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Lecture 3

Basic Complexity Classes



Agenda

• decision vs. search
• basic complexity classes

• time and space
• deterministic and non-deterministic

• sample problems



Decision vs. Search

Decision vs. Search

• often one is interested in functions f : {0, 1}∗ → {0, 1}
• f can be identified with the language Lf = {x ∈ {0, 1}∗ | f(x) = 1}
• TM that computes f is said to decide Lf (and vice versa)

Example (Indset)

Consider the independent set problem.

Search What is the largest independent set of a graph?

Decision Indset = {〈G, k 〉 | G has independent set of size k }

Often decision plus binary search can solve search problems.



Decision vs. Search

Agenda

• decision vs. search X
• basic complexity classes

• time and space
• deterministic and non-deterministic

• sample problems



Basic Complexity Classes Time

Time complexity

Definition (DTIME)

Let T : N→ N be a function. L ⊆ {0, 1}∗ is in DTIME(T) if there exists a
TM deciding L in time T ′ for T ′ ∈ O(T).

• D refers to deterministic
• constants are ignored since TM can be sped up by arbitrary constants



Basic Complexity Classes Space

Space complexity

Definition (SPACE)

Let S : N→ N and L ⊆ {0, 1}∗. Define L ∈ SPACE(S) iff
• there exists a TM M deciding L
• no more than S′(n) locations on M’s work tapes ever visited during

computations on every input of length n for S′ ∈ O(S)



Basic Complexity Classes Space

Remarks

• more detailed definition (cf. exercises): count non-� symbols, where
� must not be written

• constants do not matter
• as for time complexity, require space-constructible bounds

• S is space-constructible: there is TM M computing S(|x |) in O(S(|x |))
space on input x

• TM knows its bounds

• work tape restrictions: allows to store input
• space bounds < n make sense (as opposed to time)
• require space log n to remember positions in input



Basic Complexity Classes NDTM

Non-deterministic TMs

Definition (NDTM)

A non-deterministic TM (NDTM) is a triple (Γ,Q , δ) like a deterministic TM
except
• Q contains a distinguished state qaccept

• δ is a pair (δ0, δ1) of transition functions

• in each step, NDTM non-deterministically chooses to apply either δ0

or δ1

• NDTM M accepts x, M(x) = 1 if there exists a sequence of choices
s.t. M reaches qaccept

• M(x) = 0 if every sequence of choices makes M halt without
reaching qaccept



Basic Complexity Classes NDTM

On non-determinism

• not supposed to model realistic devices
• remember impact of non-determinism finite state machines,

pushdown automata
• NDTM compute the same functions as DTM (why?)
• non-determinism ∼ guessing

Non-deterministic complexity
Define NTIME(T) and NSPACE(S) such that T and S are bounds
regardless of non-deterministic choices.



Basic Complexity Classes Definitions

Basic complexity classes

deterministic non-deterministic
time

P =
⋃

p≥1 DTIME(np) NP =
⋃

p≥1 NTIME(np)

EXP =
⋃

p≥1 DTIME(2np
) NEXP =

⋃
p≥1 NTIME(2np

)

space

L = SPACE(log n) NL = NSPACE(log n)

PSPACE =
⋃

p>0 SPACE(np) NPSPACE =
⋃

p>0 NSPACE(np)



Basic Complexity Classes Definitions
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• sample problems



Basic Complexity Classes Examples

Interesting examples

Most examples are the hardest within a given complexity class. They are
complete for the class (wrt suitable reductions).

L: essentially constant number of pointers into input plus logarithmically
many boolean flags
• UPath = {〈G, s, t〉 | ∃a path from s to t in undirected graph G}

[Reingold 2004]
• Even = {x | x has an even number of 1s}

NL: L plus guessing, read-once certificates
• Path = {〈G, s, t〉 | ∃a path from s to t in directed graph G}
• 2SAT = {ϕ |
ϕ satisfiable Boolean formula in CNF with two literals per clause }
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Basic Complexity Classes Examples

Interesting examples

P: polynomial time, tractable, low-level choices of TM definitions are
immaterial to P
• Circuit − Eval = {〈C , x〉 | C is a n− in/1−out circuit, xsatisfying signals}
• Primes = {x | x prime} [AKS 2004]
• many graph problems like DFS and BFS

NP: polynomially verifiable certificates, puzzles
• Indset = {〈G, k 〉 | G has an independent set of size k }
• 3−Coloring = {G | G is 3-colorable}
• 3SAT = {ϕ | ϕ satisfiable Boolean formula in CNF with three literals per

clause }

PSPACE: polynomial space, games, for instance
TQBF = {Q1x1 . . .Qk xkϕ | k ≥ 0,Qi ∈ {∀,∃}, ϕ Boolean formula over
xi such that whole formula is true }

EXP: exponential-time, for instance the language
Haltk = {〈M, x, k 〉 | DTM M stops on input x within k steps }
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Basic Complexity Classes Complements

Complements

Definition (Complement classes)

Let C ⊆ P({0, 1}∗) be a complexity class. We define coC = {L | L ∈ C} to
be the complement class of C, where L = {0, 1}∗ \ L is the complement of
L .

• important class coNP
• coNP is not the complement of NP
• example: Tautology ∈ coNP, where a tautology is Boolean formula

that is true for every assignment
• reminder: closure under complement wrt expressiveness and

conciseness
• finite state machines
• pushdown automata
• DTM, NDTM

• note: P ⊆ NP ∩ coNP



Basic Complexity Classes Complements

Agenda

• universal Turing machine X
• decision vs. search X
• computability, halting problem X
• basic complexity classes X



Basic Complexity Classes Complements

Relation between classes

NL

P
NP ∩ coNP

NPcoNP

PSPACE = NPSPACE

EXP

L



Basic Complexity Classes Complements

Teaser

A regular expression over {0, 1} is defined by

r ::= 0 | 1 | rr | r |r | r∗

The language defined by r is written L(r).

What is the computational complexity of

• deciding whether two regular expressions are equivalent, that is
L(r1) = L(r2)?

• deciding whether a regular expression is universal, that is
L(r) = {0, 1}∗?

• deciding the same for star-free regular expressions?



Summary

What have we learnt?

• TM can be represented as strings; universal TM can simulate any TM
given its representations with polynomial overhead only

• uncomputable functions do exist (halting problem): diagonalization
and reductions

• non-deterministic TMs
• space, time, deterministic, non-deterministic, complement complexity

classes
• L, NL, P, NP, EXP, PSPACE
• 2SAT, 3SAT, Path, UPath, TQBF, Primes, Indset, 3−Coloring
• big picture
• up next: justify and explore the big picture
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