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Lecture 7

Hierarchies



Agenda

• deterministic time hierarchy theorem
• non-deterministic time hierarchy theorem
• space hierarchy theorem
• relation between space and time



Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let f , g : N→ N be time-constructible such that f · log f ∈ o(g). Then
DTIME(f(n)) ⊂ DTIME(g(n)).

• inclusion is strict
• proof: diagonalization

• TM D simulates Mx on x for g(|x |)/ log(|x |) steps and flips any answer
• D runs in O(g)
• if computable by E = Mi in O(f) then D(i) , Mi(i) = E(i), contradiction

• logarithmic factor due to slowdown in universal simulation
• shows that P does not collapse to level k
• corollary: P ⊂ EXP
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Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Let f , g : N→ N be time-constructible such that f(n + 1) ∈ o(g(n)). Then
NTIME(f(n)) ⊂ NTIME(g(n)).

• inclusion is strict
• proof by lazy diagonalization (see: AB Th. 3.2)
• note: proof of deterministic theorem does not carry over
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Space Hierarchy Theorem

Theorem (Space Hierarchy)

Let f , g : N→ N be space-constructible such that f ∈ o(g). Then
SPACE(f(n)) ⊂ SPACE(g(n)).

• inclusion is strict
• stronger theorem than corresponding time theorem

• universal TM for space-bounded computation incurs only constant
space overhead

• f , g can be logarithmic too

• proof analogous to deterministic time hierarchy
• corollary: L ⊂ PSPACE
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Agenda

• deterministic time hierarchy theorem X
• non-deterministic time hierarchy theorem X
• space hierarchy theorem X
• relation between space and time



Relation between time and space

Theorem (Time vs. Space)

Let s : N→ N be space-constructible. Then

DTIME(s(n)) ⊆ SPACE(s(n)) ⊆ NSPACE(s(n)) ⊆ DTIME(2O(s(n)))

• inclusions are non-strict
• first two are obvious
• third inclusion requires notion of configuration graphs

• first inclusion can be strengthened to DTIME(s(n)) ⊆ SPACE(
s(n)
log n )
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Configuration Graphs

Let M be a deterministic or non-deterministic TM using s(n) space. Let x
be some input.

• this induces a configuration graph G(M, x)

• nodes are configuration
• states
• content of work tapes

• edges are transitions (steps) that M can take
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Properties of configuration graph

• outdegree of G(M, x) is 1 if M is deterministic; 2 if M is
non-deterministic

• G(M, x) has at most |Q | · Γc·s(n) nodes (c some constant)
• which is in 2O(s(n))

• G(M, x) can be made to have unique source and sink
• acceptance ∼ existence of path from source to sink
• which can be checked in time O(G(M, x)) using BFS

⇒ NSPACE(s(n)) ⊆ DTIME(2O(s(n)))

⇒ DTIME(s(n)) ⊆ NTIME(s(n)) ⊆ SPACE(s(n))

• configurations include a counter over all possible choices
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Conclusion
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Conclusion

Summary

• a lot of diagonalization
• Ladner: NP-intermediate languages exist
• f · log f ∈ o(g) implies DTIME(f(n)) ⊂ DTIME(g(n))

• f ∈ o(g) implies SPACE(f(n)) ⊂ SPACE(g(n))

• DTIME(f(n)) ⊆ SPACE(s(n)) ⊆ NSPACE(s(n)) ⊆ DTIME(2O(s(n)))
• P ⊂ EXP and L ⊂ PSPACE

Next time: PSPACE
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