Complexity Theory

Mikhail Raskin, Jan Křetínský

Chair for Foundations of Software Reliability
and Theoretical Computer Science
Technical University of Munich
Summer 2019

June 14, 2019

Lecture 24'
 $A C^{0} \subset N^{1}$: original proof

(Furst-Saxe-Sipser 1984)

Agenda

Tool: still random assignments
Separate arguments for wide and narrow conjunctions/disjunctions

Agenda

Tool: still random assignments
Separate arguments for wide and narrow conjunctions/disjunctions

- circuits to trees
- make bottom layer fan-in bounded
- make bottom two-layer subtrees bounded
- reduce depth

Circuits to trees

Poly-size fixed-depth circuits (Cn).

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs),

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level,

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers.

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Paths from root: just a polynomial number (depth is fixed) Copy subgraphs as needed until we get trees Same depth, still polynomial size

Circuits to trees

Poly-size fixed-depth circuits (Cn).

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs),

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level,

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers.

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Negations: push down

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Negations: push down
Adjacent conjunctions, adjacent disjunctions: merge

Circuits to trees

Poly-size fixed-depth circuits (Cn). Convert to trees (fan-out 1 except for inputs), all negations on the bottom level, conjunctions and disjunctions in alternating layers. (Still poly-size fixed-depth, depth did not increase)

Negations: push down
Adjacent conjunctions, adjacent disjunctions: merge
Depth: number of conjunction/disjunction layers
Assume we have a sequence of minimal depth

Agenda

- circuits to trees \checkmark
- make bottom layer fan-in bounded
- make bottom two-layer subtrees bounded
- reduce depth

Bounded bottom layer fan-in

Assign $*\left(\operatorname{Pr}=n^{-1 / 2}\right), 0$ and 1 (equal probability) to input variables. Circuit size: n^{k}

Bounded bottom layer fan-in

Assign $*\left(\operatorname{Pr}=n^{-1 / 2}\right), 0$ and 1 (equal probability) to input variables. Circuit size: n^{k}

Goals:

- $\geqslant \sqrt{n} / 2$ variables left free (*)
- all bottom operations have fan-in <c (c will be 8 k)

The restricted circuit still calculates parity.

Bounded bottom layer fan-in

Assign $*\left(\operatorname{Pr}=n^{-1 / 2}\right), 0$ and 1 (equal probability) to input variables. Circuit size: n^{k}

Goals:

- $\geqslant \sqrt{n} / 2$ variables left free (*)
- all bottom operations have fan-in $<c$ (c will be 8 k)

The restricted circuit still calculates parity.
Estimate for a single operation Separately wide ($\geqslant c \log n$) and narrow cases

Bottom layer: cases

Wide:

> $1 / 3$ probability per assignment to become constant
Avoiding: $(2 / 3)^{c \log n}=o\left(n^{-c / 4}\right)$

Bottom layer: cases

Wide:
> $1 / 3$ probability per assignment to become constant Avoiding: $(2 / 3)^{\operatorname{cog} n}=o\left(n^{-c / 4}\right)$

Narrow:
Having >c rare * entries
$P r \leqslant(\underset{c}{c \log n}) \sqrt{n}{ }^{-c} \leqslant(c \log n)^{c} n^{-c / 2}=o\left(n^{-c / 4}\right)$

Bottom layer: cases

Wide:
> $1 / 3$ probability per assignment to become constant
Avoiding: $(2 / 3)^{c \log n}=o\left(n^{-c / 4}\right)$
Narrow:
Having > c rare * entries
$P r \leqslant(\underset{c}{c \log n}) \sqrt{n}{ }^{-c} \leqslant(c \log n)^{c} n^{-c / 2}=o\left(n^{-c / 4}\right)$
$c=8 k$, only n^{k} sources of problems, union bound

Bottom layer: result

Probability of $<\sqrt{n} / 2$ assignments of $*$ is also small
By union bound: we still have optimal depth, worse polynomial size

Agenda

- circuits to trees \checkmark
- make bottom layer fan-in bounded \checkmark
- make bottom two-layer subtrees bounded
- reduce depth

Bottom two layers

Reassign k
We have minimal-depth n^{k}-sized tree circuits for parity with fan-in c in the bottom layer
Assign * ($\operatorname{Pr}=n^{-1 / 2}$), 0 and 1 (equal probability) to input variables.
Circuit size: n^{k}

Bottom two layers

Reassign k
We have minimal-depth n^{k}-sized tree circuits for parity with fan-in c in the bottom layer
Assign * ($\operatorname{Pr}=n^{-1 / 2}$), 0 and 1 (equal probability) to input variables. Circuit size: n^{k}

Goals:

- $\geqslant \sqrt{n} / 2$ variables left free (*)
- all layer-two operations depend on $b(c)$ variables

The restricted circuit still calculates parity.

Bottom two layers: proof

Induction on $c, c=1$ is the previous case
$b(c)=k \times 4^{c}$

Bottom two layers: proof

Induction on $c, c=1$ is the previous case
$b(c)=k \times 4^{c}$
Wide: >blog n disjoint bottom-level argument nodes
Probability of constant: $\left(1-4^{-c}\right)^{b \log n}=n^{b \log 1-4^{-c}} \leqslant n^{-b 4^{-c}}=o\left(n^{-k}\right)$

Bottom two layers: proof

Induction on $c, c=1$ is the previous case
$b(c)=k \times 4^{c}$
Wide: $>b \log n$ disjoint bottom-level argument nodes
Probability of constant: $\left(1-4^{-c}\right)^{b \log n}=n^{b \log 1-4^{-c}} \leqslant n^{-b 4^{-c}}=O\left(n^{-k}\right)$
Narrow: Maximal collection of input-disjoint argument nodes
Set of their inputs: H
H hits each argument node
Fixing values of $*$ in H : by induction, dependency on $b(c-1)$ inputs

Bottom two layers: proof

Induction on $c, c=1$ is the previous case
$b(c)=k \times 4^{c}$
Wide: >blog n disjoint bottom-level argument nodes
Probability of constant: $\left(1-4^{-c}\right)^{b \log n}=n^{b \log 1-4^{-c}} \leqslant n^{-b 4^{-c}}=O\left(n^{-k}\right)$
Narrow: Maximal collection of input-disjoint argument nodes Set of their inputs: H
H hits each argument node
Fixing values of $*$ in H : by induction, dependency on $b(c-1)$ inputs
$|H| \leqslant b(c) c \log n$; Probably $<4 k$ entries of $*$; dependency on
$4 k+2^{4 k} b(c-1)$ is OK.

Agenda

- circuits to trees \checkmark
- make bottom layer fan-in bounded \checkmark
- make bottom two-layer subtrees bounded \checkmark
- reduce depth

Depth reduction

Second layer elements depend on fixed number of inputs - brute force CNF/DNF, polynomial blowup, lower depth Contradiction!

Agenda

- circuits to trees \checkmark
- make bottom layer fan-in bounded \checkmark
- make bottom two-layer subtrees bounded \checkmark
- reduce depth \checkmark

