Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science

Technical University of Munich
Summer 2016

July 11, 2016

Lecture 24
$\mathrm{AC}^{0} \subset \mathrm{NC}^{1}$

Agenda

- lower bounds for circuits
- $\mathrm{AC}^{0} \subset \mathrm{NC}^{1}$
- tool: random restrictions and switching lemma

Circuit lower bounds

- n is trivial
- $5 n-o(n)$ for NP-complete problems
- special cases: bounded depth
- any Boolean formula by circuit of depth 2 and exponential size
- some proven to require exponential size, not valid for depth 3 any more
- do NP-complete problems have polynomial circuits with constant depth, i.e., $A C^{0}$?

$\mathrm{AC}^{0} \subset \mathrm{NC}^{1}$

No!

$\mathrm{AC}^{0} \subset \mathrm{NC}^{1}$

No!

Theorem
 $\bigoplus \notin A C^{0}$

- $\bigoplus \in \operatorname{NC}^{1}$ by binary " \oplus-tree"
- hence $\mathrm{AC}^{0} \subset \mathrm{NC}^{1}$

Agenda

- lower bounds for circuits \checkmark
- $A C^{0} \subset N^{1} \checkmark$
- tool: random restrictions and switching lemma

Main idea: random restrictions

- every function with $A C^{0}$ satisfies:
- if vast majority of inputs fixed (randomly) to 0's and 1's
- then with positive probability the resulting function is constant
- but \bigoplus is not!

Håstad's switching lemma

Function f under a partial assignment ρ is denoted $\left.f\right|_{\rho}$. Expressibility of f in k -CNF (or k -DNF) is denoted by $f \in k-C N F$ (or $f \in k$-DNF).

Theorem (Håstad's lemma, 1986)
Let $f \in k$-DNF and ρ random partial assignment to t random input bits.
Then $\operatorname{Pr}_{\rho}\left[\left.f\right|_{\rho} \notin s-C N F\right] \leq\left(\frac{(n-t)}{n} k^{10}\right)^{s / 2}$ for every $s \geq 2$.

Håstad's switching lemma

Function f under a partial assignment ρ is denoted $\left.f\right|_{\rho}$. Expressibility of f in k -CNF (or k-DNF) is denoted by $f \in k-C N F$ (or $f \in k$-DNF).

Theorem (Håstad's lemma, 1986)
Let $f \in k$-DNF and ρ random partial assignment to t random input bits.
Then $\operatorname{Pr}_{\rho}\left[\left.f\right|_{\rho} \notin s-C N F\right] \leq\left(\frac{(n-t)}{n} k^{10}\right)^{s / 2}$ for every $s \geq 2$.

- similarly for CNF
- restriction allows for switching between DNF and CNF without much blowup
- proof idea: 1-to-1 mapping of "bad" partial assignments (non-constant results) to "good" partial completions (constant results)

Proof sketch of $\bigoplus \notin A C^{0}$

- start with any AC^{0} circuit (in alternating form)
- in ith round:
- fix $n_{i}-\sqrt{n_{i}}$ input bits $\left(n_{0}=n\right)$
- switch the two bottom layers into the other normal form
- collapse with the layer one above

Proof sketch of $\bigoplus \notin A C^{0}$

- start with any AC^{0} circuit (in alternating form)
- in ith round:
- fix $n_{i}-\sqrt{n_{i}}$ input bits $\left(n_{0}=n\right)$
- switch the two bottom layers into the other normal form
- collapse with the layer one above
- finally, obtain two-layer DNF
- and make it constant (by fixing $\leq k$ variables in the first clause)

Proof sketch of $\bigoplus \notin A C^{0}$

- start with any AC^{0} circuit (in alternating form)
- in ith round:
- fix $n_{i}-\sqrt{n_{i}}$ input bits $\left(n_{0}=n\right)$
- switch the two bottom layers into the other normal form
- collapse with the layer one above
- finally, obtain two-layer DNF
- and make it constant (by fixing $\leq k$ variables in the first clause)
- but \bigoplus cannot be made constant for any partial assignment

What have we learnt?

- lower bounds are hard
- in special simple cases possible
- tool: random partial assignments

