Complexity Theory

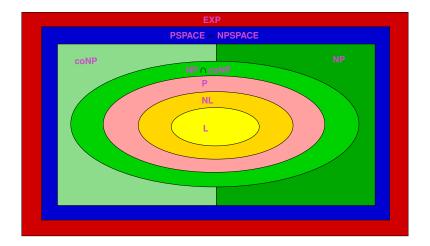
Jan Křetínský

Technical University of Munich Summer 2019

April 29, 2019

Lecture 4 NP-completeness

Recap: relations between classes



- efficiently checkable certificates
- reductions, hardness, completeness
- Cook-Levin: 3SAT is NP-complete

NP computable with NDTM in polynomial time.

NP computable with NDTM in polynomial time.

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$ holds: $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M such that for every $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)}$. M(x, u) = 1

NP computable with NDTM in polynomial time.

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$ holds: $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M such that for every $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)}$. M(x, u) = 1

- *M* is called verifier
- u is called certificate

NP computable with NDTM in polynomial time.

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$ holds: $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M such that for every $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow \exists u \in \{0, 1\}^{p(|x|)}$. M(x, u) = 1

- M is called verifier
- u is called certificate

Proof:

- \Rightarrow certificate is sequence of choices
- Contraction NDTM guesses certificate

- Indset: certificate is set of nodes, size of certificate for k nodes in graph with n nodes O(k log n)
- 0/1-ILP: given a list of *m* linear inequalities with rational coefficients over variables x₁,..., x_k; find out if there is an assignment of 0s and 1s to x_i satisfying all inequalities; certificate is assignment.
- Iso: given two *n* × *n* adjacency matrices; do they define isomorphic graphs; certificate is a permutation *π* : [*n*] → [*n*]

- efficiently checkable certificates \checkmark
- reductions, hardness, completeness
- Cook-Levin: 3SAT is NP-complete

Reductions – reminder

IF there is an efficient procedure for *B* using a procedure for *A* (as an efficient black box) THEN *B* cannot be radically harder than *A* notation: $B \le A$

(reduction does not make anything smaller)

We have seen (at least) two reductions.

- 3-Coloring was reduced to Indset
- the diagonalized, undecidable language reduced to Halt

Reductions – definition

Definition (Karp reduction)

Let $L, L' \subseteq \{0, 1\}^*$ be languages. L is polynomial-time Karp reducible to L' iff there exists a polynomial-time computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for all $x \in \{0, 1\}^*$

 $x \in L \Leftrightarrow f(x) \in L'$

We write $L \leq_p L'$.

Reductions – definition

Definition (Karp reduction)

Let $L, L' \subseteq \{0, 1\}^*$ be languages. L is polynomial-time Karp reducible to L' iff there exists a polynomial-time computable function $f : \{0, 1\}^* \to \{0, 1\}^*$ such that for all $x \in \{0, 1\}^*$

```
x \in L \Leftrightarrow f(x) \in L'
```

We write $L \leq_p L'$.

Note: \leq_p is a transitive relation on languages (because the composition of polynomials is a polynomial).

Hardness and Completeness

Definition (NP-hardness and -completness)

- Let $L \subseteq \{0, 1\}^*$ be a language.
 - L is NP-hard if $L' \leq_p L$ for every $L' \in NP$
 - L is NP-complete if L is NP-hard and $L \in NP$.

Hardness and Completeness

Definition (NP-hardness and -completness)

Let $L \subseteq \{0, 1\}^*$ be a language.

- L is NP-hard if $L' \leq_p L$ for every $L' \in NP$
- L is NP-complete if L is NP-hard and $L \in NP$.

Examples of NP-hard languages: Indset, Haltk, Halt

Hardness and Completeness

Definition (NP-hardness and -completness)

Let $L \subseteq \{0, 1\}^*$ be a language.

- L is NP-hard if $L' \leq_p L$ for every $L' \in NP$
- L is NP-complete if L is NP-hard and $L \in NP$.

Examples of NP-hard languages: Indset, Haltk, Halt

Observation

- L NP-hard and $L \in P$ implies P = NP
- *L* NP-complete implies *L* ∈ P iff P = NP

Cook-Levin

Do NP-complete languages exist?

- upcoming result independently discovered by Cook (1971) and Levin (1973)
- uses notion of satisfiable Boolean formulas
- Boolean formula φ over variables $X = \{x_1, \dots, x_k\}$ defined by

 $\varphi ::= x \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$

- write \overline{x} instead of $\neg x$, x and \overline{x} literals u
- assume formulas are in CNF:

$$\varphi = \bigwedge_{i} \bigvee_{j} u_{i_{j}}$$

- disjunctions $\bigvee_i u_{i_i}$ called clauses
- formula is in k-CNF if the no clause has more than k literals

Cook-Levin Theorem

- φ is satisfiable iff there exists an assignments $a : X \to \{0, 1\}$ making φ true
- $3SAT = \{\varphi \mid \varphi \text{ in 3-CNF and satisfiable}\}$

Theorem 3SAT is NP-complete.

- 1. SAT is NP-complete (without restriction to clauses of size three)
 - **1.1** SAT, 3SAT $\in \mathbb{NP}$
 - **1.2** for every $L \in \mathbb{NP} \ L \leq_p SAT$
- **2.** Show that SAT \leq_p 3SAT

Summary

What have we learnt?

- NP is polynomial certificates
- · Karp reductions, hardness, completeness
- Cook-Levin: reduce any language in NP to 3SAT
- up next: the proof, more NP-complete problems, P vs. NP, tool demos