Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science Technical University of Munich Summer 2016

July 11, 2016

Lecture 25 Counting

- examples of counting problems
- definition
- how hard are they?

Deciding is easy, counting is hard

Example (#CYCLE)

Number of simple cycles

- cycle detection in linear time
- if #CYCLE has a polynomial algorithm then P = NP

Deciding is easy, counting is hard

Example (#CYCLE)

Number of simple cycles

- cycle detection in linear time
- if #CYCLE has a polynomial algorithm then P = NP

Example (GraphReliability)

 $\frac{1}{2^n}$ number of subgraphs with a path from s to t

Example (Maximum likelyhood in Bayes nets)

Visible variables are \lor 's of \le 3 hidden variables. What is the fraction of satisfying assignments with $x_1 = 1$?

equivalent to #SAT

Definition

Definition (#P)

A function $f : \{0, 1\}^* \to \mathbb{N}$ is in $\#\mathbb{P}$ if there is a polynomial-time TM *M* and a polynomial *p* such that $\forall x \in \{0, 1\}^*$

$$f(x) = \left| \left\{ y \in \{0, 1\}^{p(|x|)} : M(x, y) = 1 \right\} \right|$$

- counting certificates
- or accepting paths

Definition (FP)

A function $f : \{0, 1\}^* \to \mathbb{N}$ is in **FP** if there is a deterministic polynomial-time TM computing f.

• efficeintly solvable counting

Theorem

FP = #P

Theorem

 $FP = #P \iff$

Theorem $FP = \#P \iff P = PP$

Completeness

Definition A function *f* is #P-complete if $f \in \#P$ and for every $g \in \#P$ we have $g \in FP^{f}$

• #SAT is #P-complete

Completeness

Definition

A function *f* is #P-complete if $f \in \#P$ and for every $g \in \#P$ we have $g \in FP^{f}$

• #SAT is #P-complete

Example (Determinant)

 $det(A) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n A_{i,\sigma(i)}$

· computable in polynomial time

Example (Permanent)

 $perm(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A_{i,\sigma(i)}$

- #P-complete (for 0,1 matrices) [Valiant'79]
- hence $perm \in FP \implies P = NP$

Toda's theorem

Theorem (Toda'91)

 $\mathsf{PH} \subseteq \mathsf{P}^{\#SAT}$

Proof idea

- randomized reduction from PH to ⊕SAT (odd number of satisfying assignments; ⊕P-complete problem)
- derandomization

What have we learnt?

- counting seems harder than deciding
- #P-complete problems arise from NP-complete problems as well as from those in P
- more powerful than alternating quantifiers
- classes PP and ⊕P: most and least significant bits of #P function