
Complexity Theory

Mikhail Raskin, Jan Křetı́nský

Chair for Foundations of Software Reliability
and Theoretical Computer Science

Technical University of Munich

Summer 2019

June 14, 2019

Lecture 24’

AC0 ⊂ NC1: original proof

(Furst-Saxe-Sipser 1984)

Agenda

Tool: still random assignments

Separate arguments for wide and narrow conjunctions/disjunctions

• circuits to trees
• make bottom layer fan-in bounded
• make bottom two-layer subtrees bounded
• reduce depth

Agenda

Tool: still random assignments

Separate arguments for wide and narrow conjunctions/disjunctions

• circuits to trees
• make bottom layer fan-in bounded
• make bottom two-layer subtrees bounded
• reduce depth

Circuits to trees

Poly-size fixed-depth circuits (Cn).

Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,
conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Paths from root: just a polynomial number (depth is fixed)
Copy subgraphs as needed until we get trees
Same depth, still polynomial size

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),

all negations on the bottom level,
conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Paths from root: just a polynomial number (depth is fixed)
Copy subgraphs as needed until we get trees
Same depth, still polynomial size

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,

conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Paths from root: just a polynomial number (depth is fixed)
Copy subgraphs as needed until we get trees
Same depth, still polynomial size

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,
conjunctions and disjunctions in alternating layers.

(Still poly-size fixed-depth, depth did not increase)

Paths from root: just a polynomial number (depth is fixed)
Copy subgraphs as needed until we get trees
Same depth, still polynomial size

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,
conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Paths from root: just a polynomial number (depth is fixed)
Copy subgraphs as needed until we get trees
Same depth, still polynomial size

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,
conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Paths from root: just a polynomial number (depth is fixed)
Copy subgraphs as needed until we get trees
Same depth, still polynomial size

Circuits to trees

Poly-size fixed-depth circuits (Cn).

Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,
conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Negations: push down
Adjacent conjunctions, adjacent disjunctions: merge

Depth: number of conjunction/disjunction layers

Assume we have a sequence of minimal depth

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),

all negations on the bottom level,
conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Negations: push down
Adjacent conjunctions, adjacent disjunctions: merge

Depth: number of conjunction/disjunction layers

Assume we have a sequence of minimal depth

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,

conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Negations: push down
Adjacent conjunctions, adjacent disjunctions: merge

Depth: number of conjunction/disjunction layers

Assume we have a sequence of minimal depth

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,
conjunctions and disjunctions in alternating layers.

(Still poly-size fixed-depth, depth did not increase)

Negations: push down
Adjacent conjunctions, adjacent disjunctions: merge

Depth: number of conjunction/disjunction layers

Assume we have a sequence of minimal depth

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,
conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Negations: push down
Adjacent conjunctions, adjacent disjunctions: merge

Depth: number of conjunction/disjunction layers

Assume we have a sequence of minimal depth

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,
conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Negations: push down

Adjacent conjunctions, adjacent disjunctions: merge

Depth: number of conjunction/disjunction layers

Assume we have a sequence of minimal depth

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,
conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Negations: push down
Adjacent conjunctions, adjacent disjunctions: merge

Depth: number of conjunction/disjunction layers

Assume we have a sequence of minimal depth

Circuits to trees

Poly-size fixed-depth circuits (Cn).
Convert to trees (fan-out 1 except for inputs),
all negations on the bottom level,
conjunctions and disjunctions in alternating layers.
(Still poly-size fixed-depth, depth did not increase)

Negations: push down
Adjacent conjunctions, adjacent disjunctions: merge

Depth: number of conjunction/disjunction layers

Assume we have a sequence of minimal depth

Agenda

• circuits to trees X
• make bottom layer fan-in bounded
• make bottom two-layer subtrees bounded
• reduce depth

Bounded bottom layer fan-in

Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all bottom operations have fan-in < c (c will be 8k)

The restricted circuit still calculates parity.

Estimate for a single operation
Separately wide (> c log n) and narrow cases

Bounded bottom layer fan-in

Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all bottom operations have fan-in < c (c will be 8k)

The restricted circuit still calculates parity.

Estimate for a single operation
Separately wide (> c log n) and narrow cases

Bounded bottom layer fan-in

Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all bottom operations have fan-in < c (c will be 8k)

The restricted circuit still calculates parity.

Estimate for a single operation
Separately wide (> c log n) and narrow cases

Bottom layer: cases

Wide:
> 1/3 probability per assignment to become constant
Avoiding: (2/3)c log n = o(n−c/4)

Narrow:
Having > c rare ∗ entries
Pr 6 (c log n

c)
√

n−c 6 (c log n)cn−c/2 = o(n−c/4)

c = 8k , only nk sources of problems, union bound

Bottom layer: cases

Wide:
> 1/3 probability per assignment to become constant
Avoiding: (2/3)c log n = o(n−c/4)

Narrow:
Having > c rare ∗ entries
Pr 6 (c log n

c)
√

n−c 6 (c log n)cn−c/2 = o(n−c/4)

c = 8k , only nk sources of problems, union bound

Bottom layer: cases

Wide:
> 1/3 probability per assignment to become constant
Avoiding: (2/3)c log n = o(n−c/4)

Narrow:
Having > c rare ∗ entries
Pr 6 (c log n

c)
√

n−c 6 (c log n)cn−c/2 = o(n−c/4)

c = 8k , only nk sources of problems, union bound

Bottom layer: result

Probability of <
√

n/2 assignments of ∗ is also small
By union bound: we still have optimal depth, worse polynomial size

Agenda

• circuits to trees X
• make bottom layer fan-in bounded X
• make bottom two-layer subtrees bounded
• reduce depth

Bottom two layers

Reassign k
We have minimal-depth nk -sized tree circuits for parity with fan-in c in the
bottom layer
Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all layer-two operations depend on b(c) variables

The restricted circuit still calculates parity.

Bottom two layers

Reassign k
We have minimal-depth nk -sized tree circuits for parity with fan-in c in the
bottom layer
Assign ∗ (Pr = n−1/2), 0 and 1 (equal probability) to input variables.
Circuit size: nk

Goals:
• >

√
n/2 variables left free (∗)

• all layer-two operations depend on b(c) variables

The restricted circuit still calculates parity.

Bottom two layers: proof

Induction on c, c = 1 is the previous case
b(c) = k × 4c

Wide: > b log n disjoint bottom-level argument nodes
Probability of constant: (1 − 4−c)b log n = nb log 1−4−c

6 n−b4−c
= o(n−k)

Narrow: Maximal collection of input-disjoint argument nodes
Set of their inputs: H
H hits each argument node
Fixing values of ∗ in H: by induction, dependency on b(c − 1) inputs
|H| 6 b(c)c log n; Probably < 4k entries of ∗; dependency on
4k + 24k b(c − 1) is OK.

Bottom two layers: proof

Induction on c, c = 1 is the previous case
b(c) = k × 4c

Wide: > b log n disjoint bottom-level argument nodes
Probability of constant: (1 − 4−c)b log n = nb log 1−4−c

6 n−b4−c
= o(n−k)

Narrow: Maximal collection of input-disjoint argument nodes
Set of their inputs: H
H hits each argument node
Fixing values of ∗ in H: by induction, dependency on b(c − 1) inputs
|H| 6 b(c)c log n; Probably < 4k entries of ∗; dependency on
4k + 24k b(c − 1) is OK.

Bottom two layers: proof

Induction on c, c = 1 is the previous case
b(c) = k × 4c

Wide: > b log n disjoint bottom-level argument nodes
Probability of constant: (1 − 4−c)b log n = nb log 1−4−c

6 n−b4−c
= o(n−k)

Narrow: Maximal collection of input-disjoint argument nodes
Set of their inputs: H
H hits each argument node
Fixing values of ∗ in H: by induction, dependency on b(c − 1) inputs

|H| 6 b(c)c log n; Probably < 4k entries of ∗; dependency on
4k + 24k b(c − 1) is OK.

Bottom two layers: proof

Induction on c, c = 1 is the previous case
b(c) = k × 4c

Wide: > b log n disjoint bottom-level argument nodes
Probability of constant: (1 − 4−c)b log n = nb log 1−4−c

6 n−b4−c
= o(n−k)

Narrow: Maximal collection of input-disjoint argument nodes
Set of their inputs: H
H hits each argument node
Fixing values of ∗ in H: by induction, dependency on b(c − 1) inputs
|H| 6 b(c)c log n; Probably < 4k entries of ∗; dependency on
4k + 24k b(c − 1) is OK.

Agenda

• circuits to trees X
• make bottom layer fan-in bounded X
• make bottom two-layer subtrees bounded X
• reduce depth

Depth reduction

Second layer elements depend on fixed number of inputs — brute force
CNF/DNF, polynomial blowup, lower depth
Contradiction!

Agenda

• circuits to trees X
• make bottom layer fan-in bounded X
• make bottom two-layer subtrees bounded X
• reduce depth X

