
Complexity Theory

Jan Křetı́nský

Technical University of Munich

Summer 2019

May 9, 2019

Lecture 6

coNP

Agenda

• coNP
• the importance of P vs. NP vs. coNP
• neither in P nor NP-complete: Ladner’s theorem
• wrap-up Lecture 1-6

On coNP

coNP

• reminder: L ⊆ {0, 1}∗ ∈ coNP iff {0, 1}∗ \ L ∈ NP
• example: SAT contains

• not well-formed formulas
• unsatisfiable formulas

• does SAT have polynomial certificates?
• not known: open problem whether NP is closed under complement
• note that P is closed under complement, compare with NFA vs DFA

closure

On coNP

coNP

• reminder: L ⊆ {0, 1}∗ ∈ coNP iff {0, 1}∗ \ L ∈ NP
• example: SAT contains

• not well-formed formulas
• unsatisfiable formulas

• does SAT have polynomial certificates?
• not known: open problem whether NP is closed under complement
• note that P is closed under complement, compare with NFA vs DFA

closure

On coNP

coNP

• reminder: L ⊆ {0, 1}∗ ∈ coNP iff {0, 1}∗ \ L ∈ NP
• example: SAT contains

• not well-formed formulas
• unsatisfiable formulas

• does SAT have polynomial certificates?

• not known: open problem whether NP is closed under complement
• note that P is closed under complement, compare with NFA vs DFA

closure

On coNP

coNP

• reminder: L ⊆ {0, 1}∗ ∈ coNP iff {0, 1}∗ \ L ∈ NP
• example: SAT contains

• not well-formed formulas
• unsatisfiable formulas

• does SAT have polynomial certificates?
• not known: open problem whether NP is closed under complement
• note that P is closed under complement, compare with NFA vs DFA

closure

On coNP

For all certificates

• like for NP there is a characterization in terms of certificates
• for coNP it is dual: for all certificates
• 3SAT: to prove unsatifiability one must check all assignments, for

satisfiability only one

Theorem (coNP certificates)

A language L ⊆ {0, 1}∗ is in coNP iff there exists a polynomial p and a TM
M such that

∀x ∈ {0, 1}∗ x ∈ L ⇔ ∀u ∈ {0, 1}p(|x |) M(x, u) = 1

On coNP

For all certificates

• like for NP there is a characterization in terms of certificates
• for coNP it is dual: for all certificates
• 3SAT: to prove unsatifiability one must check all assignments, for

satisfiability only one

Theorem (coNP certificates)

A language L ⊆ {0, 1}∗ is in coNP iff there exists a polynomial p and a TM
M such that

∀x ∈ {0, 1}∗ x ∈ L ⇔ ∀u ∈ {0, 1}p(|x |) M(x, u) = 1

On coNP

Completeness

• like for NP one can define coNP-hardness and completeness
• L is coNP-complete iff L ∈ coNP and all problems in coNP are

polynomial-time Karp-reducible to L
• classical example: Tautology = {ϕ |
ϕ is Boolean formula that is true for every assignment}

• example: x ∨ x ∈ Tautology
• proof?

• note that L is coNP-complete, if L is NP-complete
⇒ SAT is coNP-complete
⇒ Tautology is coNP-complete (reduction from SAT by negating formula)

On coNP

Completeness

• like for NP one can define coNP-hardness and completeness
• L is coNP-complete iff L ∈ coNP and all problems in coNP are

polynomial-time Karp-reducible to L
• classical example: Tautology = {ϕ |
ϕ is Boolean formula that is true for every assignment}

• example: x ∨ x ∈ Tautology
• proof?

• note that L is coNP-complete, if L is NP-complete
⇒ SAT is coNP-complete
⇒ Tautology is coNP-complete (reduction from SAT by negating formula)

On coNP

Regular Expression Equivalence

xA regular expression over {0, 1} is defined by

r ::= 0 | 1 | rr | r |r | r ∩ r | r∗

The language defined by r is written L(r).

• let ϕ = C1 ∧ . . . ∧ Cm be a Boolean formula in 3CNF over variables
x1, . . . , xn

• compute from ϕ a regular expression: f(ϕ)=(α1|α2| . . . |αm)

• αi = γi1 . . . γin

• γij =


0 xj ∈ Ci

1 xj ∈ Ci

(0|1) otherwise

• example: (x ∨ y ∨ z) ∧ (y ∨ z ∨ w) transformed to (001(0|1)) |
(0|1)100)

• observe: ϕ is unsatisfiable iff f(ϕ) = {0, 1}n

On coNP

Regular Expression Equivalence

xA regular expression over {0, 1} is defined by

r ::= 0 | 1 | rr | r |r | r ∩ r | r∗

The language defined by r is written L(r).

• let ϕ = C1 ∧ . . . ∧ Cm be a Boolean formula in 3CNF over variables
x1, . . . , xn

• compute from ϕ a regular expression: f(ϕ)=(α1|α2| . . . |αm)

• αi = γi1 . . . γin

• γij =


0 xj ∈ Ci

1 xj ∈ Ci

(0|1) otherwise

• example: (x ∨ y ∨ z) ∧ (y ∨ z ∨ w) transformed to (001(0|1)) |
(0|1)100)

• observe: ϕ is unsatisfiable iff f(ϕ) = {0, 1}n

On coNP

Regular Expression Equivalence

xA regular expression over {0, 1} is defined by

r ::= 0 | 1 | rr | r |r | r ∩ r | r∗

The language defined by r is written L(r).

• let ϕ = C1 ∧ . . . ∧ Cm be a Boolean formula in 3CNF over variables
x1, . . . , xn

• compute from ϕ a regular expression: f(ϕ)=(α1|α2| . . . |αm)

• αi = γi1 . . . γin

• γij =


0 xj ∈ Ci

1 xj ∈ Ci

(0|1) otherwise

• example: (x ∨ y ∨ z) ∧ (y ∨ z ∨ w) transformed to (001(0|1)) |
(0|1)100)

• observe: ϕ is unsatisfiable iff f(ϕ) = {0, 1}n

On coNP

Regular Expression Equivalence

xA regular expression over {0, 1} is defined by

r ::= 0 | 1 | rr | r |r | r ∩ r | r∗

The language defined by r is written L(r).

• let ϕ = C1 ∧ . . . ∧ Cm be a Boolean formula in 3CNF over variables
x1, . . . , xn

• compute from ϕ a regular expression: f(ϕ)=(α1|α2| . . . |αm)

• αi = γi1 . . . γin

• γij =


0 xj ∈ Ci

1 xj ∈ Ci

(0|1) otherwise

• example: (x ∨ y ∨ z) ∧ (y ∨ z ∨ w) transformed to (001(0|1)) |
(0|1)100)

• observe: ϕ is unsatisfiable iff f(ϕ) = {0, 1}n

On coNP

Regular Expression Equivalence

xA regular expression over {0, 1} is defined by

r ::= 0 | 1 | rr | r |r | r ∩ r | r∗

The language defined by r is written L(r).

• let ϕ = C1 ∧ . . . ∧ Cm be a Boolean formula in 3CNF over variables
x1, . . . , xn

• compute from ϕ a regular expression: f(ϕ)=(α1|α2| . . . |αm)

• αi = γi1 . . . γin

• γij =


0 xj ∈ Ci

1 xj ∈ Ci

(0|1) otherwise

• example: (x ∨ y ∨ z) ∧ (y ∨ z ∨ w) transformed to (001(0|1)) |
(0|1)100)

• observe: ϕ is unsatisfiable iff f(ϕ) = {0, 1}n

On coNP

Regular Expression Equivalence

xA regular expression over {0, 1} is defined by

r ::= 0 | 1 | rr | r |r | r ∩ r | r∗

The language defined by r is written L(r).

• let ϕ = C1 ∧ . . . ∧ Cm be a Boolean formula in 3CNF over variables
x1, . . . , xn

• compute from ϕ a regular expression: f(ϕ)=(α1|α2| . . . |αm)

• αi = γi1 . . . γin

• γij =


0 xj ∈ Ci

1 xj ∈ Ci

(0|1) otherwise

• example: (x ∨ y ∨ z) ∧ (y ∨ z ∨ w) transformed to (001(0|1)) |
(0|1)100)

• observe: ϕ is unsatisfiable iff f(ϕ) = {0, 1}n

On coNP

Regular Expression Equivalence

xA regular expression over {0, 1} is defined by

r ::= 0 | 1 | rr | r |r | r ∩ r | r∗

The language defined by r is written L(r).

• let ϕ = C1 ∧ . . . ∧ Cm be a Boolean formula in 3CNF over variables
x1, . . . , xn

• compute from ϕ a regular expression: f(ϕ)=(α1|α2| . . . |αm)

• αi = γi1 . . . γin

• γij =


0 xj ∈ Ci

1 xj ∈ Ci

(0|1) otherwise

• example: (x ∨ y ∨ z) ∧ (y ∨ z ∨ w) transformed to (001(0|1)) |
(0|1)100)

• observe: ϕ is unsatisfiable iff f(ϕ) = {0, 1}n

On coNP

Regular expressions and computational complexity

• previous slide establishes: 3SAT≤pRegExpEq0

• that is: regular expression equivalence is coNP-hard

• it is coNP-complete for expressions without ∗,∩
• because one needs to check for all expressions of length n whether

they are included (test polynomial by NFA transformation)
• the problem becomes PSPACE-complete when ∗ is added
• the problem becomes EXP-complete when ∗,∩ is added

On coNP

Regular expressions and computational complexity

• previous slide establishes: 3SAT≤pRegExpEq0

• that is: regular expression equivalence is coNP-hard
• it is coNP-complete for expressions without ∗,∩
• because one needs to check for all expressions of length n whether

they are included (test polynomial by NFA transformation)

• the problem becomes PSPACE-complete when ∗ is added
• the problem becomes EXP-complete when ∗,∩ is added

On coNP

Regular expressions and computational complexity

• previous slide establishes: 3SAT≤pRegExpEq0

• that is: regular expression equivalence is coNP-hard
• it is coNP-complete for expressions without ∗,∩
• because one needs to check for all expressions of length n whether

they are included (test polynomial by NFA transformation)
• the problem becomes PSPACE-complete when ∗ is added
• the problem becomes EXP-complete when ∗,∩ is added

On coNP

Agenda

• coNP X
• the importance of P vs. NP vs. coNP
• neither in P nor NP-complete: Ladner’s theorem
• wrap-up Lecture 1-6

P vs NP vs coNP

Open and known problems

OPEN
• P = NP?
• NP = coNP?

KNOWN
• if an NP-complete problem is in P, then P = NP
• P ⊆ coNP ∩ NP
• if L ∈ coNP and L NP-complete then NP = coNP
• if P = NP then P = NP = coNP
• if NP , coNP then P , NP
• if EXP , NEXP then P , NP (equalities scale up, inequalities scale

down – by padding)

P vs NP vs coNP

Open and known problems

OPEN
• P = NP?
• NP = coNP?

KNOWN
• if an NP-complete problem is in P, then P = NP
• P ⊆ coNP ∩ NP
• if L ∈ coNP and L NP-complete then NP = coNP
• if P = NP then P = NP = coNP
• if NP , coNP then P , NP
• if EXP , NEXP then P , NP (equalities scale up, inequalities scale

down – by padding)

P vs NP vs coNP

What if P = NP?

• one of the most important open problems
• computational utopia
• SAT has polynomial algorithm
• 1000s of other problems, too (due to reductions, completeness)
• finding solutions is as easy as verifying them
• guessing can be done deterministically
• decryption as easy as encryption
• randomization can be de-randomized

P vs NP vs coNP

What if NP = coNP

Problems have short certificates that don’t seem to have any!
• like tautology, unsatisfiability
• like unsatisfiable ILPs
• like regular expression equivalence

P vs NP vs coNP

How to cope with NP-complete problems?

• ignore (see SAT), it may still work
• modify your problem (2SAT, 2Coloring)
• NP-completeness talks about worst cases and exact solutions
→ try average cases
→ try approximations

• randomize
• explore special cases (TSP)

P vs NP vs coNP

In praise of reductions

• reductions help, when lower bounds are hard to come by
• reductions helped to prove NP-completeness for 1000s of natural

problems
• in fact, most natural problems (exceptions are Factoring and Iso) are

either in P or NP-complete
• but, unless P = NP, there exist such problems

P vs NP vs coNP

Agenda

• coNP X
• the importance of P vs. NP vs. coNP X
• neither in P nor NP-complete: Ladner’s theorem
• wrap-up Lecture 1-6

Ladner’s theorem

Ladner’s Theorem

P/NP intermediate languages exist!

Theorem (Ladner)

If P , NP then there exists a language L ⊆ NP \ P that is not NP-complete.

Ladner’s theorem

Proof

• let H : N→ N be a function
• define SATH to be

{ϕ01nH(n)
| ϕ ∈ SAT, n = |ϕ|}

Using the definition of SATH one can show

1. H(n) ∈ O(1)⇒ SATH < P

2. limn→∞ H(n) = ∞⇒ SATH is not NP-complete

For H(n) at most a constant, padding is polynomial and the SATH is
NP-complete, hence not in P.

If SATH is NP-complete, then there is a reduction from SAT to SATH in
time O(ni) for some constant. For large n it maps SAT instances ϕ to
SATH instances ψ01|ψ|

H(|ψ|)
of size |ψ|+ |ψ|H(|ψ|) = O(|ϕ|i). This implies

|ψ| ∈ o(|ϕ|) and by repeated application SAT ∈ P. Contradiction!

Ladner’s theorem

Proof

• let H : N→ N be a function
• define SATH to be

{ϕ01nH(n)
| ϕ ∈ SAT, n = |ϕ|}

Using the definition of SATH one can show

1. H(n) ∈ O(1)⇒ SATH < P

2. limn→∞ H(n) = ∞⇒ SATH is not NP-complete

For H(n) at most a constant, padding is polynomial and the SATH is
NP-complete, hence not in P.

If SATH is NP-complete, then there is a reduction from SAT to SATH in
time O(ni) for some constant. For large n it maps SAT instances ϕ to
SATH instances ψ01|ψ|

H(|ψ|)
of size |ψ|+ |ψ|H(|ψ|) = O(|ϕ|i). This implies

|ψ| ∈ o(|ϕ|) and by repeated application SAT ∈ P. Contradiction!

Ladner’s theorem

Proof

• let H : N→ N be a function
• define SATH to be

{ϕ01nH(n)
| ϕ ∈ SAT, n = |ϕ|}

Using the definition of SATH one can show

1. H(n) ∈ O(1)⇒ SATH < P

2. limn→∞ H(n) = ∞⇒ SATH is not NP-complete

For H(n) at most a constant, padding is polynomial and the SATH is
NP-complete, hence not in P.

If SATH is NP-complete, then there is a reduction from SAT to SATH in
time O(ni) for some constant. For large n it maps SAT instances ϕ to
SATH instances ψ01|ψ|

H(|ψ|)
of size |ψ|+ |ψ|H(|ψ|) = O(|ϕ|i). This implies

|ψ| ∈ o(|ϕ|) and by repeated application SAT ∈ P. Contradiction!

Ladner’s theorem

Proof

• let H : N→ N be a function
• define SATH to be

{ϕ01nH(n)
| ϕ ∈ SAT, n = |ϕ|}

Using the definition of SATH one can show

1. H(n) ∈ O(1)⇒ SATH < P

2. limn→∞ H(n) = ∞⇒ SATH is not NP-complete

For H(n) at most a constant, padding is polynomial and the SATH is
NP-complete, hence not in P.

If SATH is NP-complete, then there is a reduction from SAT to SATH in
time O(ni) for some constant. For large n it maps SAT instances ϕ to
SATH instances ψ01|ψ|

H(|ψ|)
of size |ψ|+ |ψ|H(|ψ|) = O(|ϕ|i). This implies

|ψ| ∈ o(|ϕ|) and by repeated application SAT ∈ P. Contradiction!

Ladner’s theorem

Proof

Combine the approaches:
• define the function H and fix SATH

• H(n) is
• the smallest i < log log n such that
∀x ∈ {0, 1}∗ with |x | ≤ log n
Mi (the i-th TM) outputs SATH(x)
within i|x |i steps

• if no such i exists then H(n) = log log n

• if SATH(x) ∈ P, say computed in knk

then there is j > k such that Mi computes SATH(x)
hence for n > 22j

we have H(n) ≤ j
• H tends to ∞ since SATH(x) cannot be computed in P and each Mi

must be wrong on a long enough input

Ladner’s theorem

Proof

Combine the approaches:
• define the function H and fix SATH

• H(n) is
• the smallest i < log log n such that

∀x ∈ {0, 1}∗ with |x | ≤ log n
Mi (the i-th TM) outputs SATH(x)
within i|x |i steps

• if no such i exists then H(n) = log log n

• if SATH(x) ∈ P, say computed in knk

then there is j > k such that Mi computes SATH(x)
hence for n > 22j

we have H(n) ≤ j
• H tends to ∞ since SATH(x) cannot be computed in P and each Mi

must be wrong on a long enough input

Ladner’s theorem

Proof

Combine the approaches:
• define the function H and fix SATH

• H(n) is
• the smallest i < log log n such that
∀x ∈ {0, 1}∗ with |x | ≤ log n
Mi (the i-th TM) outputs SATH(x)
within i|x |i steps

• if no such i exists then H(n) = log log n

• if SATH(x) ∈ P, say computed in knk

then there is j > k such that Mi computes SATH(x)
hence for n > 22j

we have H(n) ≤ j
• H tends to ∞ since SATH(x) cannot be computed in P and each Mi

must be wrong on a long enough input

Ladner’s theorem

Proof

Combine the approaches:
• define the function H and fix SATH

• H(n) is
• the smallest i < log log n such that
∀x ∈ {0, 1}∗ with |x | ≤ log n
Mi (the i-th TM) outputs SATH(x)
within i|x |i steps

• if no such i exists then H(n) = log log n

• if SATH(x) ∈ P, say computed in knk

then there is j > k such that Mi computes SATH(x)
hence for n > 22j

we have H(n) ≤ j

• H tends to ∞ since SATH(x) cannot be computed in P and each Mi

must be wrong on a long enough input

Ladner’s theorem

Proof

Combine the approaches:
• define the function H and fix SATH

• H(n) is
• the smallest i < log log n such that
∀x ∈ {0, 1}∗ with |x | ≤ log n
Mi (the i-th TM) outputs SATH(x)
within i|x |i steps

• if no such i exists then H(n) = log log n

• if SATH(x) ∈ P, say computed in knk

then there is j > k such that Mi computes SATH(x)
hence for n > 22j

we have H(n) ≤ j
• H tends to ∞ since SATH(x) cannot be computed in P and each Mi

must be wrong on a long enough input

Ladner’s theorem

Agenda

• coNP X
• the importance of P vs. NP vs. coNP X
• neither in P nor NP-complete: Ladner’s theorem X
• wrap-up Lecture 1-6

Wrap-up

What you should know by now

• deterministic TMs capture the inuitive notion of algorithms and
computability

• universal TM ∼ general-purpose computer or an interpreter
• some problems are not computable aka. undecidable, like the halting

problem
• this is proved by diagonalization
• complexity class P captures tractable problems
• P is robust under TM definition tweaks (tapes, alphabet size,

obliviousness, universal simulation)
• non-deterministic TMs can be simulated by TM in exponential time
• NP ∼ non-det. poly. time ∼ polynomially checkable certificates

Wrap-up

What you should know by now

• NP ∼ non-det. poly. time ∼ polynomially checkable certificates
• reductions allow to define hardness and completeness of problems
• complete problems are the hardest within a class, if they can be

solved efficiently the whole class can
• NP complete problems: 3SAT (by Cook-Levin); Indset, 3−Coloring,

ILP (by reduction from 3SAT)
• SAT is practically useful and feasible
• coNP complete problems: Tautology, star-free regular expression

equivalence
• probably there are problems neither in P nor NP-complete (Ladner)

Wrap-up

What’s next?

• space classes
• space and time hierarchy theorems
• generalization of NP and coNP: polynomial hierarchy
• probabilistic TMs, randomization
• complexity and proofs

	On coNP
	P vs NP vs coNP
	Ladner's theorem
	Wrap-up

