Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 9, 2019

Lecture 5 NP-completeness (2)

Agenda

- Cook-Levin
- SAT demo
- · see old friends
 - 0/1-ILP
 - Indset
 - 3-Coloring

• 3SAT ∈ NP

- 3SAT ∈ NP
 - the assignement forms a polynomial certificate
- 3SAT is NP-hard

- 3SAT ∈ NP
 - the assignement forms a polynomial certificate
- 3SAT is NP-hard
 - choose *L* ∈ NP arbitrary, *L* ⊆ {0, 1}*
 - find reduction f from L to 3SAT

- 3SAT ∈ NP
 - the assignement forms a polynomial certificate
- 3SAT is NP-hard
 - choose L ∈ NP arbitrary, L ⊆ {0, 1}*
 - find reduction f from L to 3SAT
 - $\forall x \in \{0,1\}^*$: $x \in L \Leftrightarrow f(x) \in 3SAT$ i.e. φ_x is satisfiable
 - f is polynomial time computable

TMs for L and f

 $L \in \mathbb{NP}$ iff there exists a TM M that runs in time T and there is a polynomial p such that

$$\forall x \in L \ \exists u \in \{0,1\}^{p(|x|)} \ M(x,u) = 1 \Leftrightarrow x \in L$$

TMs for L and f

 $L \in \mathbb{NP}$ iff there exists a TM M that runs in time T and there is a polynomial p such that

$$\forall x \in L \ \exists u \in \{0,1\}^{p(|x|)} \ M(x,u) = 1 \Leftrightarrow x \in L$$

Assumptions

- fix $n \in \mathbb{N}$ and $x \in \{0, 1\}^n$ arbitrary
- m = n + p(n)
- $M = (\Gamma, Q, \delta)$
- M is oblivious
- M has two tapes
- define TM M_f that takes M, T, p, x and outputs φ_x

1. simulate *M* on $0^{n+p(n)}$ for T(n+p(n)) steps

- **1.** simulate *M* on $0^{n+p(n)}$ for T(n+p(n)) steps
- **2.** for each $1 \le i \le T(n + p(n))$ store
 - inputpos(i): position of input head after i steps
 - prev(i): previous step when work head was here (default 1)

- **1.** simulate *M* on $0^{n+p(n)}$ for T(n+p(n)) steps
- **2.** for each $1 \le i \le T(n + p(n))$ store
 - inputpos(i): position of input head after i steps
 - prev(i): previous step when work head was here (default 1)
- 3. compute and output φ_X

- **1.** simulate *M* on $0^{n+p(n)}$ for T(n+p(n)) steps
- **2.** for each $1 \le i \le T(n + p(n))$ store
 - *inputpos(i)*: position of *input* head after *i* steps
 - prev(i): previous step when work head was here (default 1)
- **3.** compute and output φ_X

It does all this in time polynomial in n!

Variables of φ_{x}

• "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots y_{n+p(n)}$

Variables of φ_{x}

- "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots y_{n+p(n)}$
 - to encode the read-only input tape

Variables of φ_{x}

- "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots y_{n+p(n)}$
 - to encode the read-only input tape
 - y_1, \ldots, y_n determined by x

Variables of φ_X

- "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots y_{n+p(n)}$
 - to encode the read-only input tape
 - y_1, \ldots, y_n determined by x
 - $y_{n+1}, \dots y_{n+p(n)}$ will be certificate

Variables of φ_{X}

- "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots, y_{n+p(n)}$
 - · to encode the read-only input tape
 - y_1, \ldots, y_n determined by x
 - $y_{n+1}, \dots y_{n+p(n)}$ will be certificate
- · "computation variables"

Variables of φ_X

- "input variables" $y_1, \ldots, y_n, y_{n+1}, \ldots, y_{n+p(n)}$
 - · to encode the read-only input tape
 - y_1, \ldots, y_n determined by x
 - $y_{n+1}, \dots y_{n+p(n)}$ will be certificate
- "computation variables"

- each row a snapshot
- needs c 2 bits to encode state q (independent of x) and 2 bits for the symbols read
- φ_x means "computation on the input is accepting"

• state of M at step i, input and work symbol currently read

state of M at step i, input and work symbol currently read

Accepting computation of M on $\langle x, u \rangle$ is a sequence of T(m) snapshots such that

state of M at step i, input and work symbol currently read

Accepting computation of M on $\langle x, u \rangle$ is a sequence of T(m) snapshots such that

• first snapshot s_1 is $\langle q_{start}, \triangleright, \triangleright \rangle$

state of M at step i, input and work symbol currently read

Accepting computation of M on $\langle x, u \rangle$ is a sequence of T(m) snapshots such that

- first snapshot s₁ is ⟨q_{start}, ▷, ▷⟩
- last snapshot s_{T(m)} has state q_{halt} and ouputs 1

state of M at step i, input and work symbol currently read

Accepting computation of M on $\langle x, u \rangle$ is a sequence of T(m) snapshots such that

- first snapshot s₁ is ⟨q_{start}, ▷, ▷⟩
- last snapshot s_{T(m)} has state q_{halt} and ouputs 1
- s_{i+1} computed correctly from
 - δ
 - Si
 - Yinputpos(i+1)
 - *S*_{prev(i+1)}

$$\varphi_{\mathsf{X}} = \varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$$

1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$

$$\varphi_{\mathsf{X}} = \varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$$

1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$ $\rightarrow \text{ size } 4n$

$$\varphi_{x} = \varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4}$$

- **1.** relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$
 - \rightarrow size 4n
- **2.** relate z_1, \ldots, z_c with $\langle q_{start}, \triangleright, \triangleright \rangle$
 - \rightarrow size O(c) (CNF, independent of |x|)

$$\varphi_{\mathsf{X}} = \varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$$

- **1.** relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$
 - \rightarrow size 4n
- **2.** relate z_1, \ldots, z_c with $\langle q_{start}, \triangleright, \triangleright \rangle$
 - \rightarrow size O(c) (CNF, independent of |x|)
- **3.** relate $z_{c(T(m)-1)+1}, \ldots, z_{cT(m)}$ with accepting snapshot
 - → analogous

$$\varphi_{\mathsf{X}} = \varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$$

- 1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$
 - \rightarrow size 4n
- **2.** relate z_1, \ldots, z_c with $\langle q_{start}, \triangleright, \triangleright \rangle$
 - \rightarrow size O(c) (CNF, independent of |x|)
- 3. relate $Z_{c(T(m)-1)+1}, \dots, Z_{cT(m)}$ with accepting snapshot \rightarrow analogous
- **4.** relate $z_{ci+1}, \ldots, z_{c(i+1)}$ (snapshot s_{i+1}) with
 - $Z_{c(i-1)+1}, \ldots, Z_{ci-2}$ (state of snapshot s_i)
 - *y*inputpos(i+1)
 - $z_{c \cdot prev(i)}$ (next work tape symbol, from snapshot $s_{prev(i)}$)

$$\varphi_{\mathsf{X}} = \varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$$

- 1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$
 - \rightarrow size 4n
- **2.** relate z_1, \ldots, z_c with $\langle q_{start}, \triangleright, \triangleright \rangle$
 - \rightarrow size O(c) (CNF, independent of |x|)
- 3. relate $Z_{c(T(m)-1)+1}, \dots, Z_{cT(m)}$ with accepting snapshot \rightarrow analogous
- **4.** relate $z_{ci+1}, \ldots, z_{c(i+1)}$ (snapshot s_{i+1}) with
 - $Z_{c(i-1)+1}, \ldots, Z_{ci-2}$ (state of snapshot s_i)
 - *y*inputpos(i+1)
 - z_{c·prev(i)} (next work tape symbol, from snapshot s_{prev(i)})
 - CNF formula over 2c variables, size O(c2^{2c})

$$\varphi_{\mathsf{X}} = \varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \varphi_4$$

- 1. relate x and y_1, \ldots, y_m : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$ $\rightarrow \text{ size } 4n$
- **2.** relate z_1, \ldots, z_c with $\langle q_{start}, \triangleright, \triangleright \rangle$
 - \rightarrow size O(c) (CNF, independent of |x|)
- 3. relate $Z_{c(T(m)-1)+1}, \dots, Z_{cT(m)}$ with accepting snapshot \rightarrow analogous
- **4.** relate $z_{ci+1}, \ldots, z_{c(i+1)}$ (snapshot s_{i+1}) with
 - $Z_{c(i-1)+1}, \ldots, Z_{ci-2}$ (state of snapshot s_i)
 - *y*inputpos(i+1)
 - $z_{c \cdot prev(i)}$ (next work tape symbol, from snapshot $s_{prev(i)}$)
 - CNF formula over 2c variables, size O(c2^{2c})

Polynomial in n!

Stop!

- $|\varphi_x|$ polynomial in n
- if φ_x is satisfiable, the satisfying assignment yields certificate $y_{n+1}, \dots y_{n+p(n)}$
- if a certificate exists in $\{0,1\}^{p(n)}$, we get a satisfying assignment
- M_f can output φ_x in polynomial time

⇒ reduction

Stop!

- $|\varphi_x|$ polynomial in n
- if φ_x is satisfiable, the satisfying assignment yields certificate $y_{n+1}, \dots y_{n+p(n)}$
- if a certificate exists in $\{0,1\}^{p(n)}$, we get a satisfying assignment
- M_f can output φ_X in polynomial time
- ⇒ reduction
 - but: not to 3SAT

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

$$u_1 \vee u_2 \vee \ldots \vee u_k$$

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

$$\begin{array}{ccccc} u_1 \vee u_2 \vee \ldots \vee u_k \\ & \sim \\ & (u_1 & \vee & u_2 & \vee & x_1) \\ \wedge & (\overline{x_1} & \vee & u_3 & \vee & x_2) \end{array}$$

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

Each clause with k variables transformed into equivalent k-2 3-clauses with 2k-2 variables. All x_i fresh.

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

Each clause with k variables transformed into equivalent k-2 3-clauses with 2k-2 variables. All x_i fresh.

Example. $x \vee \overline{y} \vee \overline{z} \vee w$ becomes $x \vee \overline{y} \vee q$ and $\overline{q} \vee \overline{z} \vee w$.

What you need to remember

- for each $L \in \mathbb{NP}$ take TM M deciding L in polynomial time
- define TM M_f computing a reduction to formula φ_X for each input
- due to obliviousness M_f pre-computes head positions and every computation takes time T(n + p(n)) steps
- and is a sequence of snapshots (q, 0, 1)
- φ has four parts
 - correct input x, u with u being the certificate
 - correct starting snapshot
 - correct halting snapshot
 - how to go from s_i to s_{i+1}
- finally: CNF transformed to 3CNF

Agenda

- Cook-Levin √
- SAT demo
- see old friends
 - 0/1-ILP
 - Indset
 - 3-Coloring

So 3SAT is intractable?

- if P ≠ NP, no polynomial time algorithm for SAT
- contrapositive: if you find one, you prove P = NP
- every problem in NP solvable by exhaustive search for certificates
- which implies NP ⊆ PSPACE (try each possible re-using space)

SAT is easy!

- well-researched problem
- has its own conference
- 1000s of tools, academic and commercial
- extremely useful for modelling
 - verification
 - planning and scheduling
 - Al
 - games (Sudoku!)
- useful for reductions due to low combinatorial complexity
- satlive.org: solvers, jobs, competitions

Demo

- www.sat4j.org
- two termination problems from string/term-rewriting
- 10000s of variables, millions of clauses
- · solvable in a few seconds!

Agenda

- Cook-Levin √
- SAT demo √
- · see old friends
 - 0/1-ILP
 - Indset
 - 3-Coloring

More reductions from 3SAT

We will now describe reductions from 3SAT to

- 0/1-ILP: the set of satisfiable sets of integer linear programs with boolean solutions
- Indset = $\{\langle G, k \rangle \mid G \text{ has independent set of size at least } k\}$
- 3-Coloring = {G | G is 3-colorable}

This establishes NP-hardness for all of the problems. Of course, they are easily in NP as well, hence complete.

$$(x \vee \overline{y} \vee z) \wedge (x \vee \overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{y} \vee w) \wedge (\overline{x} \vee y \vee \overline{w})$$

$$(x \vee \overline{y} \vee z) \wedge (x \vee \overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{y} \vee w) \wedge (\overline{x} \vee y \vee \overline{w})$$

$$\begin{array}{rcl}
x + (1 - y) + z & \geq & 1 \\
x + (1 - y) + (1 - z) & \geq & 1 \\
(1 - x) + (1 - y) + w & \geq & 1 \\
(1 - x) + y + (1 - w) & \geq & 1
\end{array}$$

$$(x \vee \overline{y} \vee z) \wedge (x \vee \overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{y} \vee w) \wedge (\overline{x} \vee y \vee \overline{w})$$

$$x + (1 - y) + z \ge 1$$

 $x + (1 - y) + (1 - z) \ge 1$
 $(1 - x) + (1 - y) + w \ge 1$
 $(1 - x) + y + (1 - w) \ge 1$

- f(x) = x
- $f(\overline{x}) = (1-x)$
- $f(u_1 \vee ... \vee u_k) = f(u_1) + ... + f(u_k) \geq 1$

$$(x \vee \overline{y} \vee z) \wedge (x \vee \overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{y} \vee w) \wedge (\overline{x} \vee y \vee \overline{w})$$

$$x + (1 - y) + z \ge 1$$

$$x + (1 - y) + (1 - z) \ge 1$$

$$(1 - x) + (1 - y) + w \ge 1$$

$$(1 - x) + y + (1 - w) \ge 1$$

- f(x) = x
- $f(\overline{x}) = (1-x)$
- $f(u_1 \vee ... \vee u_k) = f(u_1) + ... + f(u_k) \geq 1$
- linear reduction
- φ satisfiable iff $f(\varphi)$ has boolean solution

• given: formula φ with m clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$

- given: formula φ with m clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E), such that each clause gets a node per satisfying assignment
 - $V = \{C_i^{a_i} \mid a : vars(C_i) \rightarrow \{0, 1\}, C_i \text{ holds under assignment } a_i\}$

- given: formula φ with m clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E), such that each clause gets a node per satisfying assignment
 - $V = \{C_i^{a_i} \mid a : vars(C_i) \rightarrow \{0, 1\}, C_i \text{ holds under assignment } a_i\}$
- edges denote conflicting assignments
 - $E = \{\{C_i^a, C_{i'}^{a'}\} \mid i, i' \in [m], \exists x. a(x) \neq a'(x)\}$

- given: formula φ with m clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E), such that each clause gets a node per satisfying assignment
 - $V = \{C_i^{a_i} \mid a : vars(C_i) \rightarrow \{0, 1\}, C_i \text{ holds under assignment } a_i\}$
- edges denote conflicting assignments
 - $E = \{\{C_i^a, C_{i'}^{a'}\} \mid i, i' \in [m], \exists x. a(x) \neq a'(x)\}$
- G has 7m nodes and O(m²) edges and can be computed in polynomial time

- φ is satisfiable
- \Rightarrow exists assignment $a: X \rightarrow \{0, 1\}$ that makes φ true
- ⇒ a makes every clause true
- $\Rightarrow \{C_i^{a|vars(i)} \mid 1 \le i \le m\}$ is an independent set of size m

- φ is satisfiable
- \Rightarrow exists assignment $a: X \rightarrow \{0, 1\}$ that makes φ true
- ⇒ a makes every clause true
- $\Rightarrow \{C_i^{a|vars(i)} \mid 1 \le i \le m\}$ is an independent set of size m

- G has an independent set of size m
- ⇒ ind. set covers all clauses
- ⇒ ind. set yields composable, partial assignments per clause
- $\Rightarrow \varphi$ is satisfiable

• given: formula φ with m clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$

- given: formula φ with m clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E)
- V is the union of
 - $X \cup \overline{X}$ to capture assignments
 - special nodes {u, v}
 - one little house per clause with 5 nodes: $\{v_{ij}, a_i, b_i \mid i \in [m], j \in [3]\}$

- given: formula φ with m clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E)
- V is the union of
 - $X \cup \overline{X}$ to capture assignments
 - special nodes {u, v}
 - one little house per clause with 5 nodes: $\{v_{ij}, a_i, b_i \mid i \in [m], j \in [3]\}$
- E comprised of
 - edge {*u*, *v*}
 - for each literal in each clause, a connection to the assignment graph: $\{\{u_{ij}, v_{ij}\} | i \in [m], j \in [3]\}$
 - house edges: $\{\{v, a_i\}, \{v, b_i\}, \{v_{i1}, a_i\}, \{v_{i1}, b_i\}, \{v_{i2}, a_i\}, \{v_{i3}, b_i\}, \{v_{i2}, v_{i3}\} \mid i \in [m]\}$
- G has 2n + 5m + 2 nodes and $O(m^2)$ edges and can be computed in polynomial time
- three colors: {red, true, false}

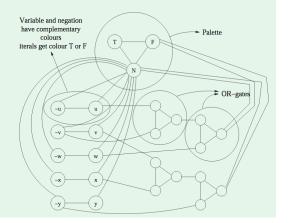
- φ is satisfiable,
- \Rightarrow there is an assignment $a: X \to \{0, 1\}$ that makes every clause true
- \Rightarrow coloring u red, v false, and x true iff a(x) = 1 leads to a correct 3-coloring

- φ is satisfiable,
- \Rightarrow there is an assignment $a: X \to \{0, 1\}$ that makes every clause true
- \Rightarrow coloring u red, v false, and x true iff a(x) = 1 leads to a correct 3-coloring

- G is 3-colorable
- wlog. assume u is red and v is false
- assume there is a clause j such that all literals are colored false
- \Rightarrow v_{j2} and v_{j3} are colored true and red
- \Rightarrow a_i and b_i are colored true and red
- ⇒ v_{j1} colored false, which is a contradiction, because it is connected to a false literal

Alternatively:

$$\varphi = (u \vee \neg v \vee w) \wedge (v \vee x \vee \neg y)$$



What have you learnt?

- SAT is NP-complete
- SAT is practically feasible
- SAT has lots of academic and industrial applications
- SAT can be reduced to independent set, 3-coloring and boolean ILP, which makes those NP-hard
- up next: coNP, Ladner