
Complexity Theory

Jan Křetı́nský

Technical University of Munich

Summer 2019

May 22, 2019

1



Lecture 9

NL

2



Intro

Agenda

• about logarithmic space

• paths . . .

• . . . and the absence thereof

• Immerman-Szelepcsényi and others

3



About logarithmic space

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of
• pointers into the input

• for instance node identities (graph problems)
• head positions

• counters up to input length

Examples:

• L: basic arithmetic

• NL: paths in graphs

4



About logarithmic space

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of
• pointers into the input

• for instance node identities (graph problems)
• head positions

• counters up to input length

Examples:

• L: basic arithmetic

• NL: paths in graphs

4



About logarithmic space

Technical issues

• space usage refers to work tapes only

• read-only input and write-once output is allowed to use more
than log n cells

• write-once: output head must not move to the left

• logspace reductions (because polynomial time-reductions too
powerful)

5



About logarithmic space

Logspace reductions

Definition (logspace reduction)

Let L , L ′ ⊆ {0, 1}∗ be languages. We say that L is
logspace-reducible to L ′, written L ≤log L ′ if there is a function
f : {0, 1}∗ → {0, 1}∗ computed by a deterministic TM using
logarithmic space such that x ∈ L ⇔ f(x) ∈ L ′ for every x ∈ {0, 1}∗.

• ≤log is transitive
• C ∈ L and B ≤log C implies B ∈ L

• Space does not bound time and output size: possibly
|f(w)| , O(log(|w |))

• Compute f(x) on demand: store only current symbol and its cell
number

• NL-hardness and NL-completeness defined in terms of
logspace reductions

6



About logarithmic space

Logspace reductions

Definition (logspace reduction)

Let L , L ′ ⊆ {0, 1}∗ be languages. We say that L is
logspace-reducible to L ′, written L ≤log L ′ if there is a function
f : {0, 1}∗ → {0, 1}∗ computed by a deterministic TM using
logarithmic space such that x ∈ L ⇔ f(x) ∈ L ′ for every x ∈ {0, 1}∗.

• ≤log is transitive
• C ∈ L and B ≤log C implies B ∈ L

• Space does not bound time and output size: possibly
|f(w)| , O(log(|w |))

• Compute f(x) on demand: store only current symbol and its cell
number

• NL-hardness and NL-completeness defined in terms of
logspace reductions

6



About logarithmic space

Logspace reductions

Definition (logspace reduction)

Let L , L ′ ⊆ {0, 1}∗ be languages. We say that L is
logspace-reducible to L ′, written L ≤log L ′ if there is a function
f : {0, 1}∗ → {0, 1}∗ computed by a deterministic TM using
logarithmic space such that x ∈ L ⇔ f(x) ∈ L ′ for every x ∈ {0, 1}∗.

• ≤log is transitive
• C ∈ L and B ≤log C implies B ∈ L

• Space does not bound time and output size: possibly
|f(w)| , O(log(|w |))

• Compute f(x) on demand: store only current symbol and its cell
number

• NL-hardness and NL-completeness defined in terms of
logspace reductions

6



About logarithmic space

Read-once Certificates

Similar to NP, also NL has a characterization using certificates

Theorem (read-once certificates)

L ⊆ {0, 1}∗ is in NL iff there exists a det. logspace TM M (verifier)
and a polynomial p : N→ N such that for every x ∈ {0, 1}∗

x ∈ L iff ∃u ∈ {0, 1}p(|x |).M(x, u) = 1

Certificate u is written on an additional read-once input tape of M.

• example: path in a graph is a read-once certificate

⇒ certificate is sequence of choices

⇐ certificate is guessed bit-wise (it cannot be stored)

7



About logarithmic space

Read-once Certificates

Similar to NP, also NL has a characterization using certificates

Theorem (read-once certificates)

L ⊆ {0, 1}∗ is in NL iff there exists a det. logspace TM M (verifier)
and a polynomial p : N→ N such that for every x ∈ {0, 1}∗

x ∈ L iff ∃u ∈ {0, 1}p(|x |).M(x, u) = 1

Certificate u is written on an additional read-once input tape of M.

• example: path in a graph is a read-once certificate

⇒ certificate is sequence of choices

⇐ certificate is guessed bit-wise (it cannot be stored)

7



Paths

Agenda

• about logarithmic space X

• paths . . .

• . . . and the absence thereof

• Immerman-Szelepcsényi and others

8



Paths Paths is NL-complete

NL is all about paths

Recall the language Path in directed graphs defined as

{〈G, s, t〉 | ∃a path from s to t in directed graph G}

We have seen in Lecture 3 that Path ∈ NL by guessing a path:

• non-deterministic walks on graphs of n nodes

• if there is a path, it has length ≤ n

• maintain one pointer to current node

• one counter counting up to n

In fact we even have:

Theorem (Path)

Path is NL-complete.

9



Paths Paths is NL-complete

NL is all about paths

Recall the language Path in directed graphs defined as

{〈G, s, t〉 | ∃a path from s to t in directed graph G}

We have seen in Lecture 3 that Path ∈ NL by guessing a path:

• non-deterministic walks on graphs of n nodes

• if there is a path, it has length ≤ n

• maintain one pointer to current node

• one counter counting up to n

In fact we even have:

Theorem (Path)

Path is NL-complete.

9



Paths Paths is NL-complete

NL is all about paths

Recall the language Path in directed graphs defined as

{〈G, s, t〉 | ∃a path from s to t in directed graph G}

We have seen in Lecture 3 that Path ∈ NL by guessing a path:

• non-deterministic walks on graphs of n nodes

• if there is a path, it has length ≤ n

• maintain one pointer to current node

• one counter counting up to n

In fact we even have:

Theorem (Path)

Path is NL-complete.

9



Paths Paths is NL-complete

Proof

• let L ∈ NL be arbitrary, decided by NDTM M

• on input x ∈ {0, 1}n reduction f outputs configuration graph
G(M, x) of size 2O(log n) by counting to n

• there exists a path from Cstart to Caccept in G(M, x) iff M
accepts x

• path itself can be used as read-once certificate

10



Paths Paths is NL-complete

Proof

• let L ∈ NL be arbitrary, decided by NDTM M

• on input x ∈ {0, 1}n reduction f outputs configuration graph
G(M, x) of size 2O(log n) by counting to n

• there exists a path from Cstart to Caccept in G(M, x) iff M
accepts x

• path itself can be used as read-once certificate

10



Paths Paths is NL-complete

Proof

• let L ∈ NL be arbitrary, decided by NDTM M

• on input x ∈ {0, 1}n reduction f outputs configuration graph
G(M, x) of size 2O(log n) by counting to n

• there exists a path from Cstart to Caccept in G(M, x) iff M
accepts x

• path itself can be used as read-once certificate

10



Paths Other path problems

More path problems

• many natural problems correspond to path (reachability)
problems

• the word problem for NFAs: {〈A ,w〉 | w is accepted by NFA A }

• cycle detection/connected components in directed graphs

• 2SAT ∈ NL

• x ∨ y equivalent to ¬x =⇒ y equivalent to ¬y =⇒ x
• yields an implication graph (computable in logspace)
• unsatisfiable iff there exists a path x → x → x in implication

graph for variable x

11



Paths Other path problems

More path problems

• many natural problems correspond to path (reachability)
problems

• the word problem for NFAs: {〈A ,w〉 | w is accepted by NFA A }

• cycle detection/connected components in directed graphs

• 2SAT ∈ NL
• x ∨ y equivalent to ¬x =⇒ y equivalent to ¬y =⇒ x
• yields an implication graph (computable in logspace)
• unsatisfiable iff there exists a path x → x → x in implication

graph for variable x

11



Paths Certificates for absence of paths

Certificates for absence of paths?

• recall the open problem NP = coNP?

• equivalent to asking whether unsatisfiability has short
certificates

• possibly not

What about absence of paths from s to t in graph G with n nodes
named 1,. . . ,n?

12



Paths Certificates for absence of paths

Certificates for absence of paths?

• recall the open problem NP = coNP?

• equivalent to asking whether unsatisfiability has short
certificates

• possibly not

What about absence of paths from s to t in graph G with n nodes
named 1,. . . ,n?

12



Paths Certificates for absence of paths

Absence of path has read-once cert.!

• let Ci be the set of nodes reachable from s in at most i steps
(bounded reachability)

• membership in Ci has read-once certificates (paths)
• non-membership of v in Ci also has read-once certificates if
|Ci | is known

1. list all membership certificates for all u ∈ Ci sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Ci |

• non-membership in Ci is known given |Ci−1| (checking
neighbors in (3) as well)

• |Ci | = c can be certified given |Ci−1| using C0 = {s} as base
case

Certificate is certificate for non-membership in Cn!
Its size is polynomial in number of nodes and read-once!

13



Paths Certificates for absence of paths

Absence of path has read-once cert.!

• let Ci be the set of nodes reachable from s in at most i steps
(bounded reachability)

• membership in Ci has read-once certificates (paths)

• non-membership of v in Ci also has read-once certificates if
|Ci | is known

1. list all membership certificates for all u ∈ Ci sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Ci |

• non-membership in Ci is known given |Ci−1| (checking
neighbors in (3) as well)

• |Ci | = c can be certified given |Ci−1| using C0 = {s} as base
case

Certificate is certificate for non-membership in Cn!
Its size is polynomial in number of nodes and read-once!

13



Paths Certificates for absence of paths

Absence of path has read-once cert.!

• let Ci be the set of nodes reachable from s in at most i steps
(bounded reachability)

• membership in Ci has read-once certificates (paths)
• non-membership of v in Ci also has read-once certificates if
|Ci | is known

1. list all membership certificates for all u ∈ Ci sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Ci |

• non-membership in Ci is known given |Ci−1| (checking
neighbors in (3) as well)

• |Ci | = c can be certified given |Ci−1| using C0 = {s} as base
case

Certificate is certificate for non-membership in Cn!
Its size is polynomial in number of nodes and read-once!

13



Paths Certificates for absence of paths

Absence of path has read-once cert.!

• let Ci be the set of nodes reachable from s in at most i steps
(bounded reachability)

• membership in Ci has read-once certificates (paths)
• non-membership of v in Ci also has read-once certificates if
|Ci | is known

1. list all membership certificates for all u ∈ Ci sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Ci |

• non-membership in Ci is known given |Ci−1| (checking
neighbors in (3) as well)

• |Ci | = c can be certified given |Ci−1| using C0 = {s} as base
case

Certificate is certificate for non-membership in Cn!
Its size is polynomial in number of nodes and read-once!

13



Paths Certificates for absence of paths

Absence of path has read-once cert.!

• let Ci be the set of nodes reachable from s in at most i steps
(bounded reachability)

• membership in Ci has read-once certificates (paths)
• non-membership of v in Ci also has read-once certificates if
|Ci | is known

1. list all membership certificates for all u ∈ Ci sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Ci |

• non-membership in Ci is known given |Ci−1| (checking
neighbors in (3) as well)

• |Ci | = c can be certified given |Ci−1| using C0 = {s} as base
case

Certificate is certificate for non-membership in Cn!
Its size is polynomial in number of nodes and read-once!

13



Paths Certificates for absence of paths

Absence of path has read-once cert.!

• let Ci be the set of nodes reachable from s in at most i steps
(bounded reachability)

• membership in Ci has read-once certificates (paths)
• non-membership of v in Ci also has read-once certificates if
|Ci | is known

1. list all membership certificates for all u ∈ Ci sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Ci |

• non-membership in Ci is known given |Ci−1| (checking
neighbors in (3) as well)

• |Ci | = c can be certified given |Ci−1| using C0 = {s} as base
case

Certificate is certificate for non-membership in Cn!
Its size is polynomial in number of nodes and read-once!

13



Paths Certificates for absence of paths

Absence of path has read-once cert.!

• let Ci be the set of nodes reachable from s in at most i steps
(bounded reachability)

• membership in Ci has read-once certificates (paths)
• non-membership of v in Ci also has read-once certificates if
|Ci | is known

1. list all membership certificates for all u ∈ Ci sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Ci |

• non-membership in Ci is known given |Ci−1| (checking
neighbors in (3) as well)

• |Ci | = c can be certified given |Ci−1| using C0 = {s} as base
case

Certificate is certificate for non-membership in Cn!

Its size is polynomial in number of nodes and read-once!

13



Paths Certificates for absence of paths

Absence of path has read-once cert.!

• let Ci be the set of nodes reachable from s in at most i steps
(bounded reachability)

• membership in Ci has read-once certificates (paths)
• non-membership of v in Ci also has read-once certificates if
|Ci | is known

1. list all membership certificates for all u ∈ Ci sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Ci |

• non-membership in Ci is known given |Ci−1| (checking
neighbors in (3) as well)

• |Ci | = c can be certified given |Ci−1| using C0 = {s} as base
case

Certificate is certificate for non-membership in Cn!
Its size is polynomial in number of nodes and read-once!

13



Paths Certificates for absence of paths

NL algorithm for PATH

14



Paths Certificates for absence of paths

NL = coNL

We have just argued the existence of polynomial read-once
certificates for absence of paths.

Theorem (Immerman-Szelepcsényi)

NL = coNL.

15



Conclusion

Further Reading

• paths in undirected graphs is in L
• Omer Reingold Undirected ST-Connectivity in Log-Space,

STOC 2005
• available from

http://www.wisdom.weizmann.ac.il/˜reingold/publications/sl.ps

• an alternative characterization of NL by reachability is at the
heart of descriptive complexity
• NL is first-order logic plus transitive closure
• Neil Immerman, Descriptive Complexity, Springer 1999.

16



Conclusion

What have we learnt?

• space classes closed under complement
• so are context-sensitive language (see exercises)

• analogous results for time complexity unlikely

• space classes beyond logarithmic closed under
non-determinism

• NL is all about reachability

• 2SAT is in NL and thus also 2SAT (in fact, hard for NL)

• NL has polynomial read-once certificates

• logarithmic space ∼ constant number of pointers and counters

Up next: the polynomial hierarchy PH

17


	Intro
	About logarithmic space
	Paths
	Paths is NL-complete
	Other path problems
	Certificates for absence of paths

	Conclusion

