
Complexity Theory

Jan Křetı́nský

Chair for Foundations of Software Reliability
and Theoretical Computer Science

Technical University of Munich

Summer 2016

July 11, 2016

Lecture 25

Counting

Agenda

• examples of counting problems
• definition
• how hard are they?

Examples

Deciding is easy, counting is hard

Example (#CYCLE)

Number of simple cycles

• cycle detection in linear time
• if #CYCLE has a polynomial algorithm then P = NP

Example (GraphReliability)
1
2n · number of subgraphs with a path from s to t

Example (Maximum likelyhood in Bayes nets)

Visible variables are ∨’s of ≤ 3 hidden variables.
What is the fraction of satisfying assignments with x1 = 1?

• equivalent to #SAT

Examples

Deciding is easy, counting is hard

Example (#CYCLE)

Number of simple cycles

• cycle detection in linear time
• if #CYCLE has a polynomial algorithm then P = NP

Example (GraphReliability)
1
2n · number of subgraphs with a path from s to t

Example (Maximum likelyhood in Bayes nets)

Visible variables are ∨’s of ≤ 3 hidden variables.
What is the fraction of satisfying assignments with x1 = 1?

• equivalent to #SAT

Definition

Definition (#P)

A function f : {0, 1}∗ → N is in #P if there is a polynomial-time TM M and a
polynomial p such that ∀x ∈ {0, 1}∗

f(x) =
∣∣∣∣{y ∈ {0, 1}p(|x |) : M(x, y) = 1

}∣∣∣∣
• counting certificates
• or accepting paths

Definition (FP)

A function f : {0, 1}∗ → N is in FP if there is a deterministic polynomial-time
TM computing f .

• efficeintly solvable counting

Decision analog

Theorem
FP = #P

⇐⇒ P = PP

Decision analog

Theorem
FP = #P ⇐⇒

P = PP

Decision analog

Theorem
FP = #P ⇐⇒ P = PP

Completeness

Definition
A function f is #P-complete if f ∈ #P and for every g ∈ #P we have
g ∈ FPf

• #SAT is #P-complete

Example (Determinant)

det(A) =
∑
σ∈Sn

sgn(σ)
∏n

i=1 Ai,σ(i)

• computable in polynomial time

Example (Permanent)

perm(A) =
∑
σ∈Sn

∏n
i=1 Ai,σ(i)

• #P-complete (for 0,1 matrices) [Valiant’79]
• hence perm ∈ FP =⇒ P = NP

Completeness

Definition
A function f is #P-complete if f ∈ #P and for every g ∈ #P we have
g ∈ FPf

• #SAT is #P-complete

Example (Determinant)

det(A) =
∑
σ∈Sn

sgn(σ)
∏n

i=1 Ai,σ(i)

• computable in polynomial time

Example (Permanent)

perm(A) =
∑
σ∈Sn

∏n
i=1 Ai,σ(i)

• #P-complete (for 0,1 matrices) [Valiant’79]
• hence perm ∈ FP =⇒ P = NP

Toda’s theorem

Theorem (Toda’91)

PH ⊆ P#SAT

Proof idea
• randomized reduction from PH to ⊕SAT

(odd number of satisfying assignments; ⊕P-complete problem)
• derandomization

What have we learnt?

• counting seems harder than deciding
• #P-complete problems arise from NP-complete problems as well as

from those in P
• more powerful than alternating quantifiers
• classes PP and ⊕P: most and least significant bits of #P function

