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Lecture 24’

AC0 ⊂ NC1: original proof

(Furst-Saxe-Sipser 1984)



Agenda

Tool: still random assignments

Separate arguments for wide and narrow conjunctions/disjunctions

• circuits to trees
• make bottom layer fan-in bounded
• make bottom two-layer subtrees bounded
• reduce depth
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Convert to trees (fan-out 1 except for inputs),
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(Still poly-size fixed-depth, depth did not increase)

Paths from root: just a polynomial number (depth is fixed)
Copy subgraphs as needed until we get trees
Same depth, still polynomial size
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• circuits to trees X
• make bottom layer fan-in bounded
• make bottom two-layer subtrees bounded
• reduce depth



Bounded bottom layer fan-in

Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all bottom operations have fan-in < c (c will be 8k )

The restricted circuit still calculates parity.

Estimate for a single operation
Separately wide (> c log n) and narrow cases



Bounded bottom layer fan-in

Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all bottom operations have fan-in < c (c will be 8k )

The restricted circuit still calculates parity.

Estimate for a single operation
Separately wide (> c log n) and narrow cases



Bounded bottom layer fan-in

Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all bottom operations have fan-in < c (c will be 8k )

The restricted circuit still calculates parity.

Estimate for a single operation
Separately wide (> c log n) and narrow cases



Bottom layer: cases

Wide:
> 1/3 probability per assignment to become constant
Avoiding: (2/3)c log n = o(n−c/4)

Narrow:
Having > c rare ∗ entries
Pr 6 (c log n

c )
√

n−c 6 (c log n)cn−c/2 = o(n−c/4)

c = 8k , only nk sources of problems, union bound



Bottom layer: cases

Wide:
> 1/3 probability per assignment to become constant
Avoiding: (2/3)c log n = o(n−c/4)

Narrow:
Having > c rare ∗ entries
Pr 6 (c log n

c )
√

n−c 6 (c log n)cn−c/2 = o(n−c/4)

c = 8k , only nk sources of problems, union bound



Bottom layer: cases

Wide:
> 1/3 probability per assignment to become constant
Avoiding: (2/3)c log n = o(n−c/4)

Narrow:
Having > c rare ∗ entries
Pr 6 (c log n

c )
√

n−c 6 (c log n)cn−c/2 = o(n−c/4)

c = 8k , only nk sources of problems, union bound



Bottom layer: result

Probability of <
√

n/2 assignments of ∗ is also small
By union bound: we still have optimal depth, worse polynomial size



Agenda

• circuits to trees X
• make bottom layer fan-in bounded X
• make bottom two-layer subtrees bounded
• reduce depth



Bottom two layers

Reassign k
We have minimal-depth nk -sized tree circuits for parity with fan-in c in the
bottom layer
Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all layer-two operations depend on b(c) variables

The restricted circuit still calculates parity.
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Bottom two layers: proof

Induction on c, c = 1 is the previous case
b(c) = k × 4c

Wide: > b log n disjoint bottom-level argument nodes
Probability of constant: (1 − 4−c)b log n = nb log 1−4−c

6 n−b4−c
= o(n−k )

Narrow: Maximal collection of input-disjoint argument nodes
Set of their inputs: H
H hits each argument node
Fixing values of ∗ in H: by induction, dependency on b(c − 1) inputs
|H| 6 b(c)c log n; Probably < 4k entries of ∗; dependency on
4k + 24k b(c − 1) is OK.
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Depth reduction

Second layer elements depend on fixed number of inputs — brute force
CNF/DNF, polynomial blowup, lower depth
Contradiction!
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