Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 28, 2019

1

Lecture 14 Interactive Proofs

Intro

Overview

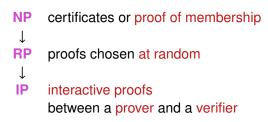
NP certificates or proof of membership

Intro

Overview

NP certificates or proof of membership ↓ RP proofs chosen at random

Overview



Example: job interview, interactive vs. fixed questions

Intro

Agenda

- interactive proof examples
 - socks
 - graph coloring
 - graph non-isomorphism
- definition of interactive proof complexity
 - IP
 - public coins: AM

Different socks

Example

P wants to convince V that she has a red sock and a yellow sock. V is blind and has a coin.

Interactive Proof

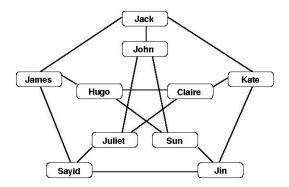
- 1. P tells V which sock is red
- 2. V holds red sock in her right hand, left sock in her yellow hand
- 3. P turns away from V
- 4. V tosses a coin
 - 4.1 heads: keep socks
 - 4.2 tails: switch socks
- 5. V asks P where the red sock is

- If P tells the truth (different colors), she will always answer correctly
- If P lies

- If P tells the truth (different colors), she will always answer correctly
- If P lies
 - she can only answer correctly with probability 1/2
 - after k rounds, she gets caught lying with probability $1 2^{-k}$

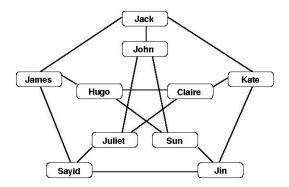
- If P tells the truth (different colors), she will always answer correctly
- If P lies
 - she can only answer correctly with probability 1/2
 - after k rounds, she gets caught lying with probability $1 2^{-k}$
- random choices are crucial
- P has more computational power (vision) than V
- P must not see V's coin (private coin)

Graph 3-Coloring



- P claims: G is 3-colorable
- How can she prove it to V?

Graph 3-Coloring



- P claims: G is 3-colorable
- How can she prove it to V?
- provide certificate (since 3−Col ∈ NP), V checks it
- possible for all *L* ∈ NP with one round if P has NP power

What if actual coloring should be secret?

- given a graph (V, E) with |V| = n
- P claims 3-colorability
- P wants to convince V of coloring $c: V \to C$ (= {R, G, B})

What if actual coloring should be secret?

- given a graph (V, E) with |V| = n
- P claims 3-colorability
- P wants to convince V of coloring $c: V \to C$ (= {R, G, B})

- **1.** P randomly picks a permutation $\pi : C \to C$ and puts $\pi(c(v_i))$ in envelope *i* for each $1 \le i \le n$
- V randomly picks edge (u_i, u_j) and opens envelopes i and j to find colors c_i and c_j
- **3.** V accepts iff $c_i \neq c_j$

- the protocol has two rounds
- a round is an uninterrupted sequence of messages from one party

- the protocol has two rounds
- a round is an uninterrupted sequence of messages from one party
- if G is not 3-colorable, P will be caught lying after $O(n^3)$ rounds with probability $1 2^{-n}$

- the protocol has two rounds
- a round is an uninterrupted sequence of messages from one party
- if G is not 3-colorable, P will be caught lying after $O(n^3)$ rounds with probability $1 2^{-n}$
- V learns nothing about the actual coloring
- ⇒ zero-knowledge protocol
 - by reductions, all NP languages have ZK protocols

- the protocol has two rounds
- a round is an uninterrupted sequence of messages from one party
- if G is not 3-colorable, P will be caught lying after $O(n^3)$ rounds with probability $1 2^{-n}$
- V learns nothing about the actual coloring
- ⇒ zero-knowledge protocol
 - by reductions, all NP languages have ZK protocols
 - private coins

Graph Non-Isomorphism

- NP languages have succinct, deterministic proofs
- coNP languages possibly don't
- graph isomorphism, GI, is in NP
- hence $GNI = \{ \langle G_1, G_2 \rangle \mid G_1 \not\cong G_2 \}$ is in **coNP**
- GNI has a succinct interactive proof

Interactive Proof for GNI

given: graphs G1, G2

- V pick $i \in_R \{1, 2\}$, random permutation π
- **V** use π to permute nodes of G_i to obtain graph **H**
- V send H to P
- **P** check which of G_1, G_2 was used to obtain H
- P let G_j be that graph and send j to V
- **V** accept iff i = j

Intuition

- same idea as for socks protocol
- P has unlimited computational power
- if $G_1 \cong G_2$ then P answers correctly with probability at most 1/2
- probability can be improved by sequential or parallel repetition
- if $G_1 \not\cong G_2$ then P answers correctly with probability 1
- privacy of coins crucial

Agenda

- interactive proof examples \checkmark
 - socks \checkmark
 - graph coloring \checkmark
 - graph non-isomorphism \checkmark
- definition of interactive proof complexity
 - IP
 - public coins: AM

Interaction

Definition (Interaction)

Let $f, g : \{0, 1\}^* \to \{0, 1\}^*$ be functions and $k \ge 0$ an integer that may depend on the input size. A *k*-round interaction of *f* and *g* on input $x \in \{0, 1\}^*$ is the sequence $\langle f, g \rangle(x)$ of strings $a_1, \ldots, a_k \in \{0, 1\}^*$ defined by

$$a_{1} = f(x)$$

$$a_{2} = g(x, a_{1})$$
...
$$a_{2i+1} = f(x, a_{1}, ..., a_{2i}) \quad \text{for } 2i < k$$

$$a_{2i+2} = g(x, a_{1}, ..., a_{2i+1}) \quad \text{for } 2i + 1 < k$$

The output of *f* at the end of the interaction is defined by $out_f(f, g)(x) = f(x, a_1, ..., a_k)$ and assumed to be in {0, 1}.

This is a deterministic interaction, we need to add randomness.

Adding Randomness

Definition (IP)

For an integer $k \ge 1$ that may depend on the input size, a language *L* is in IP[*k*], if there is a probabilistic polynomial-time TM *V* that can have a *k*-round interaction with a function $P : \{0, 1\}^* \to \{0, 1\}^*$ such that

Completeness

 $x \in L \implies \exists P.Pr[out_V \langle V, P \rangle(x) = 1] \ge 2/3$

Soundness

 $x \notin L \implies \forall P.Pr[out_V \langle V, P \rangle(x) = 1] \le 1/3$

We define $IP = \bigcup_{c \ge 1} IP[n^c]$.

- V has access to a random variable $r \in_R \{0, 1\}^m$
- e.g. $a_1 = f(x, r)$ and $a_3 = f(x, a_1, r)$
- g cannot see r
- \Rightarrow out_V $\langle V, P \rangle$ (x) is a random variable where all probabilities are over the choice of r

Definitions

Arthur-Merlin Protocols

Definition (AM)

 For every k the complexity class AM[k] is defined as the subset of IP[k] obtained when the verfier's messages are random bits only and also the only random bits used by V.

Such an interactive proof is called an Arthur-Merlin proof or a public coin proof.

Definitions

Agenda

- interactive proof examples \checkmark
 - socks \checkmark
 - graph coloring \checkmark
 - graph non-isomorphism \checkmark
- · definition of interactive proof complexity
 - IP √
 - public coins: AM \checkmark

Basic Properties

- NP ⊆ IP
- for every polynomial p(n) the acceptance bounds in the definition of IP can be changes to
 - 2^{-p(n)} for soundness
 - $1 2^{-p(n)}$ for completeness
- the requirement for completeness can be changed to require probability 1 yielding perfect completeness
- perfect soundness collapses IP to NP

Conclusion

What have we learnt?

- IP[k]: languages that have k-round interactive proofs
- interaction and randomization possibly add power
 - randomization alone: BPP (possibly equals P)
 - deterministic interaction: NP
 - ⇒ interactive proofs more succinct
- prover has unlimited computational power
- verifier is a BPP machine (poly-time with coins)
- coins can be private or public
- zero-knowledge protocols do exist for all NP languages
- soundness and completeness thresholds can be adapted

Conclusion

What's next?

- AM[2] = AM[k] AM hierarchy collapses
- AM[k+2] = IP[k]

private coins don't help

- if graph isomorphism is NP-complete, the polynomial hierarchy collapses
- IP = PSPACE