Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

June 4, 2019

Lecture 22

Models of Parallel Computation

Goal

- · introduce two models of parallel computation
- understand why they are equivalent

Plan

- PRAM: parallel random access machine
- circuits
- some complexity class definitions

Random access machine

RAM: more realistic model of sequential computation, which can be simulated by standard TMs with polynomial overhead.

- computation unit with user-defined program
- read-only input tape, write-only output tape, unbounded number of local memory cells
- memory cells can hold unbounded integers
- instructions include
 - moving data between memory cells
 - comparisons and branches
 - simple arithmetic operations
- all operations take unit time

Parallel random access machine

PRAM: parallel extension of RAM

- unbounded collection of RAM processors without tapes: *P*₀, *P*₁, *P*₂, ...
- unbounded collection of shared memory cells: $M[0], M[1], M[2], \dots$
- each *P_i* has its own local memory (registers)
- input: *n* items stored in *M*[0], ..., *M*[*n* − 1]
- output stored on some designated part of memory
- instructions execute in 3-phase cycles
 - read from shared memory
 - local computation
 - write to shared memory
- processors execute cycles synchronously
- P₀ starts and halts execution

Read/write conflicts

It may happen that several processors want to read from or write to the same memory cell in one cycle.

Read/write conflicts

It may happen that several processors want to read from or write to the same memory cell in one cycle.

Three policies:

- **EREW** : exclusive read/exclusive write
- CREW : concurrent read/exclusive write allows for simultaneous reads
- **CRCW** : simultaneous read and write allowed

Practical concerns

- idealized: PRAMs are an abstract, idealized formalism
 - unbounded integers
 - communication between any two processors in constant time due to shared memory (in reality: interconnection networks)
 - too many processors
- CRCW and CREW hard to build technically but easier to design algorithms
- still useful as benchmark
 - if there is no good PRAM algorithm, probably the problem is hard to parallelize

Time and space complexity

- time complexity: number of steps of P₀
- space complexity: number of shared memory cells accessed
- one can show that the weakest PRAM (EREW) can simulate the strongest with logarithmic overhead; cf. search-example
- efficient parallel computation
 - polynomially many processors
 - polylogarithmic time, where $polylog(n) = \bigcup_{k \ge 1} \log^k n$
- problems with efficient parallel algorithms are said to be in NC
- NC is robust wrt different PRAM models (and circuits)

Given *n* items on the shared memory tape and p + 1 < nprocessors. For some $x \in \mathbb{N}$ P_0 wants to know, whether there exists an $0 \le i < n$ such that M[i] = x.

Given *n* items on the shared memory tape and p + 1 < nprocessors. For some $x \in \mathbb{N}$ P_0 wants to know, whether there exists an $0 \le i < n$ such that M[i] = x.

Solution (high level):

- 1. P₀ publishes x
- 2. for $1 \le i \le p$ each P_i searches through $M[\lceil \frac{n}{p} \rceil(i-1)], \ldots, M[\lceil \frac{n}{p} \rceil i-1]$
- **3.** each P_i announces its search result

Analysis

Step 2 need n/p parallel time independently of PRAM model.

Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

- needs O(1) time in CRCW and CREW since P₀ can simply write x on the shared tape which everybody can read simultaneously
- needs log p steps in EREW by binary broadcast tree

Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

- needs O(1) time in CRCW and CREW since P₀ can simply write x on the shared tape which everybody can read simultaneously
- needs log p steps in EREW by binary broadcast tree

Step 3

- needs O(1) time in CRCW only, where all successful processors indicate success in the same memory cell
- otherwise, we need log p time to perform a parallel reduction

Other problems in NC

Many practical problems are known to be in **NC**, for details, take some class on parallel algorithms.

- sorting
- matrix multiplication
- expression evaluation
- connected components of graphs
- string matching

Signpost

Just seen:

- RAMs and PRAMs
- CRCW, CREW, EREW
- simulations between models have at most logarithmic overhead
- efficient parallel ~ polylogarithmic (stable under different PRAM models)

Next:

- Boolean circuits as parallel model of computation
- equivalence with respect to efficient parallel algorithms of PRAM and circuits

Definition

A Boolean circuit, C, is a directed acyclic graph with labeled nodes.

- the input nodes are labeled with a variable x_i or with a constant 0 or 1
- the gate nodes have fan-in *k* > 0 are labeled with one of the Boolean functions
 - \wedge (fan-in k)
 - V (fan-in *k*)
 - ¬ (fan-in 1)
- the output nodes are labeled output and have fan-out 0

Definition

A Boolean circuit, C, is a directed acyclic graph with labeled nodes.

- the input nodes are labeled with a variable x_i or with a constant 0 or 1
- the gate nodes have fan-in *k* > 0 are labeled with one of the Boolean functions
 - \wedge (fan-in k)
 - V (fan-in *k*)
 - ¬ (fan-in 1)
- the output nodes are labeled output and have fan-out 0

Given an assignment $\sigma : \{0, 1\}^m \to \{0, 1\}$ to the *m* variables, $C(\sigma)$ denotes the value of the *o* output nodes. We denote by *size*(*C*) the number of gates and by *depth*(*C*) the maximum distance from an input to an output.

Definition

A Boolean circuit, C, is a directed acyclic graph with labeled nodes.

- the input nodes are labeled with a variable x_i or with a constant 0 or 1
- the gate nodes have fan-in *k* > 0 are labeled with one of the Boolean functions
 - \wedge (fan-in k)
 - V (fan-in *k*)
 - ¬ (fan-in 1)
- the output nodes are labeled output and have fan-out 0

Given an assignment $\sigma : \{0, 1\}^m \to \{0, 1\}$ to the *m* variables, $C(\sigma)$ denotes the value of the *o* output nodes. We denote by *size*(*C*) the number of gates and by *depth*(*C*) the maximum distance from an input to an output.

We distinguish circuits with and without a-priori bounds on fan-in.

Definition

A Boolean circuit, C, is a directed acyclic graph with labeled nodes.

- the input nodes are labeled with a variable x_i or with a constant 0 or 1
- the gate nodes have fan-in *k* > 0 are labeled with one of the Boolean functions
 - \land (fan-in *k*)
 - V (fan-in *k*)
 - ¬ (fan-in 1)
- the output nodes are labeled output and have fan-out 0

Given an assignment $\sigma : \{0, 1\}^m \to \{0, 1\}$ to the *m* variables, $C(\sigma)$ denotes the value of the *o* output nodes. We denote by *size*(*C*) the number of gates and by *depth*(*C*) the maximum distance from an input to an output.

We distinguish circuits with and without a-priori bounds on fan-in. Wlog we assume that all negations appear in the input layer only.

Assume we want to add two *n*-bit integers, that is, we want circuits to compute $+: \{0, 1\}^{2n} \rightarrow \{0, 1\}^{n+1}$

Assume we want to add two *n*-bit integers, that is, we want circuits to compute $+: \{0, 1\}^{2n} \rightarrow \{0, 1\}^{n+1}$

Ripple carry adder

- n sequential full adder
- depth: *O*(*n*)
- size: *O*(*n*)

Assume we want to add two *n*-bit integers, that is, we want circuits to compute $+: \{0, 1\}^{2n} \rightarrow \{0, 1\}^{n+1}$

Ripple carry adder

- n sequential full adder
- depth: *O*(*n*)
- size: *O*(*n*)

Conditional sum adder

- depth: *O*(log *n*)
- size: *O*(*n* log *n*)

Assume we want to add two *n*-bit integers, that is, we want circuits to compute $+: \{0, 1\}^{2n} \rightarrow \{0, 1\}^{n+1}$

Ripple carry adder

- n sequential full adder
- depth: *O*(*n*)
- size: *O*(*n*)

Conditional sum adder

- depth: *O*(log *n*)
- size: *O*(*n* log *n*)

Carry lookahead adder

- depth: *O*(log *n*)
- size: *O*(*n*)

Deciding languages with circuits

Definition

A language $L \subseteq \{0, 1\}^*$ is said to be decided by a family of circuits $\{C_n\}$, where C_i takes *i* input variables, iff for all *i* holds: $C_i(x) = 1$ iff $x \in L$.

Deciding languages with circuits

Definition

A language $L \subseteq \{0, 1\}^*$ is said to be decided by a family of circuits $\{C_n\}$, where C_i takes *i* input variables, iff for all *i* holds: $C_i(x) = 1$ iff $x \in L$.

Definition

Let $d, s : \mathbb{N} \to \mathbb{N}$ be functions. We say that a family $\{C_n\}$ has depth d and size s if for all n

- $depth(C_n) \leq d(n)$
- $size(C_n) \leq s(n)$

Example (Parity)

Parity = { $x \in \{0, 1\}^*$ | x has an odd number of 1s}

Example (Parity) Parity = $\{x \in \{0, 1\}^* \mid x \text{ has an odd number of 1s} \}$

- circuits are binary trees of xor gates
- each xor-gate has depth 3
- ⇒ logarithmic depth

Example (Parity) Parity = $\{x \in \{0, 1\}^* \mid x \text{ has an odd number of 1s} \}$

- circuits are binary trees of xor gates
- each xor-gate has depth 3
- \Rightarrow logarithmic depth

Example (UHalt)

UHalt = $\{1^n \mid n$'s binary expansion encodes a pair $\langle M, x \rangle$ such that *M* halts on *x* $\}$

Example (Parity) Parity = $\{x \in \{0, 1\}^* \mid x \text{ has an odd number of } 1s\}$

- circuits are binary trees of xor gates
- each xor-gate has depth 3
- ⇒ logarithmic depth

Example (UHalt)

UHalt = $\{1^n \mid$

n's binary expansion encodes a pair $\langle M, x \rangle$ such that *M* halts on *x*}

- circuit family of linear size decides UHalt even though it is undecidable
- for each *n* with $1^n \in UHalt$ is a tree of and-gates
- otherwise, constant 0 circuit

Problem on previous slide: the description of the circuit family is not computable.

Problem on previous slide: the description of the circuit family is not computable.

Solution: uniformity

Problem on previous slide: the description of the circuit family is not computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, $\{C_n\}$ is logspace-uniform if there exists a logspace TM *M* such that for every *n*, $M(1^n) = desc(C_n)$, where $desc(C_n)$ is the description of C_n .

Problem on previous slide: the description of the circuit family is not computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, $\{C_n\}$ is logspace-uniform if there exists a logspace TM *M* such that for every *n*, $M(1^n) = desc(C_n)$, where $desc(C_n)$ is the description of C_n .

Remarks

- a description could be a list of gates along with type and predecessors
- the circuit family for Parity is logspace-uniform

Just seen:

- circuit definition
- families of circuits decide languages
- there exist families of polynomial size deciding undecidable languages
- ⇒ require logspace-uniformity

Next:

circuits vs PRAMs

Circuits vs PRAMs

For efficient parallel computations only: parallel time on PRAM ~ circuit depth number of processors ~ circuit size

circuits \rightarrow PRAM

- suppose L decided by family {C_n} of polynomial size N and depth O(log^d n)
- a PRAM with N processors decides L:
- compute a description of C_n
- each circuit node \rightarrow one processor
- each processor computes its output and sends it to all other processors that need it (might require logarithmic overhead for non-CR models)
- parallel time ~ circuit depth
- circuit size ~ number of processors

Circuits vs PRAMs

For efficient parallel computations only: parallel time on PRAM ~ circuit depth number of processors ~ circuit size

 $\mathsf{PRAM} \to \mathsf{circuits}$

- circuit with N · D nodes in D layers
- the *i*-th node in the *t*-th layer performs computation of processor *i* at time *t*

NC and AC

Obviously, variations of PRAMs and circuits are robust wrt. polynomial size/number of processors and polylogarithmic depth/parallel run time motivating the following definition.

Definition (NC and AC)

Let $k \ge 0$. $L \in AC^k$ iff L is decided by a logspace-uniform family of circuits with polynomial size and depth $O(\log^k n)$. If the family of circuits is of bounded fan-in, then $L \in NC^k$.

- NC = $\bigcup_{k\geq 0}$ NC^k
- AC = $\bigcup_{k\geq 0}$ AC^k

NC and AC

Obviously, variations of PRAMs and circuits are robust wrt. polynomial size/number of processors and polylogarithmic depth/parallel run time motivating the following definition.

Definition (NC and AC)

Let $k \ge 0$. $L \in AC^k$ iff L is decided by a logspace-uniform family of circuits with polynomial size and depth $O(\log^k n)$. If the family of circuits is of bounded fan-in, then $L \in NC^k$.

- NC = $\bigcup_{k\geq 0}$ NC^k
- AC = $\bigcup_{k \ge 0} AC^k$
- NC is the class of problems with efficient parallel solutions
- AC circuits cannot be build easily in hardware
- it is an open problem whether P = NC, that is, whether all problems in P are efficiently parallelizable (conjecture: no)
- Parity $\in \mathbb{NC}^1$ (but not in \mathbb{AC}^0)

- three variations of a PRAM
- uniform and non-uniform circuit families can decide languages
- efficiently parallelizable: NC
- circuits and PRAM are equivalent wrt NC problems

Up next: small depth circuits (AC and NC)

- their relation to well-known (space) complexity classes
- some lower bounds