
Complexity Theory

Jan Křetı́nský

Technical University of Munich

Summer 2019

June 4, 2019

1



Lecture 22

Models of Parallel Computation

2



Goal and plan

Goal

• introduce two models of parallel computation

• understand why they are equivalent

Plan

• PRAM: parallel random access machine

• circuits

• some complexity class definitions

3



Random access machine

RAM: more realistic model of sequential computation, which can be
simulated by standard TMs with polynomial overhead.

• computation unit with user-defined program

• read-only input tape, write-only output tape, unbounded
number of local memory cells

• memory cells can hold unbounded integers
• instructions include

• moving data between memory cells
• comparisons and branches
• simple arithmetic operations

• all operations take unit time

4



Parallel random access machine

PRAM: parallel extension of RAM

• unbounded collection of RAM processors without tapes:
P0,P1,P2, . . .

• unbounded collection of shared memory cells:
M[0],M[1],M[2], . . .

• each Pi has its own local memory (registers)

• input: n items stored in M[0], . . . ,M[n − 1]

• output stored on some designated part of memory
• instructions execute in 3-phase cycles

• read from shared memory
• local computation
• write to shared memory

• processors execute cycles synchronously

• P0 starts and halts execution

5



Read/write conflicts

It may happen that several processors want to read from or write to
the same memory cell in one cycle.

Three policies:

EREW : exclusive read/exclusive write

CREW : concurrent read/exclusive write allows for
simultaneous reads

CRCW : simultaneous read and write allowed

6



Read/write conflicts

It may happen that several processors want to read from or write to
the same memory cell in one cycle.

Three policies:

EREW : exclusive read/exclusive write

CREW : concurrent read/exclusive write allows for
simultaneous reads

CRCW : simultaneous read and write allowed

6



Practical concerns

• idealized: PRAMs are an abstract, idealized formalism
• unbounded integers
• communication between any two processors in constant time

due to shared memory (in reality: interconnection networks)
• too many processors

• CRCW and CREW hard to build technically but easier to
design algorithms

• still useful as benchmark
• if there is no good PRAM algorithm, probably the problem is

hard to parallelize

7



Time and space complexity

• time complexity: number of steps of P0

• space complexity: number of shared memory cells accessed

• one can show that the weakest PRAM (EREW) can simulate
the strongest with logarithmic overhead; cf. search-example

• efficient parallel computation
• polynomially many processors
• polylogarithmic time, where polylog(n) =

⋃
k≥1 log

k n

• problems with efficient parallel algorithms are said to be in NC
• NC is robust wrt different PRAM models (and circuits)

8



Example: Search

Example

Given n items on the shared memory tape and p + 1 < n
processors. For some x ∈ N P0 wants to know, whether there exists
an 0 ≤ i < n such that M[i] = x.

Solution (high level):

1. P0 publishes x

2. for 1 ≤ i ≤ p each Pi searches through
M[d n

p e(i − 1)], . . . ,M[d n
p ei − 1]

3. each Pi announces its search result

9



Example: Search

Example

Given n items on the shared memory tape and p + 1 < n
processors. For some x ∈ N P0 wants to know, whether there exists
an 0 ≤ i < n such that M[i] = x.

Solution (high level):

1. P0 publishes x

2. for 1 ≤ i ≤ p each Pi searches through
M[d n

p e(i − 1)], . . . ,M[d n
p ei − 1]

3. each Pi announces its search result

9



Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

• needs O(1) time in CRCW and CREW since P0 can simply
write x on the shared tape which everybody can read
simultaneously

• needs log p steps in EREW by binary broadcast tree

Step 3

• needs O(1) time in CRCW only, where all successful
processors indicate success in the same memory cell

• otherwise, we need log p time to perform a parallel reduction

10



Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

• needs O(1) time in CRCW and CREW since P0 can simply
write x on the shared tape which everybody can read
simultaneously

• needs log p steps in EREW by binary broadcast tree

Step 3

• needs O(1) time in CRCW only, where all successful
processors indicate success in the same memory cell

• otherwise, we need log p time to perform a parallel reduction

10



Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

• needs O(1) time in CRCW and CREW since P0 can simply
write x on the shared tape which everybody can read
simultaneously

• needs log p steps in EREW by binary broadcast tree

Step 3

• needs O(1) time in CRCW only, where all successful
processors indicate success in the same memory cell

• otherwise, we need log p time to perform a parallel reduction

10



Other problems in NC

Many practical problems are known to be in NC, for details, take
some class on parallel algorithms.

• sorting

• matrix multiplication

• expression evaluation

• connected components of graphs

• string matching

11



Signpost

Just seen:

• RAMs and PRAMs

• CRCW, CREW, EREW

• simulations between models have at most logarithmic overhead

• efficient parallel ∼ polylogarithmic (stable under different PRAM
models)

Next:

• Boolean circuits as parallel model of computation

• equivalence with respect to efficient parallel algorithms of
PRAM and circuits

12



Boolean Circuits
Definition
A Boolean circuit, C , is a directed acyclic graph with labeled nodes.

• the input nodes are labeled with a variable xi or with a constant
0 or 1

• the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
• ∧ (fan-in k )
• ∨ (fan-in k )
• ¬ (fan-in 1)

• the output nodes are labeled output and have fan-out 0

Given an assignment σ : {0, 1}m → {0, 1} to the m variables, C(σ)
denotes the value of the o output nodes. We denote by size(C) the
number of gates and by depth(C) the maximum distance from an
input to an output.
We distinguish circuits with and without a-priori bounds on fan-in.
Wlog we assume that all negations appear in the input layer only.

13



Boolean Circuits
Definition
A Boolean circuit, C , is a directed acyclic graph with labeled nodes.

• the input nodes are labeled with a variable xi or with a constant
0 or 1

• the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
• ∧ (fan-in k )
• ∨ (fan-in k )
• ¬ (fan-in 1)

• the output nodes are labeled output and have fan-out 0

Given an assignment σ : {0, 1}m → {0, 1} to the m variables, C(σ)
denotes the value of the o output nodes. We denote by size(C) the
number of gates and by depth(C) the maximum distance from an
input to an output.

We distinguish circuits with and without a-priori bounds on fan-in.
Wlog we assume that all negations appear in the input layer only.

13



Boolean Circuits
Definition
A Boolean circuit, C , is a directed acyclic graph with labeled nodes.

• the input nodes are labeled with a variable xi or with a constant
0 or 1

• the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
• ∧ (fan-in k )
• ∨ (fan-in k )
• ¬ (fan-in 1)

• the output nodes are labeled output and have fan-out 0

Given an assignment σ : {0, 1}m → {0, 1} to the m variables, C(σ)
denotes the value of the o output nodes. We denote by size(C) the
number of gates and by depth(C) the maximum distance from an
input to an output.
We distinguish circuits with and without a-priori bounds on fan-in.

Wlog we assume that all negations appear in the input layer only.

13



Boolean Circuits
Definition
A Boolean circuit, C , is a directed acyclic graph with labeled nodes.

• the input nodes are labeled with a variable xi or with a constant
0 or 1

• the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
• ∧ (fan-in k )
• ∨ (fan-in k )
• ¬ (fan-in 1)

• the output nodes are labeled output and have fan-out 0

Given an assignment σ : {0, 1}m → {0, 1} to the m variables, C(σ)
denotes the value of the o output nodes. We denote by size(C) the
number of gates and by depth(C) the maximum distance from an
input to an output.
We distinguish circuits with and without a-priori bounds on fan-in.
Wlog we assume that all negations appear in the input layer only.

13



Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2n → {0, 1}n+1

Ripple carry adder

• n sequential full adder

• depth: O(n)

• size: O(n)

Conditional sum adder

• depth: O(log n)

• size: O(n log n)

Carry lookahead adder

• depth: O(log n)

• size: O(n)

14



Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2n → {0, 1}n+1

Ripple carry adder

• n sequential full adder

• depth: O(n)

• size: O(n)

Conditional sum adder

• depth: O(log n)

• size: O(n log n)

Carry lookahead adder

• depth: O(log n)

• size: O(n)

14



Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2n → {0, 1}n+1

Ripple carry adder

• n sequential full adder

• depth: O(n)

• size: O(n)

Conditional sum adder

• depth: O(log n)

• size: O(n log n)

Carry lookahead adder

• depth: O(log n)

• size: O(n)

14



Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2n → {0, 1}n+1

Ripple carry adder

• n sequential full adder

• depth: O(n)

• size: O(n)

Conditional sum adder

• depth: O(log n)

• size: O(n log n)

Carry lookahead adder

• depth: O(log n)

• size: O(n)

14



Deciding languages with circuits

Definition
A language L ⊆ {0, 1}∗ is said to be decided by a family of circuits
{Cn}, where Ci takes i input variables, iff for all i holds:
Ci(x) = 1 iff x ∈ L .

Definition
Let d, s : N→ N be functions. We say that a family {Cn} has depth
d and size s if for all n

• depth(Cn) ≤ d(n)

• size(Cn) ≤ s(n)

15



Deciding languages with circuits

Definition
A language L ⊆ {0, 1}∗ is said to be decided by a family of circuits
{Cn}, where Ci takes i input variables, iff for all i holds:
Ci(x) = 1 iff x ∈ L .

Definition
Let d, s : N→ N be functions. We say that a family {Cn} has depth
d and size s if for all n

• depth(Cn) ≤ d(n)

• size(Cn) ≤ s(n)

15



Examples

Example (Parity)

Parity = {x ∈ {0, 1}∗ | x has an odd number of 1s}

• circuits are binary trees of xor gates
• each xor-gate has depth 3
⇒ logarithmic depth

Example (UHalt)

UHalt = {1n |

n’s binary expansion encodes a pair 〈M, x〉 such that M halts on x}

• circuit family of linear size decides UHalt even though it is
undecidable

• for each n with 1n ∈ UHalt is a tree of and-gates
• otherwise, constant 0 circuit

16



Examples

Example (Parity)

Parity = {x ∈ {0, 1}∗ | x has an odd number of 1s}

• circuits are binary trees of xor gates
• each xor-gate has depth 3
⇒ logarithmic depth

Example (UHalt)

UHalt = {1n |

n’s binary expansion encodes a pair 〈M, x〉 such that M halts on x}

• circuit family of linear size decides UHalt even though it is
undecidable

• for each n with 1n ∈ UHalt is a tree of and-gates
• otherwise, constant 0 circuit

16



Examples

Example (Parity)

Parity = {x ∈ {0, 1}∗ | x has an odd number of 1s}

• circuits are binary trees of xor gates
• each xor-gate has depth 3
⇒ logarithmic depth

Example (UHalt)

UHalt = {1n |

n’s binary expansion encodes a pair 〈M, x〉 such that M halts on x}

• circuit family of linear size decides UHalt even though it is
undecidable

• for each n with 1n ∈ UHalt is a tree of and-gates
• otherwise, constant 0 circuit

16



Examples

Example (Parity)

Parity = {x ∈ {0, 1}∗ | x has an odd number of 1s}

• circuits are binary trees of xor gates
• each xor-gate has depth 3
⇒ logarithmic depth

Example (UHalt)

UHalt = {1n |

n’s binary expansion encodes a pair 〈M, x〉 such that M halts on x}

• circuit family of linear size decides UHalt even though it is
undecidable

• for each n with 1n ∈ UHalt is a tree of and-gates
• otherwise, constant 0 circuit

16



On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, {Cn} is logspace-uniform if
there exists a logspace TM M such that for every n,
M(1n) = desc(Cn), where desc(Cn) is the description of Cn.

Remarks

• a description could be a list of gates along with type and
predecessors

• the circuit family for Parity is logspace-uniform

17



On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, {Cn} is logspace-uniform if
there exists a logspace TM M such that for every n,
M(1n) = desc(Cn), where desc(Cn) is the description of Cn.

Remarks

• a description could be a list of gates along with type and
predecessors

• the circuit family for Parity is logspace-uniform

17



On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, {Cn} is logspace-uniform if
there exists a logspace TM M such that for every n,
M(1n) = desc(Cn), where desc(Cn) is the description of Cn.

Remarks

• a description could be a list of gates along with type and
predecessors

• the circuit family for Parity is logspace-uniform

17



On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, {Cn} is logspace-uniform if
there exists a logspace TM M such that for every n,
M(1n) = desc(Cn), where desc(Cn) is the description of Cn.

Remarks

• a description could be a list of gates along with type and
predecessors

• the circuit family for Parity is logspace-uniform

17



Signpost

Just seen:

• circuit definition

• families of circuits decide languages

• there exist families of polynomial size deciding undecidable
languages

⇒ require logspace-uniformity

Next:

• circuits vs PRAMs

18



Circuits vs PRAMs

For efficient parallel computations only:
parallel time on PRAM ∼ circuit depth
number of processors ∼ circuit size

circuits→ PRAM
• suppose L decided by family {Cn} of polynomial size N and

depth O(logd n)
• a PRAM with N processors decides L :
• compute a description of Cn

• each circuit node→ one processor
• each processor computes its output and sends it to all other

processors that need it (might require logarithmic overhead for
non-CR models)

• parallel time ∼ circuit depth
• circuit size ∼ number of processors

19



Circuits vs PRAMs

For efficient parallel computations only:
parallel time on PRAM ∼ circuit depth
number of processors ∼ circuit size

PRAM→ circuits
• circuit with N · D nodes in D layers
• the i-th node in the t-th layer performs computation of

processor i at time t

20



NC and AC

Obviously, variations of PRAMs and circuits are robust wrt.
polynomial size/number of processors and polylogarithmic
depth/parallel run time motivating the following definition.

Definition (NC and AC)

Let k ≥ 0. L ∈ ACk iff L is decided by a logspace-uniform family of
circuits with polynomial size and depth O(logk n). If the family of
circuits is of bounded fan-in, then L ∈ NCk.

• NC =
⋃

k≥0 NCk

• AC =
⋃

k≥0 ACk

• NC is the class of problems with efficient parallel solutions
• AC circuits cannot be build easily in hardware
• it is an open problem whether P = NC, that is, whether all

problems in P are efficiently parallelizable (conjecture: no)
• Parity ∈ NC1 (but not in AC0)

21



NC and AC

Obviously, variations of PRAMs and circuits are robust wrt.
polynomial size/number of processors and polylogarithmic
depth/parallel run time motivating the following definition.

Definition (NC and AC)

Let k ≥ 0. L ∈ ACk iff L is decided by a logspace-uniform family of
circuits with polynomial size and depth O(logk n). If the family of
circuits is of bounded fan-in, then L ∈ NCk.

• NC =
⋃

k≥0 NCk

• AC =
⋃

k≥0 ACk

• NC is the class of problems with efficient parallel solutions
• AC circuits cannot be build easily in hardware
• it is an open problem whether P = NC, that is, whether all

problems in P are efficiently parallelizable (conjecture: no)
• Parity ∈ NC1 (but not in AC0)

21



Summary

• three variations of a PRAM

• uniform and non-uniform circuit families can decide languages

• efficiently parallelizable: NC
• circuits and PRAM are equivalent wrt NC problems

Up next: small depth circuits (AC and NC)

• their relation to well-known (space) complexity classes

• some lower bounds

22


