Complexity Theory

Jan Křetínský

Technical University of Munich
Summer 2019

May 28, 2019

Lecture 17
 $I P=P S P A C E(2)$

Goal and Plan

Goal

- IP = PSPACE

Plan

1. PSPACE $\subseteq I P$ by showing QBF $\in I P \checkmark$
2. IP \subseteq PSPACE by computing optimal prover strategies in polynomial space

Agenda

- optimal prover strategy to show IP \subseteq PSPACE
- summary and further reading
- outlook: approximation and PCP theorem

Definition recap

L is in IP iff

1. there exists a polynomial p and
2. there exists a poly-time, randomized verifier V

Definition recap

L is in IP iff

1. there exists a polynomial p and
2. there exists a poly-time, randomized verifier V
such that for all words $x \in\{0,1\}^{*}$ holds

- if $x \in L$ then there exists a prover P such that

$$
\operatorname{Pr}\left[\text { outv }_{V}\langle P, V\rangle(x)=1\right] \geq 2 / 3
$$

- if $x \notin L$ then for all provers P holds that

$$
\operatorname{Pr}\left[\text { out }_{V}\langle P, V\rangle(x)=1\right] \leq 1 / 3
$$

Definition recap

L is in IP iff

1. there exists a polynomial p and
2. there exists a poly-time, randomized verifier V
such that for all words $x \in\{0,1\}^{*}$ holds

- if $x \in L$ then there exists a prover P such that

$$
\operatorname{Pr}\left[\text { outv }_{V}\langle P, V\rangle(x)=1\right] \geq 2 / 3
$$

- if $x \notin L$ then for all provers P holds that

$$
\operatorname{Pr}\left[\text { out }_{V}\langle P, V\rangle(x)=1\right] \leq 1 / 3
$$

Moreover, the following is bounded by $p(|x|)$

- the number of random bits chosen by V
- the number of rounds
- the length of each message

Optimal Prover

Let $L \in I P$ be arbitrary, we need to show that $L \in$ PSPACE.

Optimal Prover

Let $L \in I P$ be arbitrary, we need to show that $L \in$ PSPACE. We know that there exist V and p according to definition on previous slide.

Optimal Prover

Let $L \in I P$ be arbitrary, we need to show that $L \in$ PSPACE.
We know that there exist V and p according to definition on previous slide.
For $x \in\{0,1\}^{n}$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

Optimal Prover

Let $L \in I P$ be arbitrary, we need to show that $L \in$ PSPACE.
We know that there exist V and p according to definition on previous slide.
For $x \in\{0,1\}^{n}$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

$$
z:=\max _{P}\left\{\operatorname{Pr}\left[\text { out }_{V}\langle P, V\rangle(x)=1\right] \mid P \text { is any prover for } L\right\}
$$

Optimal Prover

Let $L \in I P$ be arbitrary, we need to show that $L \in$ PSPACE.
We know that there exist V and p according to definition on previous slide.
For $x \in\{0,1\}^{n}$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

$$
z:=\max _{P}\left\{\operatorname{Pr}\left[\text { out }_{V}\langle P, V\rangle(x)=1\right] \mid P \text { is any prover for } L\right\}
$$

z is acceptance probability of optimal prover, inducing the error probability.

Optimal Prover

Let $L \in \mathbb{I P}$ be arbitrary, we need to show that $L \in$ PSPACE.
We know that there exist V and p according to definition on previous slide.
For $x \in\{0,1\}^{n}$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

$$
z:=\max _{P}\left\{\operatorname{Pr}\left[\text { out }_{V}\langle P, V\rangle(x)=1\right] \mid P \text { is any prover for } L\right\}
$$

z is acceptance probability of optimal prover, inducing the error probability.

- if $z \leq 1 / 3$ then $x \notin L$
- if $z \geq 2 / 3$ then $x \in L$
- since $L \in \mathbb{I P}$ other z cannot occur
- maximum taken over finitely many provers for a given x

Recursive computation of z

If we can compute z in polynomial space, we are done.

Recursive computation of z

If we can compute z in polynomial space, we are done.

Recursive algorithm:

- simulate V branching on
- each random choice of V
- each possible response of P
- count
- accepting branches produced by P's optimal response
- total number of branches
- ratio is z

Doable in polynomial space?

- recursion depth: $p(n)$
- total number of branches: $p(n)^{p(n)}$
\Rightarrow requires polynomially many bits only
- can manage both counters and current branch with a PSPACE machine

Agenda

- optimal prover strategy to show IP \subseteq PSPACE \checkmark
- summary and further reading
- outlook: approximation and PCP theorem

Summary

- IP = PSPACE
- PSPACE has short interactive proofs (certificates)
- proof of IP \supseteq PSPACE also showed that we can have
- public coins
- perfect completeness
for each $L \in \mathbb{I P}$
- interaction plus randomization seem to add power, whereas each in isolation seemingly does not

Further Reading

- interactive proofs defined in 1985 by Goldwasser, Micali, Rackoff. The knowledge complexity of interactive proof systems. SIAM Journal on Computing archive. Volume 18 (1)(1989).
- public coins: L. Babai Trading group theory for randomness. STOC 1985.
- survey book: Oded Goldreich Computational Complexity. A Conceptual Perspective. http://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

Further Reading

- Adi Shamir. IP=PSPACE. Journal of the ACM v. 39 n.4, p.878-880.
- outline here followed lecture notes from Brown university: A detailed proof that IP=PSPACE. http://www.cs.brown.edu/courses/gs019/papers/ip.pdf
- also nice: Michael Sipser's book Introduction to the Theory of Computation
- essentially covered 8.1 and 8.2 from Arora-Barak book
- an entertaining survey about the development in the beginning of the 90s by L. Babai. Transparent proofs and limits to approximations. First European Congress of Mathematicians. 1994.

Outlook

In the beginning of the 90s a lot of things happened quickly...

- Shamir proved that IP = PSPACE
- one can also allow multiple provers which leads to the complexity class MIP
- one accepts only if provers agree
- MIP = NEXP
- lead to the notion of PCP[q, r], where one checks only r entries in a table of answer/query pairs of size 2^{q}
- it was then shown that PCP[poly, poly $]=$ NEXP and $\mathrm{PCP}[\log n, O(1)]=\mathrm{NP}$
- which yields strong results about approximation of NP-complete problems
- for instance: consider a 7/8 approximation of 3SAT

Block structure of lecture

- basic complexity classes
- probabilistic TMs and randomization
- interactive proofs
- approximations and PCP
- parallelization
- NC
- circuits
- descriptive complexity

