. We say that L is logspace-reducible to L', written $L \leq_{log} L'$ if there is a function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ computed by a deterministic TM using logarithmic space such that $x \in L \Leftrightarrow f(x) \in L'$ for every $x \in \{0, 1\}^*$.

- ≤_{log} is transitive
- $C \in L$ and $B \leq_{log} C$ implies $B \in L$
 - Space does not bound time and output size: possibly $|f(w)| \neq O(\log(|w|))$
 - Compute f(x) on demand: store only current symbol and its cell number
- NL-hardness and NL-completeness defined in terms of logspace reductions

Read-once Certificates

Similar to NP, also NL has a characterization using certificates

Theorem (read-once certificates)

 $L \subseteq \{0, 1\}^*$ is in NL iff there exists a det. logspace TM M (verifier) and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0, 1\}^*$

 $x \in L$ iff $\exists u \in \{0, 1\}^{p(|x|)}.M(x, u) = 1$

Certificate u is written on an additional read-once input tape of M.

Read-once Certificates

Similar to NP, also NL has a characterization using certificates

Theorem (read-once certificates)

 $L \subseteq \{0, 1\}^*$ is in NL iff there exists a det. logspace TM M (verifier) and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0, 1\}^*$

 $x \in L$ iff $\exists u \in \{0, 1\}^{p(|x|)}.M(x, u) = 1$

Certificate u is written on an additional read-once input tape of M.

- example: path in a graph is a read-once certificate
- ⇒ certificate is sequence of choices
- certificate is guessed bit-wise (it cannot be stored)

Paths

Agenda

- about logarithmic space \checkmark
- paths ...
- ... and the absence thereof
- Immerman-Szelepcsényi and others

NL is all about paths

Recall the language Path in directed graphs defined as

 $\{\langle G, s, t \rangle \mid \exists a \text{ path from } s \text{ to } t \text{ in directed graph } G\}$

NL is all about paths

Recall the language Path in directed graphs defined as

 $\{\langle G, s, t \rangle \mid \exists a \text{ path from } s \text{ to } t \text{ in directed graph } G\}$

We have seen in Lecture 3 that $Path \in NL$ by guessing a path:

- non-deterministic walks on graphs of n nodes
- if there is a path, it has length $\leq n$
- maintain one pointer to current node
- one counter counting up to n

NL is all about paths

Recall the language Path in directed graphs defined as

 $\{\langle G, s, t \rangle \mid \exists a \text{ path from } s \text{ to } t \text{ in directed graph } G\}$

We have seen in Lecture 3 that $Path \in NL$ by guessing a path:

- non-deterministic walks on graphs of n nodes
- if there is a path, it has length $\leq n$
- maintain one pointer to current node
- one counter counting up to n

In fact we even have:

Theorem (Path)

Path is NL-complete.

Proof

• let *L* ∈ NL be arbitrary, decided by NDTM *M*

Proof

- let L ∈ NL be arbitrary, decided by NDTM M
- on input x ∈ {0, 1}ⁿ reduction f outputs configuration graph G(M, x) of size 2^{O(log n)} by counting to n

Proof

- let L ∈ NL be arbitrary, decided by NDTM M
- on input x ∈ {0, 1}ⁿ reduction f outputs configuration graph G(M, x) of size 2^{O(log n)} by counting to n
- there exists a path from *C*_{start} to *C*_{accept} in *G*(*M*, *x*) iff *M* accepts *x*
- path itself can be used as read-once certificate

More path problems

- many natural problems correspond to path (reachability) problems
- the word problem for NFAs: { $\langle A, w \rangle$ | w is accepted by NFA A}
- cycle detection/connected components in directed graphs
- 2SAT ∈ NL

More path problems

- many natural problems correspond to path (reachability) problems
- the word problem for NFAs: { $\langle A, w \rangle$ | w is accepted by NFA A}
- cycle detection/connected components in directed graphs
- 2SAT ∈ NL
 - $x \lor y$ equivalent to $\neg x \implies y$ equivalent to $\neg y \implies x$
 - yields an implication graph (computable in logspace)
 - unsatisfiable iff there exists a path $x \to \overline{x} \to x$ in implication graph for variable x

Certificates for absence of paths?

- recall the open problem NP = coNP?
- equivalent to asking whether unsatisfiability has short certificates
- possibly not

Certificates for absence of paths?

- recall the open problem NP = coNP?
- equivalent to asking whether unsatisfiability has short certificates
- possibly not

What about absence of paths from *s* to *t* in graph *G* with *n* nodes named $1, \ldots, n$?

 let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in *C_i* has read-once certificates (paths)

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in *C_i* has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - 1. list all membership certificates for all $u \in C_i$ sorted in ascending order
 - 2. check validity and sortedness
 - 3. check that v is not in the list
 - 4. check that the list has length $|C_i|$

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - 1. list all membership certificates for all $u \in C_i$ sorted in ascending order
 - 2. check validity and sortedness
 - 3. check that v is not in the list
 - 4. check that the list has length $|C_i|$
- non-membership in *C_i* is known given |*C_{i-1}*| (checking neighbors in (3) as well)

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - 1. list all membership certificates for all $u \in C_i$ sorted in ascending order
 - 2. check validity and sortedness
 - 3. check that v is not in the list
 - 4. check that the list has length $|C_i|$
- non-membership in *C_i* is known given |*C_{i-1}*| (checking neighbors in (3) as well)
- $|C_i| = c$ can be certified given $|C_{i-1}|$ using $C_0 = \{s\}$ as base case

- let *C_i* be the set of nodes reachable from *s* in at most *i* steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - 1. list all membership certificates for all $u \in C_i$ sorted in ascending order
 - 2. check validity and sortedness
 - 3. check that v is not in the list
 - 4. check that the list has length $|C_i|$
- non-membership in *C_i* is known given |*C_{i-1}*| (checking neighbors in (3) as well)
- $|C_i| = c$ can be certified given $|C_{i-1}|$ using $C_0 = \{s\}$ as base case

Certificate is certificate for non-membership in *C_n*!

- let *C_i* be the set of nodes reachable from *s* in at most *i* steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - 1. list all membership certificates for all $u \in C_i$ sorted in ascending order
 - 2. check validity and sortedness
 - 3. check that v is not in the list
 - 4. check that the list has length $|C_i|$
- non-membership in *C_i* is known given |*C_{i-1}*| (checking neighbors in (3) as well)
- $|C_i| = c$ can be certified given $|C_{i-1}|$ using $C_0 = \{s\}$ as base case

Certificate is certificate for non-membership in C_n ! Its size is polynomial in number of nodes and read-once! M

NL algorithm for PATH

= "On input $\langle G, s, t \rangle$:		
1.	Let $c_0 = 1$.	$\llbracket A_0 = \{s\} \text{ has } 1 \text{ node } \rrbracket$
2.	For $i = 0$ to $m - 1$:	$\llbracket \text{ compute } c_{i+1} \text{ from } c_i \rrbracket$
3.	Let $c_{i+1} = 1$.	$[c_{i+1} \text{ counts nodes in } A_{i+1}]$
4.	For each node $v \neq s$ in G :	$\llbracket \text{check if } v \in A_{i+1} \rrbracket$
5.	Let $d = 0$.	$\llbracket d \text{ re-counts } A_i \rrbracket$
6.	For each node <i>u</i> in <i>G</i> :	$\llbracket \text{check if } u \in A_i \rrbracket$
7.	Nondeterministically either perform or skip these steps:	
8.	Nondeterministically follow a path of length at most i	
	from s and <i>reject</i> if it doesn't end at u .	
9.	Increment d .	\llbracket verified that $u \in A_i \rrbracket$
10.	If (u, v) is an edge of G, increment c_{i+1} and go to	
	stage 5 with the next	v. [[verified that $v \in A_{i+1}$]]
11.	If $d \neq c_i$, then reject.	$[\![$ check whether found all A_i $]\!]$
12.	Let $d = 0$.	$\llbracket c_m \text{ now known; } d \text{ re-counts } A_m \rrbracket$
13.	For each node <i>u</i> in <i>G</i> :	$\llbracket \text{check if } u \in A_m \rrbracket$
14.	Nondeterministically either perform or skip these steps:	
15.	Nondeterministically follow a path of length at most m	
	from s and reject if it doesn't end at u.	
16.	If $u = t$, then reject.	\llbracket found path from s to t \rrbracket
17.	Increment d.	$\llbracket \text{ verified that } u \in A_m \rrbracket$
18.	If $d \neq c_m$, then <i>reject</i> .	$[\![{\rm check \ whether \ found \ all \ of \ } A_m \]\!]$
	Otherwise, accept."	

NL = coNL

We have just argued the existence of polynomial read-once certificates for absence of paths.

Theorem (Immerman-Szelepcsényi) NL = coNL. Conclusion

Further Reading

- paths in undirected graphs is in L
 - Omer Reingold Undirected ST-Connectivity in Log-Space, STOC 2005
 - available from

http://www.wisdom.weizmann.ac.il/~reingold/publications/sl.ps

- an alternative characterization of NL by reachability is at the heart of descriptive complexity
 - NL is first-order logic plus transitive closure
 - Neil Immerman, Descriptive Complexity, Springer 1999.

Conclusion

What have we learnt?

- space classes closed under complement
 - so are context-sensitive language (see exercises)
- analogous results for time complexity unlikely
- space classes beyond logarithmic closed under non-determinism
- NL is all about reachability
- 2SAT is in NL and thus also 2SAT (in fact, hard for NL)
- NL has polynomial read-once certificates
- logarithmic space ~ constant number of pointers and counters

Up next: the polynomial hierarchy PH