Complexity Theory

Jan Křetínský

Based on slides by Michael Luttenberger

Technical University of Munich Summer 2019

May 28, 2019

Lecture 12-13

Randomization and Polynomial Time

"Realistic computation somewhere between P and NP"

Agenda

- Motivation: From NP to a more realistic class by randomization
 - · Choosing the certificate at random
 - · Error reduction by rerunning
- Randomized poly-time with one-sided error: RP, coRP, ZPP
- Power of randomization with two-sided error: PP, BPP

Recap P

Definition (P)

For every $L \subseteq \{0, 1\}^*$:

 $L \in P$ if there is a poly-time TM M such that for every $x \in \{0, 1\}^*$:

$$x \in L \Leftrightarrow M(x) = 1.$$

- "poly-time TM M":
 - M deterministic
 - M outputs {0, 1}
 - There is a polynomial T(n) s.t. M halts on every x within T(|x|) steps.
- Problems in P are deemed "tractable".

Recap NP

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$:

 $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a poly-time TM M such that for every $x \in \{0,1\}^*$

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)} : M(x,u) = 1$$

- Certificate *u*: satisfying assignment, independent set, 3-coloring, etc.
- NP captures the class of possibly (not) tractable computations:
 - Don't know how to compute u in poly-time, but
 - if there is a u, then |u| is polynomial in |x|, and
 - we can check in poly-time if a u is a certificate/solution.

Recap NP

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$:

 $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a poly-time TM M such that for every $x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)} : M(x,u) = 1$$

- Certificate *u*: satisfying assignment, independent set, 3-coloring, etc.
- NP captures the class of possibly (not) tractable computations:
 - Don't know how to compute u in poly-time, but
 - if there is a u, then |u| is polynomial in |x|, and
 - we can check in poly-time if a *u* is a certificate/solution.
- NDTMs can check all $2^{p(|x|)}$ possible us in parallel.
- Seems unrealistic. Common conjecture: P ≠ NP.

Recap NP

Theorem (Certificates)

For every $L \subseteq \{0, 1\}^*$:

 $L \in \mathbb{NP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a poly-time TM M such that for every $x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)} : M(x,u) = 1$$

- Certificate *u*: satisfying assignment, independent set, 3-coloring, etc.
- NP captures the class of possibly (not) tractable computations:
 - Don't know how to compute u in poly-time, but
 - if there is a u, then |u| is polynomial in |x|, and
 - we can check in poly-time if a *u* is a certificate/solution.
- NDTMs can check all 2^{p(|x|)} possible us in parallel.
- Seems unrealistic. Common conjecture: P ≠ NP.
- Goal: Obtain from NP a more realistic class by randomization:

Choose *u* uniformly at random from $\{0, 1\}^{p(|x|)}$.

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in \mathbb{NP}$ decided by M using certificates u of length $p(\cdot)$:

$$A_{M,x} := \{u \in \{0,1\}^{p(|x|)} \mid M(x,u) = 1\} \text{ and } R_{M,x} := \{0,1\}^{p(|x|)} \setminus A_{M,x}.$$

e

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in \mathbb{NP}$ decided by M using certificates u of length $p(\cdot)$:

$$A_{M,x} := \{u \in \{0,1\}^{p(|x|)} \mid M(x,u) = 1\} \text{ and } R_{M,x} := \{0,1\}^{p(|x|)} \setminus A_{M,x}.$$

- If we choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random:
 - A_{M,x} is the event that u "says accept x".
 - $R_{M,x}$ is the event that u "says reject x".

e

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in \mathbb{NP}$ decided by M using certificates u of length $p(\cdot)$:

$$A_{M,x} := \{u \in \{0,1\}^{p(|x|)} \mid M(x,u) = 1\} \text{ and } R_{M,x} := \{0,1\}^{p(|x|)} \setminus A_{M,x}.$$

- If we choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random:
 - A_{M,x} is the event that u "says accept x".
 - $R_{M,x}$ is the event that u "says reject x".

Definition (Accept/Reject certificates and probabilities (cont'd))

$$\Pr[A_{M,x}] := \frac{|A_{M,x}|}{2^{p(|x|)}} \text{ and } \Pr[R_{M,x}] := \frac{|R_{M,x}|}{2^{p(|x|)}} = 1 - \Pr[A_{M,x}].$$

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in \mathbb{NP}$ decided by M using certificates u of length $p(\cdot)$:

$$A_{M,x} := \{u \in \{0,1\}^{p(|x|)} \mid M(x,u) = 1\} \text{ and } R_{M,x} := \{0,1\}^{p(|x|)} \setminus A_{M,x}.$$

- If we choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random:
 - A_{M,x} is the event that u "says accept x".
 - $R_{M,x}$ is the event that u "says reject x".

Definition (Accept/Reject certificates and probabilities (cont'd))

$$\Pr\left[A_{M,x}\right] := \frac{|A_{M,x}|}{2^{p(|x|)}} \text{ and } \Pr\left[R_{M,x}\right] := \frac{|R_{M,x}|}{2^{p(|x|)}} = 1 - \Pr\left[A_{M,x}\right].$$

$$L \in \mathbb{NP} \text{ iff } \forall x \in \{0, 1\}^*$$
:

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 2^{-p(|x|)}$$
 and $x \notin L \Rightarrow \Pr[A_{M,x}] = 0$.

- Input: CNF-formula φ with n variables.
- Output: Choose truth assignment $u \in \{0, 1\}^n$ uniformly at random.
 - If u satisfies ϕ , output yes, $\phi \in SAT$.
 - Else, output probably, $\phi \notin SAT$.
- If output is yes, $\phi \in SAT$, then we know $\phi \in SAT$ for sure.
- But what if output is probably, $\phi \notin SAT$?

- Input: CNF-formula φ with n variables.
- Output: Choose truth assignment $u \in \{0, 1\}^n$ uniformly at random.
 - If u satisfies ϕ , output yes, $\phi \in SAT$.
 - Else, output probably, $\phi \notin SAT$.
- If output is yes, $\phi \in SAT$, then we know $\phi \in SAT$ for sure.
- But what if output is probably, φ ∉ SAT?
- Consider $\phi = x_1 \land x_2 \land ... \land x_n \in SAT$:
 - Probability of probably, φ ∉ SAT: Pr [R_{M,x}] = 1 2⁻ⁿ
 - Called false negative.

- Input: CNF-formula φ with n variables.
- Output: Choose truth assignment $u \in \{0, 1\}^n$ uniformly at random.
 - If u satisfies ϕ , output yes, $\phi \in SAT$.
 - Else, output probably, $\phi \notin SAT$.
- If output is yes, $\phi \in SAT$, then we know $\phi \in SAT$ for sure.
- But what if output is probably, $\phi \notin SAT$?
- Consider $\phi = x_1 \land x_2 \land ... \land x_n \in SAT$:
 - Probability of probably, $\phi \notin SAT$: $Pr[R_{M,x}] = 1 2^{-n}$
 - Called false negative.
- If we run this algorithm r-times, prob. of false negative decreases to: $(1 2^{-n})^r \approx e^{-r/2^n}$.

- Input: CNF-formula φ with n variables.
- Output: Choose truth assignment $u \in \{0, 1\}^n$ uniformly at random.
 - If u satisfies ϕ , output yes, $\phi \in SAT$.
 - Else, output probably, φ ∉ SAT.
- If output is yes, $\phi \in SAT$, then we know $\phi \in SAT$ for sure.
- But what if output is probably, $\phi \notin SAT$?
- Consider $\phi = x_1 \land x_2 \land \ldots \land x_n \in SAT$:
 - Probability of probably, $\phi \notin SAT$: $Pr[R_{M,x}] = 1 2^{-n}$
 - Called false negative.
- If we run this algorithm r-times, prob. of false negative decreases to: $(1 - 2^{-n})^r \approx e^{-r/2^n}$.
- Exponential number $r \sim 2^n$ required to reduce this to any tolerable error bound like 1/4 or 1/10.
- Not that helpful as SAT ∈ EXP (zero prob. of false negative).

Randomizing NP: Conclusion

• Not enough to only choose certificate u at random, we need to require that $\Pr[A_{M,x}]$ is significantly larger than $2^{-p(|x|)}$; otherwise we'll stay in NP.

Randomizing NP: Conclusion

- Not enough to only choose certificate u at random, we need to require that $\Pr[A_{M,x}]$ is significantly larger than $2^{-p(|x|)}$; otherwise we'll stay in NP.
- Goal:
 Polynomial number r(|x|) of reruns should make prob. of false negatives arbitrary small.

Randomizing NP: Conclusion

- Not enough to only choose certificate u at random, we need to require that $\Pr[A_{M,x}]$ is significantly larger than $2^{-p(|x|)}$; otherwise we'll stay in NP.
- Goal:
 Polynomial number r(|x|) of reruns should make prob. of false negatives arbitrary small.
- This holds if $\Pr[A_{M,x}] \ge n^{-k}$ for some k > 0:

$$(1 - \Pr[A_{M,x}])^{c|x|^{k+d}} \ge (1 - 1/|x|^k)^{c|x|^{k+d}} \approx e^{-c|x|^d}$$

as
$$\lim_{m\to\infty} (1-1/m)^m = e^{-1}$$
.

Agenda

- Motivation: From NP to a more realistic class by randomization ✓
 - Choosing the certificate at random √
 - Error reduction by rerunning √
- Randomized poly-time with one-sided error: RP, coRP, ZPP
 - Definitions
 - · Monte Carlo and Las Vegas algorithms
 - Examples: ZEROP and perfect matchings
- Power of randomization with two-sided error: PP, BPP

Definition of RP

Definition (Randomized P (RP))

 $L \in \mathbb{RP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$$

- $P \subseteq RP \subseteq NP$
- $corp := \{\overline{L} \mid L \in RP\}$
- RP unchanged if we replace $\geq 3/4$ by $\geq n^{-k}$ or $\geq 1 2^{-n^k}$ (k > 0).

Definition of RP

Definition (Randomized P (RP))

 $L \in \mathbb{RP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$$

- $P \subseteq RP \subseteq NP$
- $corp := \{\overline{L} \mid L \in RP\}$
- RP unchanged if we replace $\geq 3/4$ by $\geq n^{-k}$ or $\geq 1 2^{-n^k}$ (k > 0).
- Realistic model of computation? How to obtain random bits?
 - "Slightly random sources": see e.g. Papadimitriou p. 261

Definition of RP

Definition (Randomized P (RP))

 $L \in \mathbb{RP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$$

- $P \subseteq RP \subseteq NP$
- $corp := \{\overline{L} \mid L \in RP\}$
- RP unchanged if we replace $\geq 3/4$ by $\geq n^{-k}$ or $\geq 1 2^{-n^k}$ (k > 0).
- Realistic model of computation? How to obtain random bits?
 - "Slightly random sources": see e.g. Papadimitriou p. 261
- One-sided error probability for RP:
 - False negatives: if $x \in L$, then $Pr[R_{M,x}] \le 1/4$.
 - If M(x, u) = 1, output $x \in L$; else output probably, $x \notin L$
 - Error reduction by rerunning a polynomial number of times.

coRP, ZPP

Lemma (coRP)

 $L \in \mathbf{coRP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow Pr[A_{M,x}] = 1 \text{ and } x \notin L \Rightarrow Pr[A_{M,x}] \le 1/4.$$

- One-sided error probability for coRP:
 - False positives: if $x \notin L$, then $\Pr[A_{M,x}] \le 1/4$.
 - If M(x, u) = 1, output probably, $x \in L$; else output $x \notin L$

coRP, ZPP

Lemma (coRP)

 $L \in \mathbf{coRP}$ if and only if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow Pr[A_{M,x}] = 1 \text{ and } x \notin L \Rightarrow Pr[A_{M,x}] \le 1/4.$$

- One-sided error probability for coRP:
 - False positives: if $x \notin L$, then $Pr[A_{M,x}] \le 1/4$.
 - If M(x, u) = 1, output probably, $x \in L$; else output $x \notin L$

Definition ("Zero Probability of Error"-P (ZPP))

$$ZPP := RP \cap coRP$$

• If $L \in ZPP$, then we have both an RP- and a coRP-TM for L.

Agenda

- Motivation: From NP to a more realistic class by randomization ✓
- Randomized poly-time with one-sided error: RP, coRP, ZPP
 - Definitions √
 - Monte Carlo and Las Vegas algorithms
 - Examples: ZEROP and perfect matchings
- Power of randomization with two-sided error: PP, BPP

RP-algorithms

- Assume $L \in \mathbb{RP}$ decided by TM $M(\cdot, \cdot)$.
- Given input *x*:
 - Choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random.
 - Run M(x, u).
 - If M(x, u) = 1, output: yes, $x \in L$.
 - If M(x, u) = 0, output: probably, $x \notin L$.
- Called Monte Carlo algorithm.

RP-algorithms

- Assume $L \in \mathbb{RP}$ decided by TM $M(\cdot, \cdot)$.
- Given input x:
 - Choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random.
 - Run M(x, u).
 - If M(x, u) = 1, output: yes, $x \in L$.
 - If M(x, u) = 0, output: probably, $x \notin L$.
- Called Monte Carlo algorithm.
- If we rerun this algorithm exactly k-times:
 - If $x \in L$, probability that at least once yes, $x \in L$

$$\geq 1 - (1 - 3/4)^k = 1 - 4^{-k}$$

• but if $x \notin L$, we will never know for sure.

RP-algorithms

- Assume $L \in \mathbb{RP}$ decided by TM $M(\cdot, \cdot)$.
- Given input x:
 - Choose $u \in \{0, 1\}^{p(|x|)}$ uniformly at random.
 - Run M(x, u).
 - If M(x, u) = 1, output: yes, $x \in L$.
 - If M(x, u) = 0, output: probably, $x \notin L$.
- Called Monte Carlo algorithm.
- If we rerun this algorithm exactly k-times:
 - If $x \in L$, probability that at least once yes, $x \in L$

$$\geq 1 - (1 - 3/4)^k = 1 - 4^{-k}$$

- but if x ∉ L, we will never know for sure.
- Expected running time if we rerun till output yes, x ∈ L:
 - If $x \in L$:
 - Number of reruns geometrically distributed with success prob. ≥ 3/4, i.e.,
 - the expected number of reruns is at most 4/3.
 - Expected running time also polynomial.
 - If x ∉ L:
 - · We run forever.

- Assume L ∈ ZPP.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \overline{L}$.
- Given x:
 - · Run both algorithms once.
 - If both reply probably, then output don't know.
 - Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm

- Assume L ∈ ZPP.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \overline{L}$.
- Given x:
 - Run both algorithms once.
 - If both reply probably, then output don't know.
 - Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm
- If we rerun this algorithm exactly k-times:
 - If $x \in L$ $(x \in \overline{L})$, probability that at least once yes, $x \in L$ (yes, $x \in \overline{L}$)

$$\geq 1 - (1 - 3/4)^k = 1 - 4^{-k}$$

- Assume L ∈ ZPP.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \overline{L}$.
- Given x:
 - Run both algorithms once.
 - If both reply probably, then output don't know.
 - Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm
- If we rerun this algorithm exactly k-times:
 - If $x \in L$ $(x \in \overline{L})$, probability that at least once yes, $x \in L$ (yes, $x \in \overline{L}$)

$$\geq 1 - (1 - 3/4)^k = 1 - 4^{-k}$$

- Expected running time if we rerun till output yes:
 - In both cases expected number of reruns at most 4/3.
 - So, randomized algorithm which decides L in expected polynomial time.

- Assume L ∈ ZPP.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \overline{L}$.
- Given x:
 - Run both algorithms once.
 - If both reply probably, then output don't know.
 - Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm
- If we rerun this algorithm exactly k-times:
 - If $x \in L$ $(x \in \overline{L})$, probability that at least once yes, $x \in L$ (yes, $x \in \overline{L}$)

$$\geq 1 - (1 - 3/4)^k = 1 - 4^{-k}$$

- Expected running time if we rerun till output yes:
 - In both cases expected number of reruns at most 4/3.
 - So, randomized algorithm which decides L in expected polynomial time.
- More on expected running time vs. exact running time later on.

Agenda

- Motivation: From NP to a more realistic class by randomization ✓
- Randomized poly-time with one-sided error: RP, coRP, ZPP
 - Definitions √
 - Monte Carlo and Las Vegas algorithms √
 - Examples: ZEROP and perfect matchings
- Power of randomization with two-sided error: PP, BPP

ZEROP

- Given: Multivariate polynomial $p(x_1, ..., x_k)$, not necessarily expanded, but evaluable in polynomial time.
- Wanted: Decide if $p(x_1, ..., x_k)$ is the zero polynomial.

$$\begin{vmatrix} 0 & y^2 & xy \\ z & 0 & y \\ 0 & yz & xz \end{vmatrix} = -y^2(z \cdot xz - 0) + xy(z \cdot yz - 0) = -xy^2z^2 + xy^2z^2 = 0$$

- ZEROP := "All zero polynomials evaluable in polynomial time".
- E.g. determinant: substitute values for variables, then use Gauß-elemination.
- Not known to be in P.

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let $p(x_1,...,x_k)$ be a nonzero polynomial with each variable x_i of degree at most d. Then for $M \in \mathbb{N}$:

$$|\{(x_1,\ldots,x_k)\in\{0,1,\ldots,M-1\}^k\mid p(x_1,\ldots,x_k)=0\}|\leq kdM^{k-1}.$$

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let $p(x_1,...,x_k)$ be a nonzero polynomial with each variable x_i of degree at most d. Then for $M \in \mathbb{N}$:

$$|\{(x_1,\ldots,x_k)\in\{0,1,\ldots,M-1\}^k\mid p(x_1,\ldots,x_k)=0\}|\leq kdM^{k-1}.$$

Let $X_1, ..., X_k$ be independent random variables, each uniformly distributed on $\{0, 1, ..., M-1\}$. Then for M = 4kd:

$$p \notin \mathsf{ZEROP} \Rightarrow \mathsf{Pr}\left[p(X_1,\ldots,X_k)=0\right] \leq \frac{kdM^{k-1}}{M^k} = \frac{kd}{M} = \frac{1}{4}.$$

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let $p(x_1,...,x_k)$ be a nonzero polynomial with each variable x_i of degree at most d. Then for $M \in \mathbb{N}$:

$$|\{(x_1,\ldots,x_k)\in\{0,1,\ldots,M-1\}^k\mid p(x_1,\ldots,x_k)=0\}|\leq kdM^{k-1}.$$

Let $X_1, ..., X_k$ be independent random variables, each uniformly distributed on $\{0, 1, ..., M-1\}$. Then for M = 4kd:

$$p \notin ZEROP \Rightarrow Pr[p(X_1,...,X_k) = 0] \le \frac{kdM^{k-1}}{M^k} = \frac{kd}{M} = \frac{1}{4}.$$

- So we can decide p ∈ ZEROP in coRP if
 - we can evaluate $p(\cdot)$ in polynomial time, and
 - *d* is polynomial in the representation of *p*.

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let $p(x_1,...,x_k)$ be a nonzero polynomial with each variable x_i of degree at most d. Then for $M \in \mathbb{N}$:

$$|\{(x_1,\ldots,x_k)\in\{0,1,\ldots,M-1\}^k\mid p(x_1,\ldots,x_k)=0\}|\leq kdM^{k-1}.$$

Let $X_1, ..., X_k$ be independent random variables, each uniformly distributed on $\{0, 1, ..., M-1\}$. Then for M = 4kd:

$$p \notin ZEROP \Rightarrow Pr[p(X_1,...,X_k) = 0] \le \frac{kdM^{k-1}}{M^k} = \frac{kd}{M} = \frac{1}{4}.$$

- So we can decide p ∈ ZEROP in coRP if
 - we can evaluate $p(\cdot)$ in polynomial time, and
 - d is polynomial in the representation of p.
- See Arora p. 130 for work around if d is exponential

• E.g.
$$p(x) = (\dots ((x-1)^2)^2 \dots)^2$$
.

• Given: bipartite graph G = (U, V, E) with

$$|U| = |V| = n$$
 and $E \subseteq U \times V$

Wanted: M ⊆ E such that

$$\forall (u, v), (u', v') \in M : u \neq u' \land v \neq v' \text{ (matching)}$$

$$|M| = n \text{ (perfect)}$$

• Given: bipartite graph G = (U, V, E) with

$$|U| = |V| = n$$
 and $E \subseteq U \times V$

Wanted: M ⊂ E such that

$$\forall (u, v), (u', v') \in M : u \neq u' \land v \neq v' \text{ (matching)}$$

$$|M| = n \text{ (perfect)}$$

• Given: bipartite graph G = (U, V, E) with

$$|U| = |V| = n$$
 and $E \subseteq U \times V$

Wanted: M ⊆ E such that

$$\forall (u, v), (u', v') \in M : u \neq u' \land v \neq v' \text{ (matching)}$$

$$|M| = n \text{ (perfect)}$$

- Problem is known to be solvable in time $O(n^5)$ (and better).
- So it is in RP.

• Given: bipartite graph G = (U, V, E) with

$$|U| = |V| = n$$
 and $E \subseteq U \times V$

Wanted: M ⊆ E such that

$$\forall (u, v), (u', v') \in M : u \neq u' \land v \neq v'$$
 (matching)
$$|M| = n \text{ (perfect)}$$

- Problem is known to be solvable in time $O(n^5)$ (and better).
- So it is in RP.

Still some "easy" randomized algorithm relying on ZEBOP

• For bipartite graph G = (U, V, E) define square matrix M:

$$M_{ij} = \begin{cases} x_{ij} & \text{if } (u_i, v_j) \in E \\ 0 & \text{else} \end{cases}$$

- Output:
 - "has perfect matching" if det(M) ∉ ZEROP
 - "might not have perfect matching" if det(M) ∈ ZEROP

$$\begin{vmatrix} 0 & x_{1,2} & x_{1,3} \\ x_{2,1} & 0 & x_{2,3} \\ 0 & x_{3,2} & 0 \end{vmatrix} = x_{1,3}x_{2,1}x_{3,2}$$

• Relies on Leibniz formula: $\det M = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n M_{i,\sigma(i)}$.

• For bipartite graph G = (U, V, E) define square matrix M:

$$M_{ij} = \begin{cases} x_{ij} & \text{if } (u_i, v_j) \in E \\ 0 & \text{else} \end{cases}$$

- Output:
 - "has perfect matching" if det(M) ∉ ZEROP
 - "might not have perfect matching" if det(M) ∈ ZEROP

$$\begin{vmatrix} 0 & x_{1,2} & x_{1,3} \\ x_{2,1} & 0 & x_{2,3} \\ 0 & x_{3,2} & 0 \end{vmatrix} = x_{1,3}x_{2,1}x_{3,2}$$

• Relies on Leibniz formula: $\det M = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n M_{i,\sigma(i)}$.

Agenda

- Motivation: From NP to a more realistic class by randomization ✓
- Randomized poly-time with one-sided error: RP, coRP, ZPP √
 - Definitions √
 - Monte Carlo and Las Vegas algorithms √
 - Examples: ZEROP and perfect matchings √
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives
 - Comparison: NP, RP, coRP, ZPP, BPP, PP
 - Probabilistic Turing machines
 - Expected running time
 - Error reduction for BPP
 - Some kind of derandomization for BPP
 - BPP in the polynomial hierarchy

Probability of error for both $x \in L$ and $x \notin L$

- RP obtained from NP by
 - choosing certificate u uniformly at random
 - requiring a fixed fraction of accept-certificates if $x \in L$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$$

• RP-algorithms can only make errors for $x \in L$.

Probability of error for both $x \in L$ and $x \notin L$

- RP obtained from NP by
 - choosing certificate u uniformly at random
 - requiring a fixed fraction of accept-certificates if $x \in L$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$$

- RP-algorithms can only make errors for $x \in L$.
- By allowing both errors for both cases, can we obtain a class that is
 - larger than RP,
 - but still more realistic than NP?

Probability of error for both $x \in L$ and $x \notin L$

- RP obtained from NP by
 - choosing certificate u uniformly at random
 - requiring a fixed fraction of accept-certificates if $x \in L$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] = 0.$$

- RP-algorithms can only make errors for $x \in L$.
- By allowing both errors for both cases, can we obtain a class that is
 - · larger than RP,
 - but still more realistic than NP?
- Assume we change the definition of RP to:

$$x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$$

- Two-sided error probabilities:
 - False negatives: If $x \in L$: $Pr[R_{M,x}] \le 1/4$
 - False positives: If $x \notin L$: $Pr[A_{M,x}] < 3/4$
 - Outputs: probably, $x \in L$ and probably, $x \notin L$

Definition (PP)

 $L \in \mathbf{PP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$$

Definition (PP)

 $L \in \mathbf{PP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$$

RP ⊆ PP ⊆ EXP

Definition (PP)

 $L \in \mathbf{PP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$$

- RP ⊆ PP ⊆ EXP
- · One can show:
 - May replace ≥ by >.
 - May replace 3/4 by 1/2.
 - PP = coPP

Definition (PP)

 $L \in \mathbf{PP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$$

- RP ⊆ PP ⊆ EXP
- · One can show:
 - May replace ≥ by >.
 - May replace 3/4 by 1/2.
 - PP = coPP
- PP: "x ∈ L iff x is accepted by a majority"
 - If $x \notin L$, then x is not accepted by a majority (\neq a majority rejects x!)

Definition (PP)

 $L \in \mathbf{PP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Leftrightarrow \Pr[A_{M,x}] \ge 3/4.$$

- RP ⊆ PP ⊆ EXP
- · One can show:
 - May replace ≥ by >.
 - May replace 3/4 by 1/2.
 - PP = coPP
- PP: " $x \in L$ iff x is accepted by a majority"
 - If $x \notin L$, then x is not accepted by a majority (\neq a majority rejects x!)
- Next: PP is at least as untractable as NP.

Theorem

NP ⊆ PP

- Assume TM M(x, u) for $L \in \mathbb{NP}$ uses certificates u of length p(|x|).
- Consider TM N(x, w) with |w| = p(|x|) + 2:
 - If w = 00u, define N(x, w) := M(x, u).
 - Else N(x, w) = 1 iff $w \neq 11...1$.

Theorem

NP ⊆ PP

- Assume TM M(x, u) for $L \in \mathbb{NP}$ uses certificates u of length p(|x|).
- Consider TM N(x, w) with |w| = p(|x|) + 2:
 - If w = 00u, define N(x, w) := M(x, u).
 - Else N(x, w) = 1 iff $w \neq 11...1$.
- Choose w uniformly on $\{0, 1\}^{p(|x|)+2}$ at random:
 - If $x \in L$: $Pr[A_{N,x}] \ge$
 - If $x \notin L$: $Pr[A_{N,x}] =$

Theorem

NP ⊆ PP

- Assume TM M(x, u) for $L \in \mathbb{NP}$ uses certificates u of length p(|x|).
- Consider TM N(x, w) with |w| = p(|x|) + 2:
 - If w = 00u, define N(x, w) := M(x, u).
 - Else N(x, w) = 1 iff $w \neq 11...1$.
- Choose w uniformly on $\{0,1\}^{p(|x|)+2}$ at random:
 - If $x \in L$: $Pr[A_{N,x}] \ge 3/4 2^{-p(|x|)-2} + 2^{-p(|x|)-2} = 3/4$
 - If $x \notin L$: $Pr[A_{N,x}] =$

2:

Theorem

NP ⊆ PP

- Assume TM M(x, u) for $L \in \mathbb{NP}$ uses certificates u of length p(|x|).
- Consider TM N(x, w) with |w| = p(|x|) + 2:
 - If w = 00u, define N(x, w) := M(x, u).
 - Else N(x, w) = 1 iff $w \neq 11...1$.
- Choose w uniformly on $\{0, 1\}^{p(|x|)+2}$ at random:
 - If $x \in L$: $Pr[A_{N,x}] \ge 3/4 2^{-p(|x|)-2} + 2^{-p(|x|)-2} = 3/4$
 - If $x \notin L$: $Pr[A_{N,x}] = 3/4 2^{-p(|x|)-2} < 3/4$

- By the previous result:
 - PP does not seem to capture realistic computation.

- By the previous result:
 - PP does not seem to capture realistic computation.
- Proof relied on the dependency of the two error bounds:
 - · We traded one-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 2^{-p(|x|)}$$
 and $x \notin L \Rightarrow \Pr[A_{M,x}] = 0$

for two-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] < 3/4$$

by adding enough accept-certificates, i.e.,

- · By the previous result:
 - PP does not seem to capture realistic computation.
- Proof relied on the dependency of the two error bounds:
 - · We traded one-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 2^{-p(|x|)}$$
 and $x \notin L \Rightarrow \Pr[A_{M,x}] = 0$

for two-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] < 3/4$$

by adding enough accept-certificates, i.e.,

- we increased the probability for false positives,
- while decreasing the probability for false negatives.

- By the previous result:
 - PP does not seem to capture realistic computation.
- Proof relied on the dependency of the two error bounds:
 - · We traded one-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 2^{-p(|x|)}$$
 and $x \notin L \Rightarrow \Pr[A_{M,x}] = 0$

for two-sided error probability

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[A_{M,x}] < 3/4$$

by adding enough accept-certificates, i.e.,

- we increased the probability for false positives,
- while decreasing the probability for false negatives.
- Possible fix:
 - Require bounds on both error probabilities.
 - · "Bounded error probability of error"-P

Definition (BPP)

 $L \in \mathbf{BPP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

- $RP \subseteq BPP = coBPP \subseteq PP$
 - Reminder: if $L \in PP$, then $x \notin L \Rightarrow Pr[A_{M,x}] < 3/4$.

Definition (BPP)

 $L \in \mathbf{BPP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

- $RP \subseteq BPP = coBPP \subseteq PP$
 - Reminder: if $L \in PP$, then $x \notin L \Rightarrow Pr[A_{M,x}] < 3/4$.
- Two-sided error probabilities:
 - False negatives: If $x \in L$, then $Pr[R_{M,x}] \le 1/4$.
 - False positives: If $x \notin L$, then $Pr[A_{M,x}] \le 1/4$.
 - Outputs: probably, $x \in L$ and probably, $x \notin L$.
 - Error reduction to 2⁻ⁿ by rerunning (later).

Definition (BPP)

 $L \in \mathbf{BPP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x, u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

- $RP \subseteq BPP = coBPP \subseteq PP$
 - Reminder: if $L \in PP$, then $x \notin L \Rightarrow Pr[A_{M,x}] < 3/4$.
- Two-sided error probabilities:
 - False negatives: If $x \in L$, then $Pr[R_{M,x}] \le 1/4$.
 - False positives: If $x \notin L$, then $Pr[A_{M,x}] \le 1/4$.
 - Outputs: probably, $x \in L$ and probably, $x \notin L$.
 - Error reduction to 2⁻ⁿ by rerunning (later).
- It is unknown whether BPP = NP or even BPP = P!
 - Under some non-trivial but "very reasonable" assumptions: BPP = P!

Definition (BPP)

 $L \in \mathsf{BPP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M(x,u) using certificates u of length |u| = p(|x|) such that for every $x \in \{0,1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

- $RP \subseteq BPP = coBPP \subseteq PP$
 - Reminder: if $L \in PP$, then $x \notin L \Rightarrow Pr[A_{M,x}] < 3/4$.
- Two-sided error probabilities:
 - False negatives: If $x \in L$, then $Pr[R_{M,x}] \le 1/4$.
 - False positives: If $x \notin L$, then $Pr[A_{M,x}] \le 1/4$.
 - Outputs: probably, $x \in L$ and probably, $x \notin L$.
 - Error reduction to 2⁻ⁿ by rerunning (later).
- It is unknown whether BPP = NP or even BPP = P!
 - Under some non-trivial but "very reasonable" assumptions: BPP = P!
- BPP = "most comprehensive, yet plausible notion of realistic computation" (Papadimitriou p. 259)

Agenda

- Motivation: From NP to a more realistic class by randomization √
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives ✓
 - Comparison: NP, RP, coRP, ZPP, BPP, PP
 - Probabilistic Turing machines
 - Expected running time
 - Error reduction for BPP
 - Some kind of derandomization for BPP
 - BPP in the polynomial hierarchy

• *L* ∈ **NP**:

- if $x \in L$: at least one •
- if *x* ∉ *L*: all •

• *L* ∈ **NP**:

- if $x \in L$: at least one •
- if *x* ∉ *L*: all •

• *L* ∈ **RP**:

- if $x \in L$: at least 75% •
- if *x* ∉ *L*: all •

• *L* ∈ **RP**:

- if $x \in L$: at least 75% •
- if *x* ∉ *L*: all •

• *L* ∈ coRP:

- if $x \in L$: all •
- if *x* ∉ *L*: at least 75% •

• *L* ∈ coRP:

- if $x \in L$: all •
- if *x* ∉ *L*: at least 75% •

L ∈ ZPP:

- if $x \in L$: no •
- if *x* ∉ *L*: no •

• *L* ∈ **ZPP**:

- if $x \in L$: no •
- if *x* ∉ *L*: no •

• *L* ∈ **BPP**:

- if $x \in L$: at least 75% •
- if *x* ∉ *L*: at least 75% •

• *L* ∈ BPP:

- if $x \in L$: at least 75% •
- if *x* ∉ *L*: at least 75% •

L ∈ PP:

- if $x \in L$: at least 75% •
- if *x* ∉ *L*: less than 75% •

• *L* ∈ **PP**:

- if $x \in L$: at least 75% •
- if *x* ∉ *L*: less than 75% •

Agenda

- Motivation: From NP to a more realistic class by randomization ✓
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives ✓
 - Comparison: NP, RP, coRP, ZPP, BPP, PP √
 - Probabilistic Turing machines
 - Expected running time
 - Error reduction for BPP
 - Some kind of derandomization for BPP
 - BPP in the polynomial hierarchy

Definition (PTM)

We obtain from an NDTM $M = (\Gamma, Q, \delta_1, \delta_2)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of M on x of length exactly I occurs with probability 2^{-I} .

A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if M halts on x within at most T(|x|) steps regardless of the random choices it makes.

Definition (PTM)

We obtain from an NDTM $M = (\Gamma, Q, \delta_1, \delta_2)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of M on x of length exactly l occurs with probability 2^{-l} .

A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if M halts on x within at most T(|x|) steps regardless of the random choices it makes.

Corollary

 $L \in \mathbb{RP}$ iff there is a poly-time PTM M s.t. for all $x \in \{0, 1\}^*$:

$$x \in L \Rightarrow Pr[M(x) = 1] \ge 3/4$$
 and $x \notin L \Rightarrow Pr[M(x) = 1] = 0$.

Definition (PTM)

We obtain from an NDTM $M = (\Gamma, Q, \delta_1, \delta_2)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of M on x of length exactly I occurs with probability 2^{-I} .

A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if M halts on x within at most T(|x|) steps regardless of the random choices it makes.

Corollary

 $L \in \mathbf{coRP}$ iff there is a poly-time PTM M s.t. for all $x \in \{0, 1\}^*$:

$$x \in L \Rightarrow Pr[M(x) = 1] = 1$$
 and $x \notin L \Rightarrow Pr[M(x) = 1] \le 1/4$.

Definition (PTM)

We obtain from an NDTM $M = (\Gamma, Q, \delta_1, \delta_2)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of M on x of length exactly I occurs with probability 2^{-I} .

A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if M halts on x within at most T(|x|) steps regardless of the random choices it makes.

Corollary

 $L \in BPP$ iff there is a poly-time PTM M s.t. for all $x \in \{0, 1\}^*$:

$$x \in L \Rightarrow Pr[M(x) = 1] \ge 3/4$$
 and $x \notin L \Rightarrow Pr[M(x) = 1] \le 1/4$.

Definition (PTM)

We obtain from an NDTM $M = (\Gamma, Q, \delta_1, \delta_2)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of M on x of length exactly I occurs with probability 2^{-I} .

A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if M halts on x within at most T(|x|) steps regardless of the random choices it makes.

Corollary

 $L \in PP$ iff there is a poly-time PTM M s.t. for all $x \in \{0, 1\}^*$:

$$x \in L \Rightarrow Pr[M(x) = 1] \ge 3/4$$
 and $x \notin L \Rightarrow Pr[M(x) = 1] < 3/4$.

Agenda

- Motivation: From NP to a more realistic class by randomization √
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives ✓
 - Comparison: NP, RP, coRP, ZPP, BPP, PP√
 - Probabilistic Turing machines√
 - Expected running time
 - Error reduction for BPP
 - Some kind of derandomization for BPP
 - BPP in the polynomial hierarchy

Expected vs. Exact Running Time

- Recall: if L ∈ ZPP
 - RP-algorithms for L and \overline{L} .
 - Rerun both algorithms on x until one outputs yes.
 - This decides *L* in expected polynomial time.
 - · But might run infinitely long in the worst case.
- So, is expected time more powerful than exact time?

Definition (Expected running time of a PTM)

For a PTM M let $T_{M,x}$ be the random variable that counts the steps of a computation of M on x, i.e., $\Pr[T_{M,x} \le t]$ is the probability that M halts on x within at most t steps.

We say that *M* runs in expected time T(n) if $\mathbb{E}[T_{M,x}] \leq T(|x|)$ for every x.

Definition (Expected running time of a PTM)

For a PTM M let $T_{M,x}$ be the random variable that counts the steps of a computation of M on x, i.e., $\Pr[T_{M,x} \le t]$ is the probability that M halts on x within at most t steps.

We say that *M* runs in expected time T(n) if $\mathbb{E}[T_{M,x}] \leq T(|x|)$ for every *x*.

· Possibly infinite runs.

Definition (Expected running time of a PTM)

For a PTM M let $T_{M,x}$ be the random variable that counts the steps of a computation of M on x, i.e., $\Pr[T_{M,x} \le t]$ is the probability that M halts on x within at most t steps.

We say that M runs in expected time T(n) if $\mathbb{E}[T_{M,x}] \leq T(|x|)$ for every x.

- Possibly infinite runs.
- So, certificates would need to be unbounded.

Definition (Expected running time of a PTM)

For a PTM M let $T_{M,x}$ be the random variable that counts the steps of a computation of M on x, i.e., $\Pr[T_{M,x} \le t]$ is the probability that M halts on x within at most t steps.

We say that *M* runs in expected time T(n) if $\mathbb{E}[T_{M,x}] \leq T(|x|)$ for every x.

- · Possibly infinite runs.
- So, certificates would need to be unbounded.

Definition (BPeP)

A language L is in BPeP if there is a polynomial $T: \mathbb{N} \to \mathbb{N}$ and a PTM M such that for every $x \in \{0, 1\}^*$:

$$x \in L \Rightarrow \Pr[M(x) = 1] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[M(x) = 0] \ge 3/4$$

and $\mathbb{E}[T_{M,x}] \le T(|x|)$.

- Assume L ∈ BPeP.
 - PTM *M* deciding *L* within expected running time T(n).

- Assume L ∈ BPeP.
 - PTM M deciding L within expected running time T(n).
- Probability that M does more than k steps on input x:

$$\Pr[T_{M,x} \ge k] \le \frac{\mathbb{E}[T_{M,x}]}{k} \le \frac{T(|x|)}{k}$$

by Markov's inequality.

- Assume L ∈ BPeP.
 - PTM M deciding L within expected running time T(n).
- Probability that M does more than k steps on input x:

$$\Pr[T_{M,x} \ge k] \le \frac{\mathbb{E}[T_{M,x}]}{k} \le \frac{T(|x|)}{k}$$

by Markov's inequality.

• So, for k = 10T(|x|) (polynomial in |x|):

$$\Pr\left[T_{M,x} \ge 10T(|x|)\right] \le 0.1$$

for every input x.

- New algorithm M
 - Simulate M for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of M.
 - Otherwise, choose reply uniformly at random.

- New algorithm M
 - Simulate M for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of M.
 - Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.

- New algorithm M
 - Simulate M for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of M.
 - Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
 - Assume $x \in L$.
 - If simulation halts:
 - Otherwise:

- New algorithm M
 - Simulate M for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of M.
 - Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
 - Assume $x \in L$.
 - If simulation halts: ≤ 1/4
 - · Otherwise:

- New algorithm M
 - Simulate M for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of M.
 - Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
 - Assume $x \in L$.
 - If simulation halts: ≤ 1/4
 - Otherwise: = 1/2

- New algorithm M
 - Simulate M for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of M.
 - · Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
 - Assume $x \in L$.
 - If simulation halts: ≤ 1/4
 - Otherwise: = 1/2
 - In total: $1/4 \cdot \underbrace{\Pr[T_{M,x} \le 10T(|x|)]}_{\le 1} + 1/2 \cdot \underbrace{(1 \Pr[T_{M,x} \le 10T(|x|)])}_{\le 0.1} \le 0.3$

- New algorithm M
 - Simulate M for at most 10T(|x|) steps.
 - If simulation terminates, forward the reply of M.
 - Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
 - Assume x ∈ L.
 - If simulation halts: ≤ 1/4
 - Otherwise: = 1/2
 - In total: $1/4 \cdot \underbrace{\Pr[T_{M,x} \le 10T(|x|)]}_{<1} + 1/2 \cdot \underbrace{(1 \Pr[T_{M,x} \le 10T(|x|)])}_{<0.1} \le 0.3$

Lemma

$$BPP = BPeP$$

Lemma

 $L \in ZPP$ iff L is decided by some PTM in expected polynomial time.

Agenda

- Motivation: From NP to a more realistic class by randomization ✓
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives ✓
 - Comparison: NP, RP, coRP, ZPP, BPP, PP√
 - Probabilistic Turing machines√
 - Expected running time√
 - Error reduction for BPP
 - Some kind of derandomization for BPP
 - BPP in the polynomial hierarchy

Error reduction

- Consider: L ∈ RP:
 - Probability for error after *r* reruns:
 - if $x \notin L$: = 0
 - if $x \in L$: $\leq 4^{-r}$, i.e., *r*-times probably, $x \notin L$.

Error reduction

- Consider: L ∈ RP:
 - Probability for error after *r* reruns:
 - if $x \notin L := 0$
 - if $x \in L$: $\leq 4^{-r}$, i.e., r-times probably, $x \notin L$.
- Similarly for $L \in \mathbf{coRP}$ and $L \in \mathbf{ZPP}$.

Error reduction

- Consider: L ∈ RP:
 - Probability for error after r reruns:
 - if $x \notin L := 0$
 - if $x \in L$: $\leq 4^{-r}$, i.e., r-times probably, $x \notin L$.
- Similarly for $L \in coRP$ and $L \in ZPP$.
- What if L ∈ BPP?
 - We cannot wait for a yes
 - Instead use the majority.

Error reduction for BPP

Definition (BPP(f))

Let $f : \mathbb{N} \to \mathbb{Q}$ be a function.

 $L \in \mathbf{BPP}(f)$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M such that for every $x \in \{0, 1\}^*$

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge f(|x|) \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge f(|x|).$$

Theorem (Error reduction for BPP)

For any c > 0:

$$\mathbf{BPP} = \mathbf{BPP}(1/2 + n^{-c})$$

• The longer the input, the less dominant the "majority" has to be.

Error reduction for BPP (Proof)

- Assume $L \in BPP$, and
- Choose any c > 0.

Error reduction for BPP (Proof)

- Assume L ∈ BPP, and
- Choose any c > 0.
- There exists certainly an n_0 s.t. for all $n \ge n_0$:

$$1/2 + n^{-c} \le 3/4$$
.

Error reduction for BPP (Proof)

- Assume L ∈ BPP, and
- Choose any c > 0.
- There exists certainly an n_0 s.t. for all $n \ge n_0$:

$$1/2 + n^{-c} \le 3/4$$
.

• So: $L \cap \{0, 1\}^{\geq n_0} \in BPP(1/2 + n^{-c}).$

- Assume L ∈ BPP, and
- Choose any c > 0.
- There exists certainly an n_0 s.t. for all $n \ge n_0$:

$$1/2 + n^{-c} \le 3/4$$
.

- So: $L \cap \{0, 1\}^{\geq n_0} \in \mathbf{BPP}(1/2 + n^{-c}).$
- Thus, BPP $(1/2 + n^{-c})$ -algorithm for L:
 - If $|x| < n_0$, decide $x \in L$ in P (error prob. = 0)
 - Else run BPP-algorithm (error prob. ≤ 1/4)

• Let $L \in BPP(1/2 + n^{-c})$ for some c > 0.

- Let $L \in BPP(1/2 + n^{-c})$ for some c > 0.
- Run $1/2 + n^{-c}$ -algorithm *r*-times on input *x*:
 - Outputs: $y = y_1 y_2 y_3 \dots y_r$
 - with $y_i \in \{0, 1\}$ and $y_i = 1$ if output probably, $x \in L$
 - $Y_1 = \sum_{i=1}^r y_i$ number of 1s
 - $Y_0 = r Y_1$ number of 0s

- Let $L \in BPP(1/2 + n^{-c})$ for some c > 0.
- Run $1/2 + n^{-c}$ -algorithm *r*-times on input *x*:
 - Outputs: $y = y_1 y_2 y_3 \dots y_r$
 - with $y_i \in \{0, 1\}$ and $y_i = 1$ if output probably, $x \in L$
 - $Y_1 = \sum_{i=1}^r y_i$ number of 1s
 - $Y_0 = r Y_1$ number of 0s
- Probability of $y_i = 1$ if $x \in L$, resp. $y_i = 0$ if $x \notin L$:

$$x \in L : \Pr[y_i = 1] \ge 1/2 + |x|^{-c} \text{ resp. } x \notin L : \Pr[y_i = 0] \ge 1/2 + |x|^{-c}$$

(y_i indepedent, Bernoulli distributed RVs)

- Let $L \in BPP(1/2 + n^{-c})$ for some c > 0.
- Run $1/2 + n^{-c}$ -algorithm *r*-times on input *x*:
 - Outputs: $y = y_1 y_2 y_3 \dots y_r$
 - with $y_i \in \{0, 1\}$ and $y_i = 1$ if output probably, $x \in L$
 - $Y_1 = \sum_{i=1}^r y_i$ number of 1s
 - $Y_0 = r Y_1$ number of 0s
- Probability of $y_i = 1$ if $x \in L$, resp. $y_i = 0$ if $x \notin L$:

$$x \in L : \Pr[y_i = 1] \ge 1/2 + |x|^{-c} \text{ resp. } x \notin L : \Pr[y_i = 0] \ge 1/2 + |x|^{-c}$$

(y_i indepedent, Bernoulli distributed RVs)

• Expected number of 1s for $x \in L$, resp. of 0s if $x \notin L$:

$$x \in L : \mathbb{E}[Y_1] \ge r/2 + r|x|^{-c} \text{ resp. } x \notin L : \mathbb{E}[Y_0] \ge r/2 + r|x|^{-c}$$

- Let $L \in BPP(1/2 + n^{-c})$ for some c > 0.
- Run $1/2 + n^{-c}$ -algorithm *r*-times on input *x*:
 - Outputs: $y = y_1 y_2 y_3 \dots y_r$
 - with $y_i \in \{0, 1\}$ and $y_i = 1$ if output probably, $x \in L$
 - $Y_1 = \sum_{i=1}^r y_i$ number of 1s
 - $Y_0 = r Y_1$ number of 0s
- Probability of $y_i = 1$ if $x \in L$, resp. $y_i = 0$ if $x \notin L$:

$$x \in L : \Pr[y_i = 1] \ge 1/2 + |x|^{-c} \text{ resp. } x \notin L : \Pr[y_i = 0] \ge 1/2 + |x|^{-c}$$

(y_i indepedent, Bernoulli distributed RVs)

• Expected number of 1s for $x \in L$, resp. of 0s if $x \notin L$:

$$x \in L : \mathbb{E}[Y_1] \ge r/2 + r|x|^{-c} \text{ resp. } x \notin L : \mathbb{E}[Y_0] \ge r/2 + r|x|^{-c}$$

• Intuitively, for e.g. $r = |x|^{c+d}$ for some $d \in \mathbb{N}$ we get:

$$x \in L : \mathbb{E}[Y_1 - Y_0] \ge 2|x|^d \text{ resp. } x \notin L : \mathbb{E}[Y_0 - Y_1] \ge 2|x|^d$$

i.e., expect significant majority in favor of correct answer.

• Idea: let majority decide, i.e., output $x \in L$ iff $Y_1 > Y_0$.

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_1 > Y_0$.
- Assume $x \in L$ in the following
 - Case *x* ∉ *L* symmetric:
 - set $z_i := 1 y_i$ and consider Y_0 instead of Y_1

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_1 > Y_0$.
- Assume $x \in L$ in the following
 - Case x ∉ L symmetric:
 - set $z_i := 1 y_i$ and consider Y_0 instead of Y_1
- Probability that "majority" wrongly says x ∉ L:

$$\Pr\left[Y_1 \le Y_0\right] = \Pr\left[Y_1 \le r/2\right]$$

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_1 > Y_0$.
- Assume $x \in L$ in the following
 - Case x ∉ L symmetric:
 - set $z_i := 1 y_i$ and consider Y_0 instead of Y_1
- Probability that "majority" wrongly says x ∉ L:

$$\Pr[Y_1 \le Y_0] = \Pr[Y_1 \le r/2]$$

• Chernoff bound: for $X \sim \text{Bin}(n; p)$ with $\mu := \mathbb{E}[X]$ and $\delta \in (0, 1)$

$$\Pr\left[X \le (1 - \delta)\mu\right] \le e^{-\mu\delta^2/2}$$

- Idea: let majority decide, i.e., output x ∈ L iff Y₁ > Y₀.
- Assume $x \in L$ in the following
 - Case x ∉ L symmetric:
 - set $z_i := 1 y_i$ and consider Y_0 instead of Y_1
- Probability that "majority" wrongly says x ∉ L:

$$\Pr\left[Y_1 \le Y_0\right] = \Pr\left[Y_1 \le r/2\right]$$

• Chernoff bound: for $X \sim \text{Bin}(n; p)$ with $\mu := \mathbb{E}[X]$ and $\delta \in (0, 1)$

$$\Pr\left[X \le (1 - \delta)\mu\right] \le e^{-\mu\delta^2/2}$$

Thus:

$$\Pr[Y_1 \le r/2] = \Pr[Y_1 \le (1 - (1 - r/(2\mu)))\mu] \le e^{-\mu\delta^2/2}$$
as long as $\delta := 1 - r/(2\mu) \in (0, 1)$.

• Bounds on $\delta = 1 - r/(2\mu)$:

$$0 < \delta < 1 \Leftrightarrow 0 < r/2 < \mu \Leftarrow r/2 + r|x|^{-c} \le \mu$$

• Thus, choose r s.t.

$$\Pr[Y_1 \le r/2] \le e^{-\mu\delta^2/2} \le 1/4.$$

i.e.,

$$\mu \delta^2 \ge 2 \log_e 4$$
.

With

$$\mu \geq r/2 + r|x|^{-c}$$

we obtain:

$$\mu\delta^{2} = (\mu - r/2)(1 - (r/2)/\mu)^{2} \ge r|x|^{-c}\left(1 - \frac{r/2}{r/2 + r|x|^{-c}}\right)^{2} = r \cdot \frac{|x|^{-3c}}{(1/2 + |x|^{-c})^{2}}$$

• So, choose $r \ge (\log_e 4) \cdot (|x|^{3c}/2 + 2|x|^{2c} + 2|x|^c)$.

For x ∉ L we obtain analogously:

$$\Pr[Y_0 \le Y_1] \le 1/4 \text{ if } r \ge (|x|^{3c}/2 + 2|x|^{2c} + 2|x|^c).$$

- So, a polynomial number of rounds suffices to reduce error probability to at most 1/4.
- Proof also yields:

Theorem (Error reduction for BPP)

For any d > 0:

$$\mathbf{BPP} = \mathbf{BPP}(1 - 2^{-n^d})$$

For x ∉ L we obtain analogously:

$$\Pr[Y_0 \le Y_1] \le 1/4 \text{ if } r \ge (|x|^{3c}/2 + 2|x|^{2c} + 2|x|^c).$$

- So, a polynomial number of rounds suffices to reduce error probability to at most 1/4.
- Proof also yields:

Theorem (Error reduction for BPP)

For any d > 0:

$$\mathbf{BPP} = \mathbf{BPP}(1 - 2^{-n^d})$$

Ex.: Show the theorem.

Agenda

- Motivation: From NP to a more realistic class by randomization √
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives ✓
 - Comparison: NP, RP, coRP, ZPP, BPP, PP√
 - Probabilistic Turing machines√
 - Expected running time√
 - Error reduction for BPP√
 - Some kind of derandomization for BPP
 - BPP in the polynomial hierarchy

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n).

Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n).

Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: BPP = BPP $(1 4^{-n})$
- For a given n let choose $u \in \{0,1\}^{p(n)}$ uniformly at random.

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n).

Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: BPP = BPP $(1 4^{-n})$
- For a given *n* let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let B_x be the event of bad certificates for x:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n).

Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: BPP = BPP $(1 4^{-n})$
- For a given n let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let B_x be the event of bad certificates for x:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

• $Pr[B_x] \leq$

Theorem

Let $L \in BPP$ be decided by a poly-time $TM\ M(x, u)$ using certificates of poly-length p(n).

Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: BPP = BPP $(1 4^{-n})$
- For a given n let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let B_x be the event of bad certificates for x:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

• $Pr[B_x] \le 4^{-n}$

Theorem

Let $L \in BPP$ be decided by a poly-time $TM\ M(x, u)$ using certificates of poly-length p(n).

Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: BPP = BPP $(1 4^{-n})$
- For a given n let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let B_x be the event of bad certificates for x:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

- $Pr[B_x] \le 4^{-n}$
- $\Pr\left[\bigcup_{|x|=n} B_x\right] \le$

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n).

Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: BPP = BPP $(1 4^{-n})$
- For a given *n* let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let B_x be the event of bad certificates for x:

$$B_x := \{u \in \{0, 1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u) = 0\}.$$

- $Pr[B_x] \le 4^{-n}$
- $\Pr\left[\bigcup_{|x|=n} B_x\right] \le \sum_{|x|=n} \Pr\left[B_x\right] \le 2^n \cdot 4^{-n} = 2^{-n}$

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n).

Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: BPP = BPP $(1 4^{-n})$
- For a given n let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let B_x be the event of bad certificates for x:

$$B_x := \{u \in \{0,1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x,u) = 0\}.$$

- $Pr[B_x] \le 4^{-n}$
- $\Pr\left[\bigcup_{|x|=n} B_x\right] \le \sum_{|x|=n} \Pr\left[B_x\right] \le 2^n \cdot 4^{-n} = 2^{-n}$
- $\Pr\left[\bigcap_{|x|=n} \overline{B}_x\right] \ge$

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n).

Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: BPP = BPP $(1 4^{-n})$
- For a given n let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let B_x be the event of bad certificates for x:

$$B_x := \{u \in \{0,1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x,u) = 0\}.$$

- $Pr[B_x] \le 4^{-n}$
- $\Pr\left[\bigcup_{|x|=n} B_x\right] \le \sum_{|x|=n} \Pr\left[B_x\right] \le 2^n \cdot 4^{-n} = 2^{-n}$
- $\Pr\left[\bigcap_{|x|=n} \overline{B}_x\right] \ge 1 2^{-n} > 0$

Theorem

Let $L \in BPP$ be decided by a poly-time TM M(x, u) using certificates of poly-length p(n).

Then for every $n \in \mathbb{N}$ there exists a certificate u_n s.t. for all x with |x| = n:

$$x \in L$$
 iff $M(x, u_n) = 1$.

- Error reduction: BPP = BPP $(1 4^{-n})$
- For a given n let choose $u \in \{0, 1\}^{p(n)}$ uniformly at random.
- Let B_x be the event of bad certificates for x:

$$B_x := \{u \in \{0,1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x,u) = 0\}.$$

- $Pr[B_x] \le 4^{-n}$
- $\Pr\left[\bigcup_{|x|=n} B_x\right] \le \sum_{|x|=n} \Pr\left[B_x\right] \le 2^n \cdot 4^{-n} = 2^{-n}$
- $\Pr\left[\bigcap_{|x|=n} \overline{B}_x\right] \ge 1 2^{-n} > 0$
- · Seems unlikely for NP.

Agenda

- Motivation: From NP to a more realistic class by randomization √
- Randomized poly-time with one-sided error: RP, coRP, ZPP ✓
- Power of randomization with two-sided error: PP, BPP
 - Enlarging RP by false negatives and false positives ✓
 - Comparison: NP, RP, coRP, ZPP, BPP, PP√
 - Probabilistic Turing machines√
 - Expected running time√
 - Error reduction for BPP√
 - Some kind of derandomization for BPP√
 - BPP in the polynomial hierarchy

Theorem

$$BPP\subseteq \Sigma_2^p\cap \Pi_2^p$$

- · Reminder:
 - Definition of L ∈ Σ^p₂:

$$x \in L \text{ iff } \exists u \in \{0,1\}^{p(|x|)} \forall v \in \{0,1\}^{p(|x|)} : M(x,u,v) = 1.$$

Definition of L ∈ Π^p₂:

$$x \in L \text{ iff } \forall u \in \{0,1\}^{p(|x|)} \exists v \in \{0,1\}^{p(|x|)} : M(x,u,v) = 1.$$

Theorem

$$BPP\subseteq \Sigma_2^p\cap \Pi_2^p$$

- · Reminder:
 - Definition of L ∈ Σ^p₂:

$$x \in L \text{ iff } \exists u \in \{0,1\}^{p(|x|)} \forall v \in \{0,1\}^{p(|x|)} : M(x,u,v) = 1.$$

Definition of L ∈ Π^p₂:

$$x \in L \text{ iff } \forall u \in \{0,1\}^{p(|x|)} \exists v \in \{0,1\}^{p(|x|)} : M(x,u,v) = 1.$$

As BPP = coBPP it suffices to show BPP ⊆ Σ₂^p:

$$L \in \mathsf{BPP} \Rightarrow \overline{L} \in \mathsf{BPP} \Rightarrow \overline{L} \in \Sigma_2^p \Rightarrow L \in \Pi_2^p$$

- We use again that $BPP = BPP(1 4^{-n})$.
- Let $p(\cdot)$ be the polynomial bounding the certificate length.
- Recall A_{M,x}: "accept-certificates"

$$A_{M,x} := \{u \in \{0,1\}^{p(|x|)} \mid M(x,u) = 1\}$$

Then

$$x \in L \Rightarrow |A_{M,x}| \ge (1 - 4^{-|x|})2^{p(|x|)}$$
 and $x \notin L \Rightarrow |A_{M,x}| \le 4^{-n} \cdot 2^{p(|x|)}$

Need a formula to distinguish the two cases.

- Assume |x| = 1 and p(|x|) = 3,
- i.e., possible certificates in $\{0,1\}^3$.
- If $x \in L$, then $|A_{M,x}| \ge 3/4 \cdot 2^3 = 6$.
- If $x \notin L$, then $|A_{M,x}| \le 1/4 \cdot 2^3 = 2$.

• Assume $x \notin L$, i.e., $|A_{M,x}| \le 1/4 \cdot 8 = 2$

- Assume $x \notin L$, i.e., $|A_{M,x}| \le 1/4 \cdot 8 = 2$
- Choose any $u_1, u_2 \in \{0, 1\}^3$.

- Assume $x \notin L$, i.e., $|A_{M,x}| \le 1/4 \cdot 8 = 2$
- Choose any $u_1, u_2 \in \{0, 1\}^3$.
- By chance, we might hit $A_{M,x}$.

- Assume $x \notin L$, i.e., $|A_{M,x}| \le 1/4 \cdot 8 = 2$
- Choose any $u_1, u_2 \in \{0, 1\}^3$.
- By chance, we might hit A_{M,x}.
- Claim: But there is some $r \in \{0, 1\}^3$ s.t.

$$\{u_1 \oplus r, u_2 \oplus r\} \cap A_{M,x} = \emptyset.$$

(+: bitwise xor)

Note:

 $u_i \oplus r \in A_{M,x}$ iff $r \in A_{M,x} \oplus u_i$.

Note:

$$u_i \oplus r \in A_{M,x}$$
 iff $r \in A_{M,x} \oplus u_i$.

So, choose

$$r \in \overline{A_{M,x} \oplus u_1 \cup A_{M,x} \oplus u_2} = \overline{\{000,011\} \cup \{101,110\}}.$$

Note:

$$u_i \oplus r \in A_{M,x}$$
 iff $r \in A_{M,x} \oplus u_i$.

So, choose

$$r \in \overline{A_{M,x} \oplus u_1 \cup A_{M,x} \oplus u_2} = \overline{\{000,011\} \cup \{101,110\}}.$$

• E.g. r = 001.

Note:

$$u_i \oplus r \in A_{M,x}$$
 iff $r \in A_{M,x} \oplus u_i$.

So, choose

$$r \in \overline{A_{M,x} \oplus u_1 \cup A_{M,x} \oplus u_2} = \overline{\{000,011\} \cup \{101,110\}}.$$

• E.g. r = 001.

• Assume $x \in L$, i.e., $|A_{M,x}| \ge 6$.

- Assume $x \in L$, i.e., $|A_{M,x}| \ge 6$.
- Claim: We can choose u_1, u_2 s.t. for any $r \in \{0, 1\}^3$

$$\{u_1\oplus r,u_2\oplus r\}\cap A_{M,x}\neq\emptyset.$$

Note: this is exactly the negation of the previous claim.

• E.g., take $u_1 = 000$.

- E.g., take $u_1 = 000$.
- Then $u_1 \oplus r \in R_{M,x}$ iff $r \in u_1 \oplus R_{M,x} = \{100, 110\}.$

- E.g., take $u_1 = 000$.
- Then $u_1 \oplus r \in R_{M,x}$ iff $r \in u_1 \oplus R_{M,x} = \{100, 110\}.$
- So, take $u_2 \notin 100 \oplus R_{M,x} \cup 110 \oplus R_{M,x}$.

- E.g., take $u_1 = 000$.
- Then $u_1 \oplus r \in R_{M,x}$ iff $r \in u_1 \oplus R_{M,x} = \{100, 110\}.$
- So, take $u_2 \notin 100 \oplus R_{M,x} \cup 110 \oplus R_{M,x}$.

- E.g., take $u_1 = 000$.
- Then $u_1 \oplus r \in R_{M,x}$ iff $r \in u_1 \oplus R_{M,x} = \{100, 110\}.$
- So, take $u_2 \notin 100 \oplus R_{M,x} \cup 110 \oplus R_{M,x}$.
- E.g., $u_2 = 011$.

• Summary:

$$x \in L \cap \{0,1\}^1 \text{ iff } \exists u_1, u_2 \in \{0,1\}^3 \forall r \in \{0,1\}^3 \ : \ \bigvee_{i=1,2} u_i \oplus r \in A_{M,x}.$$

Reminder: $u_i \oplus r \in A_{M,x}$ iff $M(x, u_i \oplus r) = 1$.

Summary:

$$x \in L \cap \{0,1\}^1 \text{ iff } \exists u_1, u_2 \in \{0,1\}^3 \forall r \in \{0,1\}^3 : \bigvee_{i=1,2} u_i \oplus r \in A_{M,x}.$$

Reminder: $u_i \oplus r \in A_{M,x}$ iff $M(x, u_i \oplus r) = 1$.

- So, this is in Σ^p₂.
- And works also for |x| > 1 and arbitrary p(|x|).

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$$

- Note, the certificate $u_1 u_2 \dots u_k$ has length polynomial in |x|.
- So, this formula represents a computation in Σ^p₂.

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$$

Assume x ∉ L: To show there is always an r s.t.

$$\bigwedge_{i=1}^k r \oplus u_i \notin A_{M,x} \equiv r \notin \bigcup_{i=1}^k u_i \oplus A_{M,x}.$$

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$$

Assume x ∉ L: To show there is always an r s.t.

$$\bigwedge_{i=1}^k r \oplus u_i \notin A_{M,x} \equiv r \notin \bigcup_{i=1}^k u_i \oplus A_{M,x}.$$

· Size of the complement of this set:

$$\left| \bigcup_{i=1}^k u_i \oplus A_{M,x} \right| \leq \sum_{i=1}^k \left| u_i \oplus A_{M,x} \right| = k \left| A_{M,x} \right| \leq k 4^{-|x|} 2^{p(|x|)} < 2^{p(|x|)}.$$

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$$

Assume x ∉ L: To show there is always an r s.t.

$$\bigwedge_{i=1}^k r \oplus u_i \notin A_{M,x} \equiv r \notin \bigcup_{i=1}^k u_i \oplus A_{M,x}.$$

Size of the complement of this set:

$$\left| \bigcup_{i=1}^k u_i \oplus A_{M,x} \right| \leq \sum_{i=1}^k \left| u_i \oplus A_{M,x} \right| = k \left| A_{M,x} \right| \leq k4^{-|x|} 2^{p(|x|)} < 2^{p(|x|)}.$$

• So, this set cannot be empty no matter how we choose u_1, \ldots, u_k .

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$$

• Assume $x \in L$: To show there are u_1, \ldots, u_k s.t.

$$\forall r: \bigvee_{i=1}^k u_i \oplus r \in A_{M,x} \equiv \neg \exists r: \bigwedge_{i=1}^k u_i \in r \oplus R_{M,x}.$$

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$$

• Assume $x \in L$: To show there are u_1, \ldots, u_k s.t.

$$\forall r: \bigvee_{i=1}^k u_i \oplus r \in A_{M,x} \equiv \neg \exists r: \bigwedge_{i=1}^k u_i \in r \oplus R_{M,x}.$$

• Let U_1, \ldots, U_k be independent random variables, uniformly distributed on $\{0, 1\}^{p(|x|)}$. (Doesn't matter if some coincide!)

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$$

• Assume $x \in L$: To show there are u_1, \ldots, u_k s.t.

$$\forall r: \bigvee_{i=1}^k u_i \oplus r \in A_{M,x} \equiv \neg \exists r: \bigwedge_{i=1}^k u_i \in r \oplus R_{M,x}.$$

- Let U_1, \ldots, U_k be independent random variables, uniformly distributed on $\{0, 1\}^{p(|x|)}$. (Doesn't matter if some coincide!)
- For any given r: $\Pr[U_i \in r \oplus R_{M,x}] = \frac{|r \oplus R_{M,x}|}{2^{p(|x|)}} = \frac{|R_{M,x}|}{2^{p(|x|)}} \le 4^{-n}$.

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$$

• Assume $x \in L$: To show there are u_1, \ldots, u_k s.t.

$$\forall r: \bigvee_{i=1}^k u_i \oplus r \in A_{M,x} \equiv \neg \exists r: \bigwedge_{i=1}^k u_i \in r \oplus R_{M,x}.$$

- Let U_1, \ldots, U_k be independent random variables, uniformly distributed on $\{0, 1\}^{p(|x|)}$. (Doesn't matter if some coincide!)
- For any given r: $\Pr[U_i \in r \oplus R_{M,x}] = \frac{|r \oplus R_{M,x}|}{2^{p(|x|)}} = \frac{|R_{M,x}|}{2^{p(|x|)}} \le 4^{-n}$.
- $\Pr\left[\bigwedge_{i=1}^k U_i \in r \oplus R_{M,x}\right] = \Pr\left[U_1 \in r \oplus R_{M,x}\right]^k \le 4^{-kn}$.

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$$

• Assume $x \in L$: To show there are u_1, \ldots, u_k s.t.

$$\forall r: \bigvee_{i=1}^k u_i \oplus r \in A_{M,x} \equiv \neg \exists r: \bigwedge_{i=1}^k u_i \in r \oplus R_{M,x}.$$

- Let U_1, \ldots, U_k be independent random variables, uniformly distributed on $\{0, 1\}^{p(|x|)}$. (Doesn't matter if some coincide!)
- For any given r: $\Pr[U_i \in r \oplus R_{M,x}] = \frac{|r \oplus R_{M,x}|}{2^{o(|x|)}} = \frac{|R_{M,x}|}{2^{o(|x|)}} \le 4^{-n}$.
- $\Pr\left[\bigwedge_{i=1}^k U_i \in r \oplus R_{M,x}\right] = \Pr\left[U_1 \in r \oplus R_{M,x}\right]^k \le 4^{-kn}$.
- $\Pr\left[\exists r : \bigwedge_{i=1}^k U_i \in r \oplus R_{M,x}\right] \le \sum_{r \in \{0,1\}^*} 4^{-kn} = 2^{p(|x|)-2kn} < 1.$

Claim:

Given x set $k := \lceil p(|x|)/|x| \rceil + 1$. Then:

$$x \in L \text{ iff } \exists u_1, \dots, u_k \in \{0, 1\}^{p(|x|)} \forall r \in \{0, 1\}^{p(|x|)} : \bigvee_{i=1}^k M(x, u_i \oplus r) = 1.$$

- For both cases there is an n_0 s.t. the bounds hold for all x with $|x| > n_0$.
- $L \cap \{0, 1\}^{\leq n_0}$ can be decided trivially in P.

- Obtain RP from NP by
 - · choosing the certificate (transition function) uniformaly at random
 - requiring a bound on $Pr[A_{M,x}]$ if $x \in L$ s.t.
 - error prob. can be reduced within a polynomial number of reruns.

- Obtain RP from NP by
 - choosing the certificate (transition function) uniformaly at random
 - requiring a bound on $Pr[A_{M,x}]$ if $x \in L$ s.t.
 - error prob. can be reduced within a polynomial number of reruns.
- One-sided probability of error:
 - RP: false negatives
 - coRP: false postives
 - Monte Carlo algorithms: ZEROP ∈ coRP, perfect matchings ∈ RP

- Obtain RP from NP by
 - choosing the certificate (transition function) uniformaly at random
 - requiring a bound on $Pr[A_{M,x}]$ if $x \in L$ s.t.
 - error prob. can be reduced within a polynomial number of reruns.
- One-sided probability of error:
 - RP: false negatives
 - coRP: false postives
 - Monte Carlo algorithms: ZEROP ∈ coRP, perfect matchings ∈ RP
- ZPP := RP ∩ coRP can be decided in expected polynomial time
 - Zero probability of error (if we wait for the definitive answer)
 - Las Vegas algorithms

- Obtained PP from RP by
 - · allowing also for false positives
 - Error probabilities depend on each other: $\leq 1/4$ and < 1 1/4
 - NP ⊆ PP: "PP allows for trading one error prob. for the other"

- Obtained PP from RP by
 - allowing also for false positives
 - Error probabilities depend on each other: ≤ 1/4 and < 1 1/4
 - NP ⊆ PP: "PP allows for trading one error prob. for the other"
- Obtained BPP from PP by
 - bounding both error prob. independently of each other.
 - Papadimitriou: "most comprehensive, yet plausible notion of realistic computation"
 - Conjecture: BPP = P
 - Expected running time as powerful as exact running time.
 - One certificate u_n for all x with |x| = n.
 - Error reduction to 2^{-n^k} within a polynomial number of reruns.

- $\Pi_2^p \cap \Sigma_2^p \subseteq PP$ unknown.
- NP \cup coNP \subseteq PP known.

- Gödel Prize (1998) for Toda's theorem (1989): PH ⊆ PPP
 - PPP: poly-time TMs having access to a PP-oracle.
 - If $PP \subseteq \Sigma_k^p$ for some k, then $PH = \Sigma_k^p$.
 - If PP

 PH, then PH collapses at some finite level as PP has complete problems (see exercises).

Syntactic and Semantic Complexity Classes

- Just mentioned: PP has complete probems
 - $\phi \in \text{MAJSAT}$ iff at least $2^{n-1} + 1$ satisfying assignments of 2^n possible (see exercises).
- Unknown if there are complete problems for ZPP, RP, BPP.

5:

Syntactic and Semantic Complexity Classes

- Just mentioned: PP has complete probems
 - $\phi \in \text{MAJSAT}$ iff at least $2^{n-1} + 1$ satisfying assignments of 2^n possible (see exercises).
- Unknown if there are complete problems for ZPP, RP, BPP.
- Reason to believe that there are none:
 - P, NP, coNP are syntatic complexity classes (complete problems).
 - ZPP, RP, coRP, BPP are semantic complexity classes.
- Example:
 - NP:

$$x \in L \Leftrightarrow \Pr[A_{M,x}] > 0.$$

Every poly-time TM M(x, u) defines a language in NP.

• BPP:

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

Not every poly-time TM M(x, u) defines a language in BPP.

Syntactic and Semantic Complexity Classes

- Just mentioned: PP has complete probems
 - $\phi \in \text{MAJSAT}$ iff at least $2^{n-1} + 1$ satisfying assignments of 2^n possible (see exercises).
- Unknown if there are complete problems for ZPP, RP, BPP.
- Reason to believe that there are none:
 - P, NP, coNP are syntatic complexity classes (complete problems).
 - ZPP, RP, coRP, BPP are semantic complexity classes.
- Example:
 - NP:

$$x \in L \Leftrightarrow \Pr[A_{M,x}] > 0.$$

Every poly-time TM M(x, u) defines a language in NP.

• BPP:

$$x \in L \Rightarrow \Pr[A_{M,x}] \ge 3/4 \text{ and } x \notin L \Rightarrow \Pr[R_{M,x}] \ge 3/4.$$

Not every poly-time TM M(x, u) defines a language in BPP.

Ex.: What about PP?

Definition

For a poly-time M(x, u) using certificates $u \in \{0, 1\}^{p(|x|)}$ set

$$L_M(x) := y_0 y_1 \dots y_{2^{p(|x|)}-1}$$
 with $y_i = M(x, u_i)$ and $(u_i)_2 = i$

The leaf-language of M is then $L_M := \{L_M(x) \mid x \in \{0, 1\}^*\}.$

Definition (cont'd)

For $A, R \subseteq \{0, 1\}^*$ with $A \cap R = \emptyset$ the class $\mathbb{C}[A, R]$ consists of all language L for which there is a TM M(x, u) s.t. $\forall x \in \{0, 1\}^*$:

$$x \in L \Rightarrow L_M(x) \in A \text{ and } x \notin L \Rightarrow L_M(x) \in R.$$

Definition (cont'd)

C[A, R] is called syntactic if $A \cup R = \{0, 1\}^*$, otherwise it is called semantic.

• NP =
$$C[(0+1)^*1(0+1)^*, 0^*]$$

•
$$NP = C[(0+1)^*1(0+1)^*, 0^*]$$

- NP = $C[(0+1)^*1(0+1)^*, 0^*]$
- **RP** = **C**[{ $w \in \{0, 1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, 0^*$]

- NP = $C[(0+1)^*1(0+1)^*, 0^*]$
- **RP** = **C**[{ $w \in \{0, 1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, 0^*$]

- NP = $C[(0+1)^*1(0+1)^*, 0^*]$
- **RP** = **C**[{ $w \in \{0, 1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, 0^*$]
- **PP** = $C[\{w \in \{0, 1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, \{w \in \{0, 1\}^* \mid \frac{\#_1 w}{\#_0 w} < 3\}]$

- NP = $C[(0+1)^*1(0+1)^*, 0^*]$
- **RP** = **C**[{ $w \in \{0, 1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, 0^*$]
- **PP** = $C[\{w \in \{0, 1\}^* \mid \frac{\#_1 w}{\#_0 w} \ge 3\}, \{w \in \{0, 1\}^* \mid \frac{\#_1 w}{\#_0 w} < 3\}]$

• What about P?

- What about P?
- $P = C[1(0+1)^*, 0(0+1)^*].$

- What about P?
- $P = C[1(0+1)^*, 0(0+1)^*].$

- What about P?
- $P = C[1(0+1)^*, 0(0+1)^*].$
- Certificate 0...0 can always be used (compare this to BPP)