Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science

Technical University of Munich
Summer 2016

July 11, 2016

Lecture 25
Counting

Agenda

- examples of counting problems
- definition
- how hard are they?

Examples

Deciding is easy, counting is hard

Example (\#CYCLE)

Number of simple cycles

- cycle detection in linear time
- if $\# C Y C L E$ has a polynomial algorithm then $\mathrm{P}=\mathrm{NP}$

Examples

Deciding is easy, counting is hard

Example (\#CYCLE)

Number of simple cycles

- cycle detection in linear time
- if $\# C Y C L E$ has a polynomial algorithm then $\mathrm{P}=\mathrm{NP}$

Example (GraphReliability)

$\frac{1}{2^{n}}$. number of subgraphs with a path from s to t

Example (Maximum likelyhood in Bayes nets)

Visible variables are V's of ≤ 3 hidden variables.
What is the fraction of satisfying assignments with $x_{1}=1$?

- equivalent to \#SAT

Definition

Definition (\#P)

A function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in \#P if there is a polynomial-time TM M and a polynomial p such that $\forall x \in\{0,1\}^{*}$

$$
f(x)=\left|\left\{y \in\{0,1\}^{p(|x|)}: M(x, y)=1\right\}\right|
$$

- counting certificates
- or accepting paths

Definition (FP)

A function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in FP if there is a deterministic polynomial-time TM computing f.

- efficeintly solvable counting

Decision analog

Theorem $F P=\# P$

Decision analog

Theorem

$$
\mathrm{FP}=\# \mathrm{P} \Longleftrightarrow
$$

Decision analog

Theorem

$$
\mathrm{FP}=\# \mathrm{P} \Longleftrightarrow \mathrm{P}=\mathrm{PP}
$$

Completeness

Definition

A function f is \#P-complete if $f \in \# \mathrm{P}$ and for every $g \in \# \mathrm{P}$ we have $g \in \mathrm{FP}^{f}$

- \#SAT is \#P-complete

Completeness

Definition

A function f is $\# \mathrm{P}$-complete if $f \in \# \mathrm{P}$ and for every $g \in \# \mathrm{P}$ we have $g \in \mathrm{FP}^{f}$

- \#SAT is \#P-complete

Example (Determinant)
$\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} A_{i, \sigma(i)}$

- computable in polynomial time

Example (Permanent) $\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \quad \prod_{i=1}^{n} A_{i, \sigma(i)}$

- \#P-complete (for 0,1 matrices) [Valiant'79]
- hence perm $\in \mathrm{FP} \Longrightarrow P=N P$

Toda's theorem

Theorem (Toda'91)

PH $\subseteq \mathrm{P}^{\# S A T}$

Proof idea

- randomized reduction from PH to $\oplus S A T$ (odd number of satisfying assignments; $\oplus \mathrm{P}$-complete problem)
- derandomization

What have we learnt?

- counting seems harder than deciding
- \#P-complete problems arise from NP-complete problems as well as from those in P
- more powerful than alternating quantifiers
- classes PP and $\oplus P$: most and least significant bits of $\# P$ function

