Complexity Theory

Jan Kfetinsky

Technical University of Munich
Summer 2019

May 22, 2019

Lecture 9
NL

Intro

Agenda

about logarithmic space

paths ...

...and the absence thereof

Immerman-Szelepcsényi and others

About logarithmic space

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of
¢ pointers into the input

o for instance node identities (graph problems)
¢ head positions

e counters up to input length

About logarithmic space

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of
¢ pointers into the input

o for instance node identities (graph problems)
¢ head positions

e counters up to input length

Examples:
e L: basic arithmetic
e NL: paths in graphs

About logarithmic space

Technical issues

e space usage refers to work tapes only

e read-only input and write-once output is allowed to use more
than log n cells

e write-once: output head must not move to the left

¢ logspace reductions (because polynomial time-reductions too
powerful)

About logarithmic space

Logspace reductions

Definition (logspace reduction)

Let L,L" € {0,1}* be languages. We say that L is
logspace-reducible to L', written L <4 L" if there is a function
f:{0,1}* — {0, 1}* computed by a deterministic TM using
logarithmic space such that x € L & f(x) € L’ for every x € {0, 1}*.

® <jog is transitive
e CelandB <y Cimplies B el

e NL-hardness and NL-completeness defined in terms of
logspace reductions

About logarithmic space

Logspace reductions

Definition (logspace reduction)

Let L,L" € {0,1}* be languages. We say that L is
logspace-reducible to L', written L <4 L" if there is a function
f:{0,1}* — {0, 1}* computed by a deterministic TM using
logarithmic space such that x € L & f(x) € L’ for every x € {0, 1}*.

® <jog is transitive
e CelandB <y Cimplies B el

e Space does not bound time and output size: possibly
|f(w)l # O(log(Iwl))

e NL-hardness and NL-completeness defined in terms of
logspace reductions

About logarithmic space

Logspace reductions

Definition (logspace reduction)

Let L,L" € {0,1}* be languages. We say that L is
logspace-reducible to L', written L <4 L" if there is a function
f:{0,1}* — {0, 1}* computed by a deterministic TM using
logarithmic space such that x € L & f(x) € L’ for every x € {0, 1}*.

* <jog is transitive
e CelandB <y Cimplies B el
e Space does not bound time and output size: possibly
If(w)l # O(log(Iwl))
o Compute f(x) on demand: store only current symbol and its cell
number
e NL-hardness and NL-completeness defined in terms of
logspace reductions

About logarithmic space
Read-once Certificates
Similar to NP, also NL has a characterization using certificates

Theorem (read-once certificates)

L € {0,1}* isin NL iff there exists a det. logspace TM M (verifier)
and a polynomial p : N — N such that for every x € {0, 1}*

x € L iff Ju € {0, 1)PPD M(x, u) = 1

Certificate u is written on an additional read-once input tape of M.

About logarithmic space

Read-once Certificates

Similar to NP, also NL has a characterization using certificates

Theorem (read-once certificates)

L € {0,1}* isin NL iff there exists a det. logspace TM M (verifier)
and a polynomial p : N — N such that for every x € {0, 1}*

x € L iff Ju € {0, 1)PPD M(x, u) = 1
Certificate u is written on an additional read-once input tape of M.
e example: path in a graph is a read-once certificate

= certificate is sequence of choices
& certificate is guessed bit-wise (it cannot be stored)

Paths

Agenda

about logarithmic space v/

paths ...

...and the absence thereof

Immerman-Szelepcsényi and others

Paths Paths is NL-complete

NL is all about paths

Recall the language Path in directed graphs defined as

{(G, s, t) | Ja path from s to t in directed graph G}

Paths Paths is NL-complete

NL is all about paths

Recall the language Path in directed graphs defined as

{(G, s, t) | Ja path from s to t in directed graph G}

We have seen in Lecture 3 that Path € NL by guessing a path:
¢ non-deterministic walks on graphs of n nodes
e if there is a path, it has length < n
e maintain one pointer to current node
e one counter counting up to n

Paths Paths is NL-complete

NL is all about paths

Recall the language Path in directed graphs defined as

{(G, s, t) | Ja path from s to t in directed graph G}

We have seen in Lecture 3 that Path € NL by guessing a path:
¢ non-deterministic walks on graphs of n nodes
e if there is a path, it has length < n
e maintain one pointer to current node
e one counter counting up to n

In fact we even have:

Theorem (Path)
Path is NL-complete.

Paths Paths is NL-complete

Proof

e let L € NL be arbitrary, decided by NDTM M

10

Paths Paths is NL-complete

Proof

e let L € NL be arbitrary, decided by NDTM M

e oninput x € {0, 1}" reduction f outputs configuration graph
G(M, x) of size 20(l°e") py counting to n

10

Paths Paths is NL-complete

Proof

let L € NL be arbitrary, decided by NDTM M

on input x € {0, 1}" reduction f outputs configuration graph
G(M, x) of size 20(l°e") py counting to n

there exists a path from Cstart 10 Caceept in G(M, x) iff M
accepts x

path itself can be used as read-once certificate

10

Paths Other path problems

More path problems

many natural problems correspond to path (reachability)
problems

the word problem for NFAs: {(A, w) | w is accepted by NFA A}
cycle detection/connected components in directed graphs
2SAT € NL

Paths Other path problems

More path problems

many natural problems correspond to path (reachability)
problems

the word problem for NFAs: {(A, w) | w is accepted by NFA A}
cycle detection/connected components in directed graphs

2SAT € NL

e XV yequivalentto -x = y equivalentto -y — x

¢ yields an implication graph (computable in logspace)

e unsatisfiable iff there exists a path x — X — x in implication
graph for variable x

Paths Certificates for absence of paths

Certificates for absence of paths?

e recall the open problem NP = coNP?

e equivalent to asking whether unsatisfiability has short
certificates

e possibly not

192

Paths Certificates for absence of paths

Certificates for absence of paths?

e recall the open problem NP = coNP?

e equivalent to asking whether unsatisfiability has short
certificates

e possibly not

What about absence of paths from s to t in graph G with n nodes
named 1,...,n?

192

Paths Certificates for absence of paths

Absence of path has read-once cert.!

¢ let C; be the set of nodes reachable from s in at most i steps
(bounded reachability)

13

Paths Certificates for absence of paths

Absence of path has read-once cert.!

¢ let C; be the set of nodes reachable from s in at most i steps
(bounded reachability)
e membership in C; has read-once certificates (paths)

13

Paths Certificates for absence of paths

Absence of path has read-once cert.!

¢ let C; be the set of nodes reachable from s in at most i steps
(bounded reachability)

e membership in C; has read-once certificates (paths)
e non-membership of v in C; also has read-once certificates if
|Ci| is known

13

Paths Certificates for absence of paths

Absence of path has read-once cert.!

¢ let C; be the set of nodes reachable from s in at most i steps
(bounded reachability)

e membership in C; has read-once certificates (paths)
e non-membership of v in C; also has read-once certificates if

|Ci| is known
1. list all membership certificates for all u € C; sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Cj|

13

Paths Certificates for absence of paths

Absence of path has read-once cert.!

¢ let C; be the set of nodes reachable from s in at most i steps
(bounded reachability)

e membership in C; has read-once certificates (paths)
e non-membership of v in C; also has read-once certificates if

|Ci| is known
1. list all membership certificates for all u € C; sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Cj|
e non-membership in C; is known given |C;_1| (checking
neighbors in (3) as well)

13

Paths Certificates for absence of paths

Absence of path has read-once cert.!

¢ let C; be the set of nodes reachable from s in at most i steps
(bounded reachability)

e membership in C; has read-once certificates (paths)
e non-membership of v in C; also has read-once certificates if

|Ci| is known
1. list all membership certificates for all u € C; sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Cj|
e non-membership in C; is known given |C;_1| (checking
neighbors in (3) as well)
¢ |Cj| = ¢ can be certified given |C;_1| using Cy = {s} as base
case

13

Paths Certificates for absence of paths

Absence of path has read-once cert.!

¢ let C; be the set of nodes reachable from s in at most i steps
(bounded reachability)

e membership in C; has read-once certificates (paths)
e non-membership of v in C; also has read-once certificates if

|Ci| is known
1. list all membership certificates for all u € C; sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Cj|
e non-membership in C; is known given |C;_1| (checking
neighbors in (3) as well)
¢ |Cj| = ¢ can be certified given |C;_1| using Cy = {s} as base
case

Certificate is certificate for non-membership in Cp!

13

Paths Certificates for absence of paths

Absence of path has read-once cert.!

¢ let C; be the set of nodes reachable from s in at most i steps
(bounded reachability)

e membership in C; has read-once certificates (paths)
e non-membership of v in C; also has read-once certificates if

|Ci| is known
1. list all membership certificates for all u € C; sorted in ascending
order

2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length |Cj|
e non-membership in C; is known given |C;_4| (checking
neighbors in (3) as well)
¢ |Cj| = ¢ can be certified given |C;_1| using Cy = {s} as base
case
Certificate is certificate for non-membership in Cp!
Its size is polynomial in number of nodes and read-once!

13

Paths Certificates for absence of paths

NL algorithm for PATH

M = “On input (G, s,t):

1.
2
3
4
5.
6
7
8
9.
10.
11.
12.
13.
15.
16.

17.
18.

Letco =1. [Ao = {s} has 1 node]
Fori=0tom—1: [compute ¢; 41 from ¢; |
Letcip1 =1, [¢iy1 counts nodesin A4 1]
For each node v # s in G: [checkifv € Aiq]
Letd = 0. [d re-counts A;]

For each node u in G: [checkifu € A;]

Nondeterministically either perform or skip these steps:
Nondeterministically follow a path of length at most
from s and reject if it doesn’t end at u.

Increment d. [verified thatu € A;]

If (u,v) is an edge of G, increment c; ;1 and go to

stage 5 with the next v. [verified thatv € A;11]

If d # ¢;, then reject. [check whether found all A;]
Letd=0. [¢m now known; d re-counts A,,, |
For each node u in G: [checkif u € A,]

Nondeterministically either perform or skip these steps:
Nondeterministically follow a path of length at most m
from s and reject if it doesn’t end at u.

If u = t, then reject. [found path from s to ¢]
Increment d. [verified that u € A, |
If d # ¢y, then reject. [check whether found all of A,,, |

Otherwise, accept.”

Paths Certificates for absence of paths

NL = coNL

We have just argued the existence of polynomial read-once
certificates for absence of paths.

Theorem (Immerman-Szelepcsényi)
NL = coNL.

15

Conclusion

Further Reading

e paths in undirected graphs is in L
e Omer Reingold Undirected ST-Connectivity in Log-Space,
STOC 2005
¢ available from
http://www.wisdom.weizmann.ac.il/ "reingold/publications/sl.ps
e an alternative characterization of NL by reachability is at the
heart of descriptive complexity
o NL is first-order logic plus transitive closure
¢ Neil Immerman, Descriptive Complexity, Springer 1999.

16

Conclusion

What have we learnt?

e space classes closed under complement
e so are context-sensitive language (see exercises)

e analogous results for time complexity unlikely

e space classes beyond logarithmic closed under
non-determinism

o NL is all about reachability

e 2SAT is in NL and thus also 2SAT (in fact, hard for NL)

e NL has polynomial read-once certificates

¢ |ogarithmic space ~ constant number of pointers and counters

Up next: the polynomial hierarchy PH

	Intro
	About logarithmic space
	Paths
	Paths is NL-complete
	Other path problems
	Certificates for absence of paths

	Conclusion

