Complexity Theory

Jan Křetínský

Technical University of Munich
Summer 2019

June 3, 2019

Lecture 19

Hardness of Approximation

Recap: optimization

- many decision problems we have seen have optimization versions
- both minimization and maximization
- algorithms return best solution with respect to optimization parameter ρ

Recap: optimization

- many decision problems we have seen have optimization versions
- both minimization and maximization
- algorithms return best solution with respect to optimization parameter ρ

Examples

problem	\min / \max	parameter
3SAT	\max	fraction of satisfiable clauses
Indset	\max	size of independent set
VC	\min	size of cover

Recap: approximation results

- vertex cover has a 2-approximation
- possibly NP-hard to approximate to within $2-\epsilon$ for all $\epsilon>0$
- currently known: NP-hard to approximate to within $10 \sqrt{5}-21$;
- I. Dinur, S. Safra, The importance of being biased, STOC 2002.

Recap: approximation results

- vertex cover has a 2-approximation
- possibly NP-hard to approximate to within $2-\epsilon$ for all $\epsilon>0$
- currently known: NP-hard to approximate to within $10 \sqrt{5}-21$;
- I. Dinur, S. Safra, The importance of being biased, STOC 2002.
- set cover has a $\ln n$ approximation
- this is optimal; it is NP-hard to approximate to within $(1-\epsilon) \ln n$
- U. Feige, A threshold of $\ln n$ for approximating set cover, STOC 1996.

Recap: approximation results

- vertex cover has a 2-approximation
- possibly NP-hard to approximate to within $2-\epsilon$ for all $\epsilon>0$
- currently known: NP-hard to approximate to within $10 \sqrt{5}-21$;
- I. Dinur, S. Safra, The importance of being biased, STOC 2002.
- set cover has a $\ln n$ approximation
- this is optimal; it is NP-hard to approximate to within $(1-\epsilon) \ln n$
- U. Feige, A threshold of $\ln n$ for approximating set cover, STOC 1996.
- TSP also hard to approximate to within any $1+\epsilon$

Polynomial time approximation schemes

A problem has a polynomial time approximation scheme if for all $\epsilon>0$ it can be efficiently approximated to within a factor of $1-\epsilon$ for maximization and $1+\epsilon$ for minimization.

Polynomial time approximation schemes

A problem has a polynomial time approximation scheme if for all $\epsilon>0$ it can be efficiently approximated to within a factor of $1-\epsilon$ for maximization and $1+\epsilon$ for minimization.

Examples

- knapsack
- bin packing
- subset sum
- a number of other scheduling problems

Polynomial time approximation schemes

A problem has a polynomial time approximation scheme if for all $\epsilon>0$ it can be efficiently approximated to within a factor of $1-\epsilon$ for maximization and $1+\epsilon$ for minimization.

Examples

- knapsack
- bin packing
- subset sum
- a number of other scheduling problems

Which NP-complete problems do have PTAS? Which don't? How to prove results on previous slide?

Recap: gap - TSP[|V|,h|V|]

An algorithm to solve the gap problem needs to:

- if G has a shortest tour of length $<|V|$ then G is accepted by the gap algorithm
- if the shortest tour of G is $>h|V|$ then G is rejected
- otherwise: don't care

Recap: gap - TSP[|V|, h|V|]

An algorithm to solve the gap problem needs to:

- if G has a shortest tour of length $<|V|$ then G is accepted by the gap algorithm
- if the shortest tour of G is $>h|V|$ then G is rejected
- otherwise: don't care

Theorem: For any $h \geq 1$ gap - TSP[|V|,h|V|] is NP-hard by reduction from Hamiltonian cycle

Recap: gap - TSP[|V|, h|V|]

An algorithm to solve the gap problem needs to:

- if G has a shortest tour of length $<|V|$ then G is accepted by the gap algorithm
- if the shortest tour of G is $>h|V|$ then G is rejected
- otherwise: don't care

Theorem: For any $h \geq 1$ gap - TSP[|V|,h|V|] is NP-hard by reduction from Hamiltonian cycle
\Rightarrow It is NP-hard to approximate TSP to within any factor $h \geq 1$.

Recap: gap - TSP[|V|, h|V|]

An algorithm to solve the gap problem needs to:

- if G has a shortest tour of length $<|V|$ then G is accepted by the gap algorithm
- if the shortest tour of G is $>h|V|$ then G is rejected
- otherwise: don't care

Theorem: For any $h \geq 1$ gap - TSP[|V|,h|V|] is NP-hard by reduction from Hamiltonian cycle
\Rightarrow It is NP-hard to approximate TSP to within any factor $h \geq 1$.

The reduction is called gap-producing.

Agenda

- gap - 3SAT $[\rho, 1]$
- 7/8 approximation for max3SAT
- PCP theorem: hardness of approximation view
- gap-preserving reductions
- hardness of approximating Indset and VC

gap-3SAT[$\rho, 1]$

- gap - 3SAT $[\rho, 1]$ is the gap version of max3SAT which computes the largest fraction of satisfiable clauses
- a 3CNF with m clauses is accepted if it is satisfiable
- it is rejected if $<\rho \cdot m$ clauses are satisfiable
- until 1992 it was an open problem whether max3SAT could be approximated to within any factor $>7 / 8$
- why $7 / 8$?

A 7/8 approximation of max3SAT

Theorem
For all 3CNF with exactly three independent literals per clause, there exists an assignment that satisfies $\geq 7 / 8$ of the clauses.

A 7/8 approximation of max3SAT

Theorem
For all 3CNF with exactly three independent literals per clause, there exists an assignment that satisfies $\geq 7 / 8$ of the clauses.

Proof

- for a random assignment let Y_{i} be the random variable that is true if clause C_{i} is true under the assignment
- then $N=\sum_{i=1}^{m} Y_{i}$ is the number of satisfied clauses
- $E\left[Y_{i}\right]=7 / 8$ for all i
$\Rightarrow E[N]=7 / 8 \cdot m$
- by the law of average (probabilistic method basic principle) there must exist an assignment that makes $7 / 8$ of the clauses true

A 7/8 approximation of max3SAT

Theorem
For all 3CNF with exactly three independent literals per clause, there exists an assignment that satisfies $\geq 7 / 8$ of the clauses.

Proof

- for a random assignment let Y_{i} be the random variable that is true if clause C_{i} is true under the assignment
- then $N=\sum_{i=1}^{m} Y_{i}$ is the number of satisfied clauses
- $E\left[Y_{i}\right]=7 / 8$ for all i
$\Rightarrow E[N]=7 / 8 \cdot m$
- by the law of average (probabilistic method basic principle) there must exist an assignment that makes $7 / 8$ of the clauses true

No!

Theorem
For every $\epsilon>0$ gap - 3SAT $[7 / 8+\epsilon, 1]$ is NP-hard.

- this is a PCP theorem by J . Håstad, Some optimal inapproximability results, STOC 1997.
- as a consequence, if there exists a $7 / 8+\epsilon$ approximation of max3SAT then $\mathrm{P}=\mathrm{NP}$
- we will later prove a much weaker PCP theorem

Agenda

- gap - 3SAT $[\rho, 1] \checkmark$
- 7/8 approximation for max3SAT \checkmark
- PCP theorem: hardness of approximation view
- gap-preserving reductions
- hardness of approximating Indset and VC

THE PCP theorem

Håstads result is one in a series of inapproximability results based on the PCP theorem.

Theorem (PCP: hardness of approximation)
There exists a $\rho<1$ such that gap - 3SAT $[\rho, 1]$ is NP-hard.

- Safra: One of the deepest and most complicated proofs in computer science with a matching impact.
- original proof in two papers:
- Arora, Safra, Probabilistic checking of proofs, FOCS 92
- Arora, Lund, Motwani, Sudan, Szegedy, Proof verification and the hardness of approximations, FOCS 92.
- virtually all inapproximability results depend on the PCP theorem and the notion of gap preserving reductions by Papadimitriou and Yannakakis

Probabilistically checkable proofs

- the PCP theorem is equivalent to the statement $\mathrm{NP}=\mathrm{PCP}[\log n, 1]$
- PCP stands for probabilistically checkable proofs and is related to interactive proofs and MIP = NEXP
- equivalence of two views shown in next lecture
- NP = PCP[poly(n), 1] shown after that

Agenda

- gap - 3SAT $[\rho, 1] \checkmark$
- 7/8 approximation for max3SAT \checkmark
- PCP theorem: hardness of approximation view \checkmark
- gap-preserving reductions
- hardness of approximating Indset and VC

Gap-producing and preserving reductions

PCP theorem states that for every $L \in N P$ there exists a gap-producing reduction f to gap - 3SAT $[\rho, 1]$:

- $x \in L \Longrightarrow f(x)$ is satisfiable
- $x \notin L \Longrightarrow$ less than ρ of the $f(x)$'s clauses can be satisfied at the same time

Gap-producing and preserving reductions

PCP theorem states that for every $L \in N P$ there exists a gap-producing reduction f to gap - 3SAT $[\rho, 1]$:

- $x \in L \Longrightarrow f(x)$ is satisfiable
- $x \notin L \Longrightarrow$ less than ρ of the $f(x)$'s clauses can be satisfied at the same time

Observation

- in order to show inapproximability of other problems, we want to preserve gaps by reductions

$$
\text { gap - 3SAT }[\rho, 1] \leq_{\text {gap }} \text { gap - IS }[\rho, 1]
$$

Consider the proof of 3SAT \leq_{p} Indset (nodes are satisfying assignments for each clause, edges between incompatible ones).

The reduction f used there is actually gap-preserving, we write

$$
\text { gap - 3SAT }[\rho, 1] \leq_{\text {gap }} \text { gap - IS }[\rho, 1]
$$

- if 3CNF ψ with m clauses is satisfiable then graph $f(\psi)$ has an independent set of size m
- if less than ρ of ψ 's clauses can be satisfied, the largest independent set has less than $\rho \cdot m$ nodes
- hence: if we can approximate Indest to within ρ, then we can approximate max3SAT to within ρ, then we can decide any $L \in N P$

What about vertex cover?

The same reduction f from independent set can be used to show hardness of approximating vertex cover to within $(7-\rho) / 6$ for the same ρ used in max3SAT and Indset.

What about vertex cover?

The same reduction f from independent set can be used to show hardness of approximating vertex cover to within $(7-\rho) / 6$ for the same ρ used in max3SAT and Indset.

- ψ satisfiable
$\Rightarrow f(\psi)$ has i.s. of size m
$\Rightarrow f(\psi)$ has a v.c. of size $6 m$

What about vertex cover?

The same reduction f from independent set can be used to show hardness of approximating vertex cover to within $(7-\rho) / 6$ for the same ρ used in max3SAT and Indset.

- ψ satisfiable
$\Rightarrow f(\psi)$ has i.s. of size m
$\Rightarrow f(\psi)$ has a v.c. of size 6 m
- only $\rho \cdot m$ of ψ 's clauses satisfiable
$\Rightarrow f(\psi)$ has largest i.s. smaller than ρm
$\Rightarrow f(\psi)$ has smallest v.c. of size larger than $(7-\rho) m$

Independent set vs. vertex cover

- For both independent set and vertex cover, we know that there exist a $\rho<1$ such that neither can be approximated to within ρ (resp. $1 / \rho$)

Independent set vs. vertex cover

- For both independent set and vertex cover, we know that there exist a $\rho<1$ such that neither can be approximated to within ρ (resp. 1/ ρ)
- optimal solutions are intimately related: if $v c$ is the smallest vertex cover and is the largest independent set then $v c=i s-n$

Independent set vs. vertex cover

- For both independent set and vertex cover, we know that there exist a $\rho<1$ such that neither can be approximated to within ρ (resp. $1 / \rho$)
- optimal solutions are intimately related: if $v c$ is the smallest vertex cover and is the largest independent set then $v c=i s-n$
- but: approximation is different; using the ρ app. for independent set, yields a $\frac{n-\rho \cdot i s}{n-i s}$ approximation for set cover

Independent set vs. vertex cover

- For both independent set and vertex cover, we know that there exist a $\rho<1$ such that neither can be approximated to within ρ (resp. $1 / \rho$)
- optimal solutions are intimately related: if $v c$ is the smallest vertex cover and is the largest independent set then $v c=i s-n$
- but: approximation is different; using the ρ app. for independent set, yields a $\frac{n-\rho \cdot i s}{n-i s}$ approximation for set cover
- for independent set we can show NP-hardness of approximation to within any factor $\rho<1$ by gap amplification

Gap amplification

- given instance $G=(V, E)$
- construct $G^{\prime}=\left(V \times V, E^{\prime}\right)$ where

$$
E^{\prime}=\left\{(u, v),\left(u^{\prime}, v^{\prime}\right) \mid\left(u, u^{\prime}\right) \in E \vee\left(v, v^{\prime}\right) \in E\right\}
$$

- if $I \subseteq V$ is an i.s. of G then $I \times I$ is an i.s. of G^{\prime}; hence $\operatorname{opt}\left(G^{\prime}\right) \geq \operatorname{opt}(G)^{2}$
- if l^{\prime} is an optimal i.s. in G^{\prime} with vertices $\left(u_{1}, v_{1}\right), \ldots,\left(u_{j}, v_{j}\right)$ then the u_{i} and the v_{i} are each i.s. in G with at most opt (G) vertices; hence $\operatorname{opt}\left(G^{\prime}\right) \leq \operatorname{opt}(G)^{2}$
- hence i.s. is also hard to approximate within ρ^{2}
- this can be done any constant k times to obtain the result

What have we learnt?

- 7/8 approximation for max3SAT
- PCP theorem: hardness of approximating max3SAT
- gap-preserving reductions to obtain more inapproximability results
- NP-hardness of approximating Indset to within any $\rho<1$
- NP-hardness of approximating VC to within some $\rho>1$ (yet unknown)
- but: many NP-complete problems can still be approximated to within any factor $1+\epsilon$

Up next

- PCP: hardness of approximation vs. prob. checkable proofs
- proof of a weaker PCP theorem

