Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 28, 2019

Lecture 15

Public Coins and Graph (Non)Isomorphism

Goal and Plan

Goal

- understand public coins and their relation to private coins
- get a reason why graph isomorphism might not be NP-complete

Goal and Plan

Goal

- understand public coins and their relation to private coins
- get a reason why graph isomorphism might not be NP-complete

Plan

- show that graph non-isomorphism has a two round Arthur-Merlin proof; formally: GNI ∈ AM[2]
- show that this implies GI is not NP-complete unless $\Sigma_2^p = \Pi_2^p$

Agenda

- IP and AM recap
- graph non-isomorphism as a problem about set sizes
- tool: pairwise independent hash functions
- an AM[2] protocol for GNI
- improbability of NP-completeness of GI

IP

Definition (IP)

For an integer $k \ge 1$ that may depend on the input size, a language *L* is in IP[*k*], if there is a probabilistic polynomial-time TM *V* that can have a *k*-round interaction with a function $P : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that

Completeness

 $x \in L \implies \exists P.Pr[out_V \langle V, P \rangle(x) = 1] \ge 2/3$

Soundness

 $x \notin L \implies \forall P.Pr[out_V \langle V, P \rangle(x) = 1] \le 1/3$

We define $IP = \bigcup_{c \ge 1} IP[n^c]$.

- V has access to a random variable $r \in_R \{0, 1\}^m$
- e.g. $a_1 = f(x, r)$ and $a_3 = f(x, a_1, r)$
- g cannot see r

 \Rightarrow out_V $\langle V, P \rangle$ (x) is a random variable where all probabilities are

AM

Definition (AM)

 For every k the complexity class AM[k] is defined as the subset of IP[k] obtained when the verfier's messages are random bits only and also the only random bits used by V.

Such an interactive proof is called an Arthur-Merlin proof or a public coin proof.

Agenda

- IP and AM recap ✓
- graph non-isomorphism as a problem about set sizes
- tool: pairwise independent hash functions
- an AM[2] protocol for GNI
- improbability of NP-completeness of GI

Recasting GNI

- let G_1, G_2 be graphs with nodes $\{1, \ldots, n\}$ each
- we define a set S such that
 - if $G_1 \cong G_2$ then |S| = n!
 - if $G_1 \not\cong G_2$ then |S| = 2n!

Recasting GNI

- let G_1, G_2 be graphs with nodes $\{1, \ldots, n\}$ each
- we define a set S such that
 - if $G_1 \cong G_2$ then |S| = n!
 - if $G_1 \not\cong G_2$ then |S| = 2n!
- idea: S is the set of graphs that are isomorphic to G₁ OR to G₂
- if $G_1 \cong G_2$, this set is small, otherwise not

Recasting GNI

- let G_1, G_2 be graphs with nodes $\{1, \ldots, n\}$ each
- we define a set S such that
 - if $G_1 \cong G_2$ then |S| = n!
 - if $G_1 \not\cong G_2$ then |S| = 2n!
- idea: S is the set of graphs that are isomorphic to G₁ OR to G₂
- if $G_1 \cong G_2$, this set is small, otherwise not
- problem: automorphisms
 - an automorphism of G_1 is a permutation $\pi : \{1, ..., n\} \rightarrow \{1, ..., n\}$ such that $\pi(G) = G$
 - all automorphisms of graph G written aut(G)

GNI is an AM

The infamous set S

$S = \{(H, \pi) \mid H \cong G_1 \text{ or } H \cong G_2, \pi \in aut(H)\}$

The infamous set S

$S = \{(H, \pi) \mid H \cong G_1 \text{ or } H \cong G_2, \pi \in aut(H)\}$

- to convince the verifier that G₁ ≇ G₂ the prover has to convince the verifier that |S| = 2n! rather than n!
- that is the verifier should accept with high probability if $|S| \ge K$ for some K
- it should reject if $|S| \le \frac{K}{2}$

Agenda

- IP and AM recap ✓
- graph non-isomorphism as a problem about set sizes \checkmark
- tool: pairwise independent hash functions
- an AM[2] protocol for GNI
- improbability of NP-completeness of GI

Hash functions

- goal: store a set $S \subseteq \{0, 1\}^m$ to efficiently answer membership $x \in S$
- S could change dynamically
- |S| much smaller than 2^m , possibly around 2^k for $k \le m$

Hash functions

- goal: store a set $S \subseteq \{0, 1\}^m$ to efficiently answer membership $x \in S$
- S could change dynamically
- |S| much smaller than 2^m , possibly around 2^k for $k \le m$
- to create a hash table of size 2^k
 - select a hash function $h: \{0, 1\}^m \rightarrow \{0, 1\}^k$
 - store x at h(x)
- collision: h(x) = h(y) for $x \neq y$
- choosing hash functions randomly from a collection, one can expect *h* to be almost bijective if |S| ≈ 2^k

Pairwise independent hash functions

Definition

Let $\mathcal{H}_{m,k}$ be a collection of functions from $\{0,1\}^m$ to $\{0,1\}^k$. We say that $\mathcal{H}_{m,k}$ is pairwise independent if

- for every $x \neq x' \in \{0, 1\}^m$ and
- for every $y, y' \in \{0, 1\}^k$ and

 $Pr_{h\in_{\mathcal{R}}\mathcal{H}_{m,k}}[h(x) = y \wedge h(x') = y'] = 2^{-2k}$

- when h is choosen randomly (h(x), h(x')) is distributed uniformly over {0, 1}^k × {0, 1}^k
- such collections exist
- here: we only assume the existence

Agenda

- IP and AM recap ✓
- graph non-isomorphism as a problem about set sizes \checkmark
- tool: pairwise independent hash functions \checkmark
- an AM[2] protocol for GNI
- improbability of NP-completeness of GI

Goldwasser-Sipser Set Lower Bound Protocol

- S ⊆ {0, 1}^m
- both parties know a K
- prover wants to convince verifier that $|S| \ge K$
- verifier rejects with high probability if $|S| \leq \frac{K}{2}$
- let k be an integer such that $2^{k-2} < K \le 2^{k-1}$

V

Goldwasser-Sipser Set Lower Bound Protocol

The following protocol has two rounds and uses public coins!

- randomly choose *h*: {0,1}^{*m*} → {0,1}^{*k*} from a pairwise independent collection of hash functions *H*_{*m,k*}
 - randomly choose $y \in \{0, 1\}^k$
 - send h and y to prover
- find an $x \in S$ such that h(x) = y
 - send x to V together with a certificate of membership of x in S

V if h(x) = y and $x \in S$ accept; otherwise reject

Why the protocol works?

Intuition: If S is big enough (non-isomorphic case) then the prover has a good chance to find a pre-image.

Why the protocol works?

Intuition: If *S* is big enough (non-isomorphic case) then the prover has a good chance to find a pre-image.

Formally:

- show that there exists a p̂ such that
 - if $|S| \ge K$ then $Pr[\exists x \in S.h(x) = y]$ is greater than $\frac{3}{4}\hat{p}$
 - if $|S| \le \frac{\kappa}{2}$ then $Pr[\exists x \in S.h(x) = y]$ is lower than $\frac{\hat{p}}{2}$
- this is a probability gap which can be amplified by repetition
- one can choose $\hat{p} = \frac{K}{2^k}$
 - soundness: easy (not enough elements even if injective)
 - completeness: by inclusion-exclusion principle $\geq \sum_{x} Pr[h(x) = y] - \frac{1}{2} \sum_{x \neq x} Pr[h(x) = y, h(x') = y]$ by pairwise independence $\frac{|S|}{2^{k}} - \frac{|S|^2}{2^{2k+1}} \ge \frac{3}{4}\hat{p}$

Putting it together

AM[2] public coin protocol for GNI

- compute S (automorphisms) as above
- prover and verifier run set lower bound protocol several times
- verifier accepts by majority vote
- using Chernoff bounds, this gives the desired completeness and soundness probabilities
- observe: only a constant number of iterations necessary which can be executed in parallel
- ⇒ number of rounds stays at 2

Details: Arora-Barak, section 8.2

Agenda

- IP and AM recap ✓
- graph non-isomorphism as a problem about set sizes \checkmark
- tool: pairwise independent hash functions \checkmark
- an AM[2] protocol for GNI ✓
- improbability of NP-completeness of GI

Graph Isomorphism

Theorem

If $GI = \{ \langle G_1, G_2 \rangle \mid G_1 \cong G_2 \}$ is NP-complete then $\Sigma_2^p = \Pi_2^p$.

Proof idea ($\Sigma_2^p \subseteq \Pi_2^p$):

- $\exists \vec{x} \forall \vec{y} \varphi(x, y)$ equivalent to
- $\exists \vec{x} g(x) \in \text{GNI}$ equivalent to (GNI $\in \text{AM}$)
- $\exists \vec{x} \forall \vec{r} \exists \vec{m} A(g(x), r, m) = 1$ equivalent to
- $\forall \vec{r} \exists \vec{x} \exists \vec{m} A(g(x), r, m) = 1$

(perfect completeness \implies satisfiable soundness with $2^{-n} \implies$ single string *r*) Conclusion

What have we learnt?

- graph isomorphism is not NP-complete unless the (polynomial) hierarchy collapses
- public coins are as expressive as private coins
 - proof of GNI ∈ AM[2] generalizes to IP[k] = AM[k + 2] (without proof)
 - one can also show AM[k] = AM[k + 1] for k ≥ 2 (collapse) intuitively AM more powerful than MA, because in AM Merlin gets to look at the random bits before deciding on his answer
 - also not shown: perfect completeness for AM
- Goldwasser-Sipser set lower bound protocol (in AM[2])
- hash functions as a useful tool

Up next: IP = PSPACE