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Lecture 19

Hardness of Approximation
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Recap

Recap: optimization

• many decision problems we have seen have optimization versions
• both minimization and maximization
• algorithms return best solution with respect to optimization parameter
ρ

Examples

problem min/max parameter
3SAT max fraction of satisfiable clauses
Indset max size of independent set
VC min size of cover
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Recap

Recap: approximation results

• vertex cover has a 2-approximation
• possibly NP-hard to approximate to within 2 − ε for all ε > 0
• currently known: NP-hard to approximate to within 10

√
5 − 21;

• I. Dinur, S. Safra, The importance of being biased, STOC 2002.

• set cover has a ln n approximation
• this is optimal; it is NP-hard to approximate to within (1 − ε) ln n
• U. Feige, A threshold of ln n for approximating set cover, STOC 1996.

• TSP also hard to approximate to within any 1 + ε
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Recap

Polynomial time approximation schemes

A problem has a polynomial time approximation scheme if for all ε > 0 it
can be efficiently approximated to within a factor of 1 − ε for maximization
and 1 + ε for minimization.

Examples
• knapsack
• bin packing
• subset sum
• a number of other scheduling problems

Which NP-complete problems do have PTAS? Which don’t? How to prove
results on previous slide?
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Recap

Recap: gap − TSP[|V |, h|V |]

An algorithm to solve the gap problem needs to:
• if G has a shortest tour of length < |V | then G is accepted by the gap

algorithm
• if the shortest tour of G is > h|V | then G is rejected
• otherwise: don’t care

Theorem: For any h ≥ 1 gap − TSP[|V |, h|V |] is NP-hard by reduction from
Hamiltonian cycle

⇒ It is NP-hard to approximate TSP to within any factor h ≥ 1.

The reduction is called gap-producing.
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Recap

Agenda

• gap − 3SAT[ρ, 1]

• 7/8 approximation for max3SAT
• PCP theorem: hardness of approximation view
• gap-preserving reductions
• hardness of approximating Indset and VC
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gap-3SAT

gap-3SAT[ρ, 1]

• gap − 3SAT[ρ, 1] is the gap version of max3SAT which computes the
largest fraction of satisfiable clauses

• a 3CNF with m clauses is accepted if it is satisfiable
• it is rejected if < ρ ·m clauses are satisfiable
• until 1992 it was an open problem whether max3SAT could be

approximated to within any factor > 7/8
• why 7/8?
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gap-3SAT

A 7/8 approximation of max3SAT

Theorem
For all 3CNF with exactly three independent literals per clause, there exists
an assignment that satisfies ≥ 7/8 of the clauses.

Proof

• for a random assignment let Yi be the random variable that is true if
clause Ci is true under the assignment

• then N = Σm
i=1Yi is the number of satisfied clauses

• E[Yi] = 7/8 for all i

⇒ E[N] = 7/8 ·m
• by the law of average (probabilistic method basic principle) there must

exist an assignment that makes 7/8 of the clauses true

Can we do any better than 7/8?
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PCP: hardness of approximation

No!

Theorem
For every ε > 0 gap − 3SAT[7/8 + ε, 1] is NP-hard.

• this is a PCP theorem by J. Håstad, Some optimal inapproximability
results, STOC 1997.

• as a consequence, if there exists a 7/8 + ε approximation of
max3SAT then P = NP

• we will later prove a much weaker PCP theorem
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PCP: hardness of approximation

Agenda

• gap − 3SAT[ρ, 1] X

• 7/8 approximation for max3SAT X
• PCP theorem: hardness of approximation view
• gap-preserving reductions
• hardness of approximating Indset and VC
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PCP: hardness of approximation

THE PCP theorem

Håstads result is one in a series of inapproximability results based on the
PCP theorem.

Theorem (PCP: hardness of approximation)

There exists a ρ < 1 such that gap − 3SAT[ρ, 1] is NP-hard.

• Safra: One of the deepest and most complicated proofs in computer
science with a matching impact.

• original proof in two papers:
• Arora, Safra, Probabilistic checking of proofs, FOCS 92
• Arora, Lund, Motwani, Sudan, Szegedy, Proof verification and the

hardness of approximations, FOCS 92.

• virtually all inapproximability results depend on the PCP theorem and
the notion of gap preserving reductions by Papadimitriou and
Yannakakis
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PCP: hardness of approximation

Probabilistically checkable proofs

• the PCP theorem is equivalent to the statement NP = PCP[log n, 1]

• PCP stands for probabilistically checkable proofs and is related to
interactive proofs and MIP = NEXP

• equivalence of two views shown in next lecture
• NP = PCP[poly(n), 1] shown after that
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PCP: hardness of approximation

Agenda
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PCP Application

Gap-producing and preserving reductions

PCP theorem states that for every L ∈ NP there exists a gap-producing
reduction f to gap − 3SAT[ρ, 1]:
• x ∈ L =⇒ f(x) is satisfiable
• x < L =⇒ less than ρ of the f(x)’s clauses can be satisfied at the

same time

Observation
• in order to show inapproximability of other problems, we want to

preserve gaps by reductions
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PCP Application

gap − 3SAT[ρ, 1] ≤gap gap − IS[ρ, 1]

Consider the proof of 3SAT ≤p Indset (nodes are satisfying assignments
for each clause, edges between incompatible ones).

The reduction f used there is actually gap-preserving, we write

gap − 3SAT[ρ, 1] ≤gap gap − IS[ρ, 1]

• if 3CNF ψ with m clauses is satisfiable then graph f(ψ) has an
independent set of size m

• if less than ρ of ψ’s clauses can be satisfied, the largest independent
set has less than ρ ·m nodes

• hence: if we can approximate Indest to within ρ, then we can
approximate max3SAT to within ρ, then we can decide any L ∈ NP
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PCP Application

What about vertex cover?

The same reduction f from independent set can be used to show hardness
of approximating vertex cover to within (7 − ρ)/6 for the same ρ used in
max3SAT and Indset.

• ψ satisfiable

⇒ f(ψ) has i.s. of size m

⇒ f(ψ) has a v.c. of size 6m

• only ρ ·m of ψ’s clauses satisfiable

⇒ f(ψ) has largest i.s. smaller than ρm

⇒ f(ψ) has smallest v.c. of size larger than (7 − ρ)m
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PCP Application

Independent set vs. vertex cover

• For both independent set and vertex cover, we know that there exist a
ρ < 1 such that neither can be approximated to within ρ (resp. 1/ρ)

• optimal solutions are intimately related: if vc is the smallest vertex
cover and is the largest independent set then vc = is − n

• but: approximation is different; using the ρ app. for independent set,
yields a n−ρ·is

n−is approximation for set cover
• for independent set we can show NP-hardness of approximation to

within any factor ρ < 1 by gap amplification
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PCP Application

Gap amplification

• given instance G = (V ,E)

• construct G′ = (V × V ,E′) where

E′ = {(u, v), (u′, v ′) | (u, u′) ∈ E ∨ (v , v ′) ∈ E}

• if I ⊆ V is an i.s. of G then I × I is an i.s. of G′; hence
opt(G′) ≥ opt(G)2

• if I′ is an optimal i.s. in G′ with vertices (u1, v1), . . . , (uj , vj) then the ui

and the vi are each i.s. in G with at most opt(G) vertices; hence
opt(G′) ≤ opt(G)2

• hence i.s. is also hard to approximate within ρ2

• this can be done any constant k times to obtain the result
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PCP Application

What have we learnt?

• 7/8 approximation for max3SAT
• PCP theorem: hardness of approximating max3SAT
• gap-preserving reductions to obtain more inapproximability results
• NP-hardness of approximating Indset to within any ρ < 1
• NP-hardness of approximating VC to within some ρ > 1 (yet

unknown)
• but: many NP-complete problems can still be approximated to within

any factor 1 + ε

Up next
• PCP: hardness of approximation vs. prob. checkable proofs
• proof of a weaker PCP theorem
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