Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 28, 2019

Lecture 17

IP = PSPACE (2)

Goal and Plan

Goal

• IP = PSPACE

Plan

- **1.** PSPACE \subseteq IP by showing QBF \in IP \checkmark
- 2. IP ⊆ PSPACE by computing optimal prover strategies in polynomial space

Agenda

- optimal prover strategy to show IP ⊆ PSPACE
- summary and further reading
- outlook: approximation and PCP theorem

Definition recap

- L is in IP iff
 - 1. there exists a polynomial p and
 - 2. there exists a poly-time, randomized verifier V

Definition recap

L is in IP iff

- there exists a polynomial p and
- **2.** there exists a poly-time, randomized verifier V such that for all words $x \in \{0, 1\}^*$ holds
 - if $x \in L$ then there exists a prover P such that $Pr[out_V \langle P, V \rangle(x) = 1] \ge 2/3$
 - if $x \notin L$ then for all provers P holds that $Pr[out_V \langle P, V \rangle(x) = 1] \le 1/3$

Definition recap

L is in IP iff

- there exists a polynomial p and
- **2.** there exists a poly-time, randomized verifier V such that for all words $x \in \{0, 1\}^*$ holds
 - if $x \in L$ then there exists a prover P such that $Pr[out_V \langle P, V \rangle(x) = 1] \ge 2/3$
 - if $x \notin L$ then for all provers P holds that $Pr[out_V \langle P, V \rangle(x) = 1] \le 1/3$

Moreover, the following is bounded by p(|x|)

- the number of random bits chosen by V
- the number of rounds
- the length of each message

Let $L \in IP$ be arbitrary, we need to show that $L \in PSPACE$.

Let $L \in IP$ be arbitrary, we need to show that $L \in PSPACE$. We know that there exist V and p according to definition on previous slide.

Let $L \in IP$ be arbitrary, we need to show that $L \in PSPACE$.

We know that there exist V and p according to definition on previous slide.

For $x \in \{0, 1\}^n$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

Let $L \in IP$ be arbitrary, we need to show that $L \in PSPACE$.

We know that there exist V and p according to definition on previous slide.

For $x \in \{0, 1\}^n$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

$$z := \max_{P} \{ Pr[out_V \langle P, V \rangle(x) = 1] \mid P \text{ is any prover for } L \}$$

Let $L \in IP$ be arbitrary, we need to show that $L \in PSPACE$.

We know that there exist V and p according to definition on previous slide.

For $x \in \{0, 1\}^n$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

$$z := \max_{P} \{ Pr[out_V \langle P, V \rangle(x) = 1] \mid P \text{ is any prover for } L \}$$

z is acceptance probability of optimal prover, inducing the error probability.

Let $L \in \mathbb{IP}$ be arbitrary, we need to show that $L \in \mathbb{PSPACE}$.

We know that there exist V and p according to definition on previous slide.

For $x \in \{0, 1\}^n$, we need to compute in polynomial space whether $x \in L$ or $x \notin L$.

$$z := \max_{P} \{ Pr[out_V \langle P, V \rangle(x) = 1] \mid P \text{ is any prover for } L \}$$

z is acceptance probability of optimal prover, inducing the error probability.

- if $z \le 1/3$ then $x \notin L$
- if $z \ge 2/3$ then $x \in L$
- since L ∈ IP other z cannot occur
- maximum taken over finitely many provers for a given x

Recursive computation of z

If we can compute z in polynomial space, we are done.

Recursive computation of z

If we can compute z in polynomial space, we are done.

Recursive algorithm:

- simulate V branching on
 - each random choice of V
 - each possible response of P
- count
 - accepting branches produced by P's optimal response
 - total number of branches
- ratio is z

Doable in polynomial space?

- recursion depth: p(n)
- total number of branches: $p(n)^{p(n)}$
- ⇒ requires polynomially many bits only
 - can manage both counters and current branch with a PSPACE machine

Agenda

- optimal prover strategy to show IP ⊆ PSPACE ✓
- summary and further reading
- outlook: approximation and PCP theorem

g

Summary

- IP = PSPACE
- PSPACE has short interactive proofs (certificates)
- proof of IP ⊇ PSPACE also showed that we can have
 - public coins
 - · perfect completeness

for each $L \in \mathbb{P}$

 interaction plus randomization seem to add power, whereas each in isolation seemingly does not

Further Reading

- interactive proofs defined in 1985 by Goldwasser, Micali, Rackoff. The knowledge complexity of interactive proof systems. SIAM Journal on Computing archive. Volume 18 (1)(1989).
- public coins: L. Babai Trading group theory for randomness.
 STOC 1985.
- survey book: Oded
 Goldreich Computational Complexity. A Conceptual Perspective.
 http://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

Further Reading

- Adi Shamir. IP=PSPACE. Journal of the ACM v.39 n.4, p.878-880.
- outline here followed lecture notes from Brown university: A
 detailed proof that IP=PSPACE.
 http://www.cs.brown.odu/courses/as019/papers/in.ndf
 - http://www.cs.brown.edu/courses/gs019/papers/ip.pdf
- also nice: Michael Sipser's book Introduction to the Theory of Computation
- essentially covered 8.1 and 8.2 from Arora-Barak book
- an entertaining survey about the development in the beginning of the 90s by *L. Babai*. Transparent proofs and limits to approximations. First European Congress of Mathematicians. 1994.

Outlook

In the beginning of the 90s a lot of things happened quickly...

- Shamir proved that IP = PSPACE
- one can also allow multiple provers which leads to the complexity class MIP
- one accepts only if provers agree
- MIP = NEXP
- lead to the notion of PCP[q, r], where one checks only r entries in a table of answer/query pairs of size 2^q
- it was then shown that PCP[poly, poly] = NEXP and PCP[log n, O(1)] = NP
- which yields strong results about approximation of NP-complete problems
- for instance: consider a 7/8 approximation of 3SAT

Block structure of lecture

- basic complexity classes
- probabilistic TMs and randomization
- interactive proofs
- approximations and PCP
- parallelization
 - NC
 - circuits
 - descriptive complexity