Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 9, 2019

Lecture 7 Hierarchies

- deterministic time hierarchy theorem
- · non-deterministic time hierarchy theorem
- space hierarchy theorem
- relation between space and time

Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f \cdot \log f \in o(g)$. Then DTIME $(f(n)) \subset \text{DTIME}(g(n))$.

Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f \cdot \log f \in o(g)$. Then $\mathsf{DTIME}(f(n)) \subset \mathsf{DTIME}(g(n))$.

- inclusion is strict
- proof: diagonalization
 - TM D simulates M_x on x for $g(|x|) / \log(|x|)$ steps and flips any answer
 - D runs in O(g)
 - if computable by $E = M_i$ in O(f) then $D(i) \neq M_i(i) = E(i)$, contradiction

Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f \cdot \log f \in o(g)$. Then $\mathsf{DTIME}(f(n)) \subset \mathsf{DTIME}(g(n))$.

- inclusion is strict
- proof: diagonalization
 - TM D simulates M_x on x for $g(|x|) / \log(|x|)$ steps and flips any answer
 - D runs in O(g)
 - if computable by $E = M_i$ in O(f) then $D(i) \neq M_i(i) = E(i)$, contradiction
- logarithmic factor due to slowdown in universal simulation
- shows that P does not collapse to level k
- corollary: P ⊂ EXP

Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f(n + 1) \in o(g(n))$. Then NTIME $(f(n)) \subset \text{NTIME}(g(n))$.

Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f(n + 1) \in o(g(n))$. Then $\mathsf{NTIME}(f(n)) \subset \mathsf{NTIME}(g(n))$.

- inclusion is strict
- proof by lazy diagonalization (see: AB Th. 3.2)
- note: proof of deterministic theorem does not carry over

Space Hierarchy Theorem

Theorem (Space Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be space-constructible such that $f \in o(g)$. Then **SPACE** $(f(n)) \subset$ **SPACE**(g(n)).

Space Hierarchy Theorem

Theorem (Space Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be space-constructible such that $f \in o(g)$. Then SPACE $(f(n)) \subset$ SPACE(g(n)).

- inclusion is strict
- stronger theorem than corresponding time theorem
 - universal TM for space-bounded computation incurs only constant space overhead
 - f, g can be logarithmic too
- · proof analogous to deterministic time hierarchy
- corollary: L ⊂ PSPACE

- deterministic time hierarchy theorem \checkmark
- non-deterministic time hierarchy theorem \checkmark
- space hierarchy theorem \checkmark
- relation between space and time

Relation between time and space

Theorem (Time vs. Space)

Let $s : \mathbb{N} \to \mathbb{N}$ be space-constructible. Then

 $\mathsf{DTIME}(s(n)) \subseteq \mathsf{SPACE}(s(n)) \subseteq \mathsf{NSPACE}(s(n)) \subseteq \mathsf{DTIME}(2^{O(s(n))})$

Relation between time and space

Theorem (Time vs. Space)

Let $s:\mathbb{N}\to\mathbb{N}$ be space-constructible. Then

 $\mathsf{DTIME}(s(n)) \subseteq \mathsf{SPACE}(s(n)) \subseteq \mathsf{NSPACE}(s(n)) \subseteq \mathsf{DTIME}(2^{O(s(n))})$

- inclusions are non-strict
- first two are obvious
- third inclusion requires notion of configuration graphs
- first inclusion can be strengthened to $\text{DTIME}(s(n)) \subseteq \text{SPACE}(\frac{s(n)}{\log n})$

Configuration Graphs

Let *M* be a deterministic or non-deterministic TM using s(n) space. Let x be some input.

Configuration Graphs

Let *M* be a deterministic or non-deterministic TM using s(n) space. Let *x* be some input.

- this induces a configuration graph G(M, x)
- nodes are configuration
 - states
 - content of work tapes
- edges are transitions (steps) that M can take

Properties of configuration graph

- outdegree of G(M, x) is 1 if M is deterministic; 2 if M is non-deterministic
- G(M, x) has at most $|Q| \cdot \Gamma^{c \cdot s(n)}$ nodes (c some constant)
- which is in 2^{O(s(n))}
- G(M, x) can be made to have unique source and sink
- acceptance ~ existence of path from source to sink
- which can be checked in time O(G(M, x)) using BFS

Properties of configuration graph

- outdegree of G(M, x) is 1 if M is deterministic; 2 if M is non-deterministic
- G(M, x) has at most $|Q| \cdot \Gamma^{c \cdot s(n)}$ nodes (c some constant)
- which is in 2^{O(s(n))}
- G(M, x) can be made to have unique source and sink
- acceptance ~ existence of path from source to sink
- which can be checked in time O(G(M, x)) using BFS
- \Rightarrow NSPACE(s(n)) \subseteq DTIME(2^{O(s(n))})

Properties of configuration graph

- outdegree of G(M, x) is 1 if M is deterministic; 2 if M is non-deterministic
- G(M, x) has at most $|Q| \cdot \Gamma^{c \cdot s(n)}$ nodes (c some constant)
- which is in 2^{O(s(n))}
- G(M, x) can be made to have unique source and sink
- acceptance ~ existence of path from source to sink
- which can be checked in time O(G(M, x)) using BFS
- \Rightarrow NSPACE(s(n)) \subseteq DTIME(2^{O(s(n))})
- \Rightarrow DTIME(s(n)) \subseteq NTIME(s(n)) \subseteq SPACE(s(n))
 - configurations include a counter over all possible choices

References

- the proof of Ladner's theorem given here follows AB, Th. 3.3
- nice survey, see blog.computationalcomplexity.org/media/ladner.pdf
- original proof of time hierarchy by *Hartmanis and Stearns* On the computational complexity of algorithms in Transactions of the American Mathematical Society 117.
- non-det time hierarchy by Stephen Cook: A hierarchy for nondeterministic time complexity in 4th annual ACM Symposium on Theory of Computing.
- stronger result on time vs space using pebble games by *Hopcroft, Paul, and Valiant* On time versus space in Journal of the ACM 24(2):332-337, April 1977.

Conclusion

Summary

- a lot of diagonalization
- Ladner: NP-intermediate languages exist
- $f \cdot \log f \in o(g)$ implies $\mathsf{DTIME}(f(n)) \subset \mathsf{DTIME}(g(n))$
- $f \in o(g)$ implies SPACE $(f(n)) \subset$ SPACE(g(n))
- $DTIME(f(n)) \subseteq SPACE(s(n)) \subseteq NSPACE(s(n)) \subseteq DTIME(2^{O(s(n))})$
- $P \subset EXP$ and $L \subset PSPACE$

Next time: **PSPACE**