Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

June 3, 2019

Lecture 20

Probabilistically checkable proofs

Goal and plan

Goal

- understand probabilistically checkable proofs,
- · know some examples, and
- see the relation (in fact, equivalence) between PCP and hardness of approximation

Plan

- PCP for GNI
- definition: intuition and formalization
- PCP theorem and some obvious consequences
- tool: a more general 3SAT, constraint satisfaction CSP
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \Longrightarrow PCP theorem

What does probabilistically checkable mean?

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

What does probabilistically checkable mean?

you want to verify correctness of a proof by only looking at a few bits
of it

Which proofs?

What does probabilistically checkable mean?

you want to verify correctness of a proof by only looking at a few bits
of it

Which proofs?

• typically membership in a language

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

Which proofs?

• typically membership in a language

Why should I care?

What does probabilistically checkable mean?

you want to verify correctness of a proof by only looking at a few bits
of it

Which proofs?

• typically membership in a language

Why should I care?

• because it gives you a tool to prove hardness of approximation

How can it be done?

How can it be done?

Example

- Susan picks some $0 \le n \le 10$, Matt wants to know which n
- problem: his vision is blurred, he only sees up to ± 5

How can it be done?

Example

- Susan picks some $0 \le n \le 10$, Matt wants to know which n
- problem: his vision is blurred, he only sees up to ±5

Solution

Matt: Hey, Susan, why don't you show me 100 ⋅ n instead?

Can you say this more formally?

- blurred vision ~ we cannot see all bits of a proof
- ⇒ we can check only a few bits
 - proofs can be spread out such that wrong proofs are wrong everywhere
 - the definition of PCP will require existence of a proof only
 - a correct proof must always be accepted (completeness 1)
 - a wrong proof must be rejected with high probability (soundness ρ)

e

Does it work for real problems?

Does it work for real problems?

- yes, here is a PCP for graph non-isomorphism
- we use our familiar notion of verifier and prover
- albeit both face some limitations (later)

PCP for GNI

Input: graphs G_0 , G_1 with n nodes

Verifier $\operatorname{Proof} \pi$

PCP for GNI

Input: graphs G_0 , G_1 with n nodes

Verifier $\operatorname{Proof} \pi$

- an array π indexed by all graphs with n nodes
- π[H] contains a if
 H ≅ G_a
- otherwise 0 or 1

PCP for GNI

Input: graphs G_0 , G_1 with n nodes

Verifier

Proof π

- picks b ∈ {0, 1} at random
- picks random permutation
 σ : [n] → [n]
- asks for $b' = \pi[\sigma(G_b)]$
- accepts iff b' = b

- an array π indexed by all graphs with n nodes
- π[H] contains a if
 H ≅ G_a
- otherwise 0 or 1

Analysis

- $|\pi|$ is exponential in n
- verifier asks for only one bit
- verifier needs O(n) random bits
- verifier is a polynomial time TM
- if π is correct, the verifier always accepts
- if π is wrong (e.g. because $G_0 \cong G_1$, then verifier accepts with probability 1/2

ç

Agenda

- PCP for GNI ✓
- definition: intuition and formalization
- PCP theorem and some obvious consequences
- tool: a more general 3SAT, constraint satisfaction CSP
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \Longrightarrow PCP theorem

PCP system for $L \subseteq \{0, 1\}^*$

Input: word $x \in \{0, 1\}^n$

Verifier

Prover

- 1. pick r(n) random bits
- 2. pick q(n) positions/bits in π
- based on x and random bits, compute
 Φ: {0,1}^{q(n)} → {0,1}
- **4.** after receiving proof bits $\pi_1, \ldots, \pi_{q(n)}$ output $\Phi(\pi_1, \ldots, \pi_{q(n)})$

- creates a proof π that $x \in L$
- $|\pi| \in 2^{r(n)}q(n)$
- on request, sends bits of π

- V is a polynomial-time TM
- if $x \in L$ then there exists a proof π s.t. V always accepts
- if $x \notin L$ then V accepts with probability $\leq 1/2$ for all proofs π

PCP[r(n), q(n)]

Definition

A language $L \in \{0, 1\}^*$ is in PCP[r(n), q(n)] iff there exists a PCP system with $c \cdot r(n)$ random bits and $d \cdot q(n)$ queries for constants c, d > 0.

PCP[r(n), q(n)]

Definition

A language $L \in \{0, 1\}^*$ is in PCP[r(n), q(n)] iff there exists a PCP system with $c \cdot r(n)$ random bits and $d \cdot q(n)$ queries for constants c, d > 0.

Theorem (THE PCP theorem)

$$\mathbf{PCP}[\log n, 1] = \mathbf{NP}.$$

- GNI ∈ **PCP**[*poly*(*n*), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- **PCP**[0, 0]

- GNI ∈ PCP[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0,0] = P
- PCP[0, log(n)]

- GNI ∈ **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0,0] = P
- PCP[0, log(n)] = P
- **PCP**[0, *poly*(*n*)]

- GNI ∈ **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0,0] = P
- PCP[0, log(n)] = P
- PCP[0, poly(n)] = NP
- $PCP[r(n), q(n)] \subseteq NTIME(2^{O(r(n))}q(n))$

- GNI ∈ PCP[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0,0] = P
- PCP[0, log(n)] = P
- PCP[0, poly(n)] = NP
- $PCP[r(n), q(n)] \subseteq NTIME(2^{O(r(n))}q(n))$
- \Rightarrow PCP[log n, 1] \subseteq NP
 - every problem in NP has a polynomial sized proof (certificate), of which we need to check only a constant number of bits
- for 3SAT (and hence for all!) as low as 3!

More remarks

- the Cook-Levin reduction does not suffice to prove the PCP theorem
 - because of soundness
 - even for $x \notin L$, almost all clauses are satisfiable
 - because they describe acceptable computations

More remarks

- the Cook-Levin reduction does not suffice to prove the PCP theorem
 - because of soundness
 - even for $x \notin L$, almost all clauses are satisfiable
 - because they describe acceptable computations
- PCP is inherently different from IP
 - proofs can be exponential in PCP
 - PCP: restrictions on gueries and random bits
 - IP: restrictions on total message length
 - \Rightarrow PCP[poly(n), poly(n)] \supseteq IP = PSPACE (in fact equal to NEXP)

Agenda

- PCP for GNI ✓
- definition: intuition and formalization √
- PCP theorem and some obvious consequences √
- tool: a more general 3SAT, constraint satisfaction CSP
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \Longrightarrow PCP theorem

Constraint satisfaction

3SAT

- n Boolean variables
- *m* clauses
- each clause has 3 variables

qCSP

- n Boolean variables
- m general constraints
- each constraint is over q variables

CSP remarks

- one can define the fraction of simultaneously satisfiable clauses just as for max3SAT
- each constraint represents a function $\{0, 1\}^q \rightarrow \{0, 1\}$
- we may assume that all variables are used: $n \le qm$
- \Rightarrow a qCSP instance can be represented using $mq \log(n)2^q$ bits (polynomial in n, m)

gap-CSP

Definition

 $gap - qCSP[\rho, 1]$ is NP-hard if for every $L \in NP$ there is a gap-producing reduction f such that

- $x \in L \implies f(x)$ is satisfiable
- $x \notin L \implies$ at most ρ constraints of f(x) are satisfiable (at the same time)

Agenda

- PCP for GNI
- definition: intuition and formalization √
- PCP theorem and some obvious consequences √
- tool: a more general 3SAT, constraint satisfaction CSP ✓
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \Longrightarrow PCP theorem

PCP ⇔ Hardness of approximation

Theorem

The following two statements are equivalent.

- NP = PCP[log n, 1]
- there exist $0 < \rho < 1$ and $q \in \mathbb{N}$ such that gap $\operatorname{qCSP}[\rho, 1]$ is NP-hard.

PCP ⇔ Hardness of approximation

Theorem

The following two statements are equivalent.

- NP = PCP[log n, 1]
- there exist $0 < \rho < 1$ and $q \in \mathbb{N}$ such that gap $\operatorname{qCSP}[\rho, 1]$ is NP-hard.

- this formalizes the equivalence of probabilistically checkable proofs and hardness of approximation
- this is why the PCP theorem was a breakthrough in inapproximability
- gap preservation from CSP to 3SAT is not hard but omitted

 show that there is a gap-producing reduction f from 3SAT to gap – qCSP[1/2, 1]

- show that there is a gap-producing reduction f from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits

- show that there is a gap-producing reduction f from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits
- define $f(x) = {\psi_r : {0,1}^q \to {0,1} | r \in {0,1}^{c \log n}}$ such that
- $\psi_r(b_1,...,b_q)=1$ if V accepts the bits from proof π given by r

- show that there is a gap-producing reduction f from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits
- define $f(x) = {\psi_r : {0,1}^q \to {0,1} | r \in {0,1}^{c \log n}}$ such that
- $\psi_r(b_1,\ldots,b_q)=1$ if V accepts the bits from proof π given by r
- f(x) is a qCSP of size $2^{c \log n} \in O(n)$, representable and computable in poly time

- show that there is a gap-producing reduction f from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits
- define $f(x) = \{\psi_r : \{0,1\}^q \to \{0,1\} \mid r \in \{0,1\}^{c \log n}\}$ such that
- $\psi_r(b_1, \dots, b_q) = 1$ if V accepts the bits from proof π given by r
- f(x) is a qCSP of size $2^{c \log n} \in O(n)$, representable and computable in poly time
- if $x \in 3SAT$ then there exists proof π s.t. f(x) is satisfiable

- show that there is a gap-producing reduction f from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits
- define $f(x) = \{\psi_r : \{0,1\}^q \to \{0,1\} \mid r \in \{0,1\}^{c \log n}\}$ such that
- $\psi_r(b_1, \dots, b_q) = 1$ if V accepts the bits from proof π given by r
- f(x) is a qCSP of size $2^{c \log n} \in O(n)$, representable and computable in poly time
- if $x \in 3SAT$ then there exists proof π s.t. f(x) is satisfiable
- if $x \notin 3SAT$ then all proofs π satisfy at most 1/2 of f(x)'s constraints

- show that there is a gap-producing reduction f from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using c log n random bits
- define $f(x) = \{\psi_r : \{0,1\}^q \to \{0,1\} \mid r \in \{0,1\}^{c \log n}\}$ such that
- $\psi_r(b_1,\ldots,b_q)=1$ if V accepts the bits from proof π given by r
- f(x) is a qCSP of size $2^{c \log n} \in O(n)$, representable and computable in poly time
- if $x \in 3SAT$ then there exists proof π s.t. f(x) is satisfiable
- if $x \notin 3SAT$ then all proofs π satisfy at most 1/2 of f(x)'s constraints
- ⇒ f is gap-producing

• show that for $L \in NP$, there exists a PCP system

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction f from L to gap qCSP[ρ , 1] for some q and ρ

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction f from L to gap qCSP[ρ , 1] for some q and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable

- show that for L ∈ NP, there exists a PCP system
- by assumption there is a gap-producing reduction f from L to gap qCSP[ρ , 1] for some q and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable
- on input x the PCP verifier
 - computes f(x)
 - expects proof π to be assignment to f(x)'s n variables
 - picks $1 \le j \le m$ at random (needs $\log m$ bits!)
 - sets $\Phi = \psi_i$
 - asks for value of q variables of ψ_i

- show that for L ∈ NP, there exists a PCP system
- by assumption there is a gap-producing reduction f from L to gap qCSP[ρ , 1] for some q and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable
- on input x the PCP verifier
 - computes f(x)
 - expects proof π to be assignment to f(x)'s n variables
 - picks $1 \le j \le m$ at random (needs $\log m$ bits!)
 - sets $\Phi = \psi_i$
 - asks for value of q variables of ψ_i
- if x ∈ L then V accepts with prob. 1
- if $x \notin L$ then V accepts with prob. ρ

- show that for L ∈ NP, there exists a PCP system
- by assumption there is a gap-producing reduction f from L to gap qCSP[ρ , 1] for some q and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable
- on input x the PCP verifier
 - computes f(x)
 - expects proof π to be assignment to f(x)'s n variables
 - picks $1 \le j \le m$ at random (needs $\log m$ bits!)
 - sets $\Phi = \psi_i$
 - asks for value of q variables of ψ_i
- if x ∈ L then V accepts with prob. 1
- if $x \notin L$ then V accepts with prob. ρ
- ρ can be amplified to soundness error at most 1/2 by constant number of repetitions

Recap: Two views of the PCP theorem

prob. checkable proofs		hardness of approximation
PCP verifier V	\leftrightarrow	CSP instance
proof π	\leftrightarrow	variable assignment
$ \pi $	\leftrightarrow	number of variables in CSP
number of random bits	\leftrightarrow	$\log m$, where m is number of clauses
number of queries	\leftrightarrow	arity of constraints

What have we learnt?

- probabilistically checkable proofs are proofs with restrictions on the verifier's number of random bits and the number of proof bits queried
- yields a new, robust characterization of NP
- is equivalent to NP-hardness of gap qCSP[ρ, 1]
- hence to NP-hardness of gap 3SAT[ρ, 1]
- hence to NP-hardness of approximation for many problems in NP (previous lecture)

Up next: Prove that $NP \subseteq PCP[poly(n), 1]$