Complexity Theory

Jan Křetínský

Based on slides by Michael Luttenberger

Technical University of Munich
Summer 2019

May 28, 2019

Lecture 12-13

Randomization and Polynomial Time

"Realistic computation somewhere between P and NP"

Agenda

- Motivation: From NP to a more realistic class by randomization
- Choosing the certificate at random
- Error reduction by rerunning
- Randomized poly-time with one-sided error: RP, coRP, ZPP
- Power of randomization with two-sided error: PP, BPP

Recap P

Definition (P)

For every $L \subseteq\{0,1\}^{*}$:
$L \in P$ if there is a poly-time TM M such that for every $x \in\{0,1\}^{*}$:

$$
x \in L \Leftrightarrow M(x)=1 .
$$

- "poly-time TM M":
- M deterministic
- M outputs $\{0,1\}$
- There is a polynomial $T(n)$ s.t. M halts on every x within $T(|x|)$ steps.
- Problems in P are deemed "tractable".

Recap NP

Theorem (Certificates)

For every $L \subseteq\{0,1\}^{*}$:
$L \in N P$ if and only if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a poly-time TM M such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)}: M(x, u)=1
$$

- Certificate u : satisfying assignment, independent set, 3-coloring, etc.
- NP captures the class of possibly (not) tractable computations:
- Don't know how to compute u in poly-time, but
- if there is a u, then $|u|$ is polynomial in $|x|$, and
- we can check in poly-time if $a u$ is a certificate/solution.

Recap NP

Theorem (Certificates)

For every $L \subseteq\{0,1\}^{*}$:
$L \in \mathbb{N P}$ if and only if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a poly-time TM M such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)}: M(x, u)=1
$$

- Certificate u : satisfying assignment, independent set, 3-coloring, etc.
- NP captures the class of possibly (not) tractable computations:
- Don't know how to compute u in poly-time, but
- if there is a u, then $|u|$ is polynomial in $|x|$, and
- we can check in poly-time if $a u$ is a certificate/solution.
- NDTMs can check all $2^{p(|x|)}$ possible us in parallel.
- Seems unrealistic. Common conjecture: $\mathrm{P} \neq \mathrm{NP}$.

Recap NP

Theorem (Certificates)

For every $L \subseteq\{0,1\}^{*}$:
$L \in N P$ if and only if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a poly-time
TM M such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)}: M(x, u)=1
$$

- Certificate u : satisfying assignment, independent set, 3-coloring, etc.
- NP captures the class of possibly (not) tractable computations:
- Don't know how to compute u in poly-time, but
- if there is a u, then $|u|$ is polynomial in $|x|$, and
- we can check in poly-time if a u is a certificate/solution.
- NDTMs can check all $2^{p(|x|)}$ possible us in parallel.
- Seems unrealistic. Common conjecture: $\mathrm{P} \neq \mathrm{NP}$.
- Goal: Obtain from NP a more realistic class by randomization:

Choose u uniformly at random from $\{0,1\}^{p(|x|)}$.

Randomizing NP

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in N P$ decided by M using certificates u of length $p(\cdot)$:

$$
A_{M, x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid M(x, u)=1\right\} \text { and } R_{M, x}:=\{0,1\}^{p(|x|)} \backslash A_{M, x} .
$$

Randomizing NP

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in N P$ decided by M using certificates u of length $p(\cdot)$:

$$
A_{M, x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid M(x, u)=1\right\} \text { and } R_{M, x}:=\{0,1\}^{p(|x|)} \backslash A_{M, x}
$$

- If we choose $u \in\{0,1\}^{p(|x|)}$ uniformly at random:
- $A_{M, x}$ is the event that u "says accept x ".
- $R_{M, x}$ is the event that u "says reject x ".

Randomizing NP

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in N P$ decided by M using certificates u of length $p(\cdot)$:

$$
A_{M, x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid M(x, u)=1\right\} \text { and } R_{M, x}:=\{0,1\}^{p(|x|)} \backslash A_{M, x} .
$$

- If we choose $u \in\{0,1\}^{p(|x|)}$ uniformly at random:
- $A_{M, x}$ is the event that u "says accept x ".
- $R_{M, x}$ is the event that u "says reject x ".

Definition (Accept/Reject certificates and probabilities (cont'd))

$$
\operatorname{Pr}\left[A_{M, x}\right]:=\frac{\left|A_{M, x}\right|}{2^{p(x \mid)}} \text { and } \operatorname{Pr}\left[R_{M, x}\right]:=\frac{\left|R_{M, x}\right|}{2^{p(x \mid)}}=1-\operatorname{Pr}\left[A_{M, x}\right] .
$$

Randomizing NP

Definition (Accept/Reject certificates and probabilities)

Fix some $L \in N P$ decided by M using certificates u of length $p(\cdot)$:

$$
A_{M, x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid M(x, u)=1\right\} \text { and } R_{M, x}:=\{0,1\}^{p(|x|)} \backslash A_{M, x} .
$$

- If we choose $u \in\{0,1\}^{p(|x|)}$ uniformly at random:
- $A_{M, x}$ is the event that u "says accept x ".
- $R_{M, x}$ is the event that u "says reject x ".

Definition (Accept/Reject certificates and probabilities (cont'd))

$$
\operatorname{Pr}\left[A_{M, x}\right]:=\frac{\left|A_{M, x}\right|}{2^{p(x \mid x)}} \text { and } \operatorname{Pr}\left[R_{M, x}\right]:=\frac{\left|R_{M, x}\right|}{2^{p(x \mid x)}}=1-\operatorname{Pr}\left[A_{M, x}\right] .
$$

$L \in N P$ iff $\forall x \in\{0,1\}^{*}:$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 2^{-p(|x|)} \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=0 .
$$

Randomizing NP: Example SAT

- Input: CNF-formula ϕ with n variables.
- Output: Choose truth assignment $u \in\{0,1\}^{n}$ uniformly at random.
- If u satisfies ϕ, output yes, $\phi \in$ SAT.
- Else, output probably, $\phi \notin$ SAT.
- If output is yes, $\phi \in$ SAT, then we know $\phi \in$ SAT for sure.
- But what if output is probably, $\phi \notin$ SAT?

Randomizing NP: Example SAT

- Input: CNF-formula ϕ with n variables.
- Output: Choose truth assignment $u \in\{0,1\}^{n}$ uniformly at random.
- If u satisfies ϕ, output yes, $\phi \in$ SAT.
- Else, output probably, $\phi \notin$ SAT.
- If output is yes, $\phi \in$ SAT, then we know $\phi \in$ SAT for sure.
- But what if output is probably, $\phi \notin$ SAT?
- Consider $\phi=x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n} \in$ SAT:
- Probability of probably, $\phi \notin S A T: \operatorname{Pr}\left[R_{M, x}\right]=1-2^{-n}$
- Called false negative.

Randomizing NP: Example SAT

- Input: CNF-formula ϕ with n variables.
- Output: Choose truth assignment $u \in\{0,1\}^{n}$ uniformly at random.
- If u satisfies ϕ, output yes, $\phi \in$ SAT.
- Else, output probably, $\phi \notin$ SAT.
- If output is yes, $\phi \in$ SAT, then we know $\phi \in$ SAT for sure.
- But what if output is probably, $\phi \notin$ SAT?
- Consider $\phi=x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n} \in$ SAT:
- Probability of probably, $\phi \notin S A T: \operatorname{Pr}\left[R_{M, x}\right]=1-2^{-n}$
- Called false negative.
- If we run this algorithm r-times, prob. of false negative decreases to: $\left(1-2^{-n}\right)^{r} \approx e^{-r / 2^{n}}$.

Randomizing NP: Example SAT

- Input: CNF-formula ϕ with n variables.
- Output: Choose truth assignment $u \in\{0,1\}^{n}$ uniformly at random.
- If u satisfies ϕ, output yes, $\phi \in$ SAT.
- Else, output probably, $\phi \notin$ SAT.
- If output is yes, $\phi \in$ SAT, then we know $\phi \in$ SAT for sure.
- But what if output is probably, $\phi \notin$ SAT?
- Consider $\phi=x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n} \in$ SAT:
- Probability of probably, $\phi \notin S A T: \operatorname{Pr}\left[R_{M, x}\right]=1-2^{-n}$
- Called false negative.
- If we run this algorithm r-times, prob. of false negative decreases to: $\left(1-2^{-n}\right)^{r} \approx e^{-r / 2^{n}}$.
- Exponential number $r \sim 2^{n}$ required to reduce this to any tolerable error bound like $1 / 4$ or $1 / 10$.
- Not that helpful as SAT \in EXP (zero prob. of false negative).

Randomizing NP: Conclusion

- Not enough to only choose certificate u at random, we need to require that $\operatorname{Pr}\left[A_{M, x}\right]$ is significantly larger than $2^{-p(|x|)}$; otherwise we'll stay in NP.

Randomizing NP: Conclusion

- Not enough to only choose certificate u at random, we need to require that $\operatorname{Pr}\left[A_{M, x}\right]$ is significantly larger than $2^{-p(|x|)}$; otherwise we'll stay in NP.
- Goal:

Polynomial number $r(|x|)$ of reruns should make prob. of false negatives arbitrary small.

Randomizing NP: Conclusion

- Not enough to only choose certificate u at random, we need to require that $\operatorname{Pr}\left[A_{M, x}\right]$ is significantly larger than $2^{-p(|x|)}$; otherwise we'll stay in NP.
- Goal:

Polynomial number $r(|x|)$ of reruns should make prob. of false negatives arbitrary small.

- This holds if $\operatorname{Pr}\left[A_{M, x}\right] \geq n^{-k}$ for some $k>0$:

$$
\left(1-\operatorname{Pr}\left[A_{M, x}\right]\right)^{c|x|^{k+d}} \geq\left(1-1 /|x|^{k}\right)^{c|x|^{k+d}} \approx e^{-c|x|^{d}}
$$

as $\lim _{m \rightarrow \infty}(1-1 / m)^{m}=e^{-1}$.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Choosing the certificate at random \checkmark
- Error reduction by rerunning \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP
- Definitions
- Monte Carlo and Las Vegas algorithms
- Examples: ZEROP and perfect matchings
- Power of randomization with two-sided error: PP, BPP

Definition of RP

Definition (Randomized P (RP))

$L \in R P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=0 .
$$

- $\mathrm{P} \subseteq \mathrm{RP} \subseteq \mathrm{NP}$
- coRP $:=\{\bar{L} \mid L \in \operatorname{RP}\}$
- RP unchanged if we replace $\geq 3 / 4$ by $\geq n^{-k}$ or $\geq 1-2^{-n^{k}}(k>0)$.

Definition of RP

Definition (Randomized P (RP))

$L \in R P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time $T M$ $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=0
$$

- $\mathrm{P} \subseteq \mathrm{RP} \subseteq \mathrm{NP}$
- coRP $:=\{\bar{L} \mid L \in \operatorname{RP}\}$
- RP unchanged if we replace $\geq 3 / 4$ by $\geq n^{-k}$ or $\geq 1-2^{-n^{k}}$ ($k>0$).
- Realistic model of computation? How to obtain random bits?
- "Slightly random sources": see e.g. Papadimitriou p. 261

Definition of RP

Definition (Randomized P (RP))

$L \in R P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time $T M$ $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=0
$$

- $\mathrm{P} \subseteq \mathrm{RP} \subseteq \mathrm{NP}$
- coRP $:=\{\bar{L} \mid L \in \operatorname{RP}\}$
- RP unchanged if we replace $\geq 3 / 4$ by $\geq n^{-k}$ or $\geq 1-2^{-n^{k}}(k>0)$.
- Realistic model of computation? How to obtain random bits?
- "Slightly random sources": see e.g. Papadimitriou p. 261
- One-sided error probabiliy for RP:
- False negatives: if $x \in L$, then $\operatorname{Pr}\left[R_{M, x}\right] \leq 1 / 4$.
- If $M(x, u)=1$, output $x \in L$; else output probably, $x \notin L$
- Error reduction by rerunning a polynomial number of times.

coRP, ZPP

Lemma (coRP)

$L \in$ coRP if and only if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM M(x,u) using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=1 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \leq 1 / 4
$$

- One-sided error probability for coRP:
- False positives: if $x \notin L$, then $\operatorname{Pr}\left[A_{M, x}\right] \leq 1 / 4$.
- If $M(x, u)=1$, output probably, $x \in L$; else output $x \notin L$

coRP, ZPP

Lemma (coRP)

$L \in$ coRP if and only if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM M(x,u) using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=1 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \leq 1 / 4
$$

- One-sided error probability for coRP:
- False positives: if $x \notin L$, then $\operatorname{Pr}\left[A_{M, x}\right] \leq 1 / 4$.
- If $M(x, u)=1$, output probably, $x \in L$; else output $x \notin L$

Definition ("Zero Probability of Error"-P (ZPP))

$\mathrm{ZPP}:=\mathrm{RP} \cap \operatorname{coRP}$

- If $L \in$ ZPP, then we have both an RP- and a coRP-TM for L.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP
- Definitions \checkmark
- Monte Carlo and Las Vegas algorithms
- Examples: ZEROP and perfect matchings
- Power of randomization with two-sided error: PP, BPP

RP-algorithms

- Assume $L \in \operatorname{RP}$ decided by TM M(•, $\cdot)$.
- Given input x :
- Choose $u \in\{0,1\}^{p(x \mid)}$ uniformly at random.
- Run $M(x, u)$.
- If $M(x, u)=1$, output: yes, $x \in L$.
- If $M(x, u)=0$, output: probably, $x \notin L$.
- Called Monte Carlo algorithm.

RP-algorithms

- Assume $L \in \operatorname{RP}$ decided by TM $M(\cdot, \cdot)$.
- Given input x :
- Choose $u \in\{0,1\}^{p(|x|)}$ uniformly at random.
- Run $M(x, u)$.
- If $M(x, u)=1$, output: yes, $x \in L$.
- If $M(x, u)=0$, output: probably, $x \notin L$.
- Called Monte Carlo algorithm.
- If we rerun this algorithm exactly k-times:
- If $x \in L$, probability that at least once yes, $x \in L$

$$
\geq 1-(1-3 / 4)^{k}=1-4^{-k}
$$

- but if $x \notin L$, we will never know for sure.

RP-algorithms

- Assume $L \in \operatorname{RP}$ decided by TM $M(\cdot, \cdot)$.
- Given input x :
- Choose $u \in\{0,1\}^{p(|x|)}$ uniformly at random.
- Run $M(x, u)$.
- If $M(x, u)=1$, output: yes, $x \in L$.
- If $M(x, u)=0$, output: probably, $x \notin L$.
- Called Monte Carlo algorithm.
- If we rerun this algorithm exactly k-times:
- If $x \in L$, probability that at least once yes, $x \in L$

$$
\geq 1-(1-3 / 4)^{k}=1-4^{-k}
$$

- but if $x \notin L$, we will never know for sure.
- Expected running time if we rerun till output yes, $x \in L$:
- If $x \in L$:
- Number of reruns geometrically distributed with success prob. $\geq 3 / 4$, i.e.,
- the expected number of reruns is at most $4 / 3$.
- Expected running time also polynomial.
- If $x \notin L$:
- We run forever.

ZPP-algorithms

- Assume $L \in$ ZPP.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \bar{L}$.
- Given x:
- Run both algorithms once.
- If both reply probably, then output don't know.
- Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm

ZPP-algorithms

- Assume $L \in$ ZPP.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \bar{L}$.
- Given x:
- Run both algorithms once.
- If both reply probably, then output don't know.
- Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm
- If we rerun this algorithm exactly k-times:
- If $x \in L(x \in \bar{L})$, probability that at least once yes, $x \in L$ (yes, $x \in \bar{L})$

$$
\geq 1-(1-3 / 4)^{k}=1-4^{-k}
$$

ZPP-algorithms

- Assume $L \in$ ZPP.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \bar{L}$.
- Given x :
- Run both algorithms once.
- If both reply probably, then output don't know.
- Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm
- If we rerun this algorithm exactly k-times:
- If $x \in L(x \in \bar{L})$, probability that at least once yes, $x \in L$ (yes, $x \in \bar{L})$

$$
\geq 1-(1-3 / 4)^{k}=1-4^{-k}
$$

- Expected running time if we rerun till output yes:
- In both cases expected number of reruns at most $4 / 3$.
- So, randomized algorithm which decides L in expected polynomial time.

ZPP-algorithms

- Assume $L \in$ ZPP.
- Then we have Monte Carlo algorithms for both $x \in L$ and $x \in \bar{L}$.
- Given x:
- Run both algorithms once.
- If both reply probably, then output don't know.
- Otherwise forward the (unique) yes-reply.
- Called Las Vegas algorithm
- If we rerun this algorithm exactly k-times:
- If $x \in L(x \in \bar{L})$, probability that at least once yes, $x \in L$ (yes, $x \in \bar{L})$

$$
\geq 1-(1-3 / 4)^{k}=1-4^{-k}
$$

- Expected running time if we rerun till output yes:
- In both cases expected number of reruns at most $4 / 3$.
- So, randomized algorithm which decides L in expected polynomial time.
- More on expected running time vs. exact running time later on.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP
- Definitions \checkmark
- Monte Carlo and Las Vegas algorithms \checkmark
- Examples: ZEROP and perfect matchings
- Power of randomization with two-sided error: PP, BPP

ZEROP

- Given: Multivariate polynomial $p\left(x_{1}, \ldots, x_{k}\right)$, not necessarily expanded, but evaluable in polynomial time.
- Wanted: Decide if $p\left(x_{1}, \ldots, x_{k}\right)$ is the zero polynomial.
$\left|\left(\begin{array}{ccc}0 & y^{2} & x y \\ z & 0 & y \\ 0 & y z & x z\end{array}\right)\right|=-y^{2}(z \cdot x z-0)+x y(z \cdot y z-0)=-x y^{2} z^{2}+x y^{2} z^{2}=0$
- ZEROP := "All zero polynomials evaluable in polynomial time".
- E.g. determinant: substitute values for variables, then use Gauß-elemination.
- Not known to be in P.

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let $p\left(x_{1}, \ldots, x_{k}\right)$ be a nonzero polynomial with each variable x_{i} of degree at most d. Then for $M \in \mathbb{N}$:

$$
\left|\left\{\left(x_{1}, \ldots, x_{k}\right) \in\{0,1, \ldots, M-1\}^{k} \mid p\left(x_{1}, \ldots, x_{k}\right)=0\right\}\right| \leq k d M^{k-1} .
$$

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let $p\left(x_{1}, \ldots, x_{k}\right)$ be a nonzero polynomial with each variable x_{i} of degree at most d. Then for $M \in \mathbb{N}$:

$$
\left|\left\{\left(x_{1}, \ldots, x_{k}\right) \in\{0,1, \ldots, M-1\}^{k} \mid p\left(x_{1}, \ldots, x_{k}\right)=0\right\}\right| \leq k d M^{k-1} .
$$

Let X_{1}, \ldots, X_{k} be independent random variables, each uniformly distributed on $\{0,1, \ldots, M-1\}$. Then for $M=4 \mathrm{kd}$:

$$
p \notin \mathrm{ZEROP} \Rightarrow \operatorname{Pr}\left[p\left(X_{1}, \ldots, X_{k}\right)=0\right] \leq \frac{k d M^{k-1}}{M^{k}}=\frac{k d}{M}=\frac{1}{4} .
$$

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let $p\left(x_{1}, \ldots, x_{k}\right)$ be a nonzero polynomial with each variable x_{i} of degree at most d. Then for $M \in \mathbb{N}$:

$$
\left|\left\{\left(x_{1}, \ldots, x_{k}\right) \in\{0,1, \ldots, M-1\}^{k} \mid p\left(x_{1}, \ldots, x_{k}\right)=0\right\}\right| \leq k d M^{k-1} .
$$

Let X_{1}, \ldots, X_{k} be independent random variables, each uniformly distributed on $\{0,1, \ldots, M-1\}$. Then for $M=4 \mathrm{kd}$:

$$
p \notin \mathrm{ZEROP} \Rightarrow \operatorname{Pr}\left[p\left(X_{1}, \ldots, X_{k}\right)=0\right] \leq \frac{k d M^{k-1}}{M^{k}}=\frac{k d}{M}=\frac{1}{4} .
$$

- So we can decide $p \in Z E R O P$ in coRP if
- we can evaluate $p(\cdot)$ in polynomial time, and
- d is polynomial in the representation of p.

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let $p\left(x_{1}, \ldots, x_{k}\right)$ be a nonzero polynomial with each variable x_{i} of degree at most d. Then for $M \in \mathbb{N}$:

$$
\left|\left\{\left(x_{1}, \ldots, x_{k}\right) \in\{0,1, \ldots, M-1\}^{k} \mid p\left(x_{1}, \ldots, x_{k}\right)=0\right\}\right| \leq k d M^{k-1} .
$$

Let X_{1}, \ldots, X_{k} be independent random variables, each uniformly distributed on $\{0,1, \ldots, M-1\}$. Then for $M=4 \mathrm{kd}$:

$$
p \notin \mathrm{ZEROP} \Rightarrow \operatorname{Pr}\left[p\left(X_{1}, \ldots, X_{k}\right)=0\right] \leq \frac{k d M^{k-1}}{M^{k}}=\frac{k d}{M}=\frac{1}{4} .
$$

- So we can decide $p \in Z E R O P$ in coRP if
- we can evaluate $p(\cdot)$ in polynomial time, and
- d is polynomial in the representation of p.
- See Arora p. 130 for work around if d is exponential
- E.g. $p(x)=\left(\ldots\left((x-1)^{2}\right)^{2} \ldots\right)^{2}$.

Perfect Matchings in Bipartite Graphs

- Given: bipartite graph $G=(U, V, E)$ with

$$
|U|=|V|=n \text { and } E \subseteq U \times V
$$

- Wanted: $M \subseteq E$ such that

$$
\forall(u, v),\left(u^{\prime}, v^{\prime}\right) \in M: u \neq u^{\prime} \wedge v \neq v^{\prime} \quad \text { (matching) }
$$

$$
|M|=n \quad(\text { perfect })
$$

Perfect Matchings in Bipartite Graphs

- Given: bipartite graph $G=(U, V, E)$ with

$$
|U|=|V|=n \text { and } E \subseteq U \times V
$$

- Wanted: $M \subseteq E$ such that

$$
\forall(u, v),\left(u^{\prime}, v^{\prime}\right) \in M: u \neq u^{\prime} \wedge v \neq v^{\prime} \quad \text { (matching) }
$$

$$
|M|=n \quad \text { (perfect })
$$

Perfect Matchings in Bipartite Graphs

- Given: bipartite graph $G=(U, V, E)$ with

$$
|U|=|V|=n \text { and } E \subseteq U \times V
$$

- Wanted: $M \subseteq E$ such that

$$
\forall(u, v),\left(u^{\prime}, v^{\prime}\right) \in M: u \neq u^{\prime} \wedge v \neq v^{\prime} \quad \text { (matching) }
$$

$$
|M|=n \quad \text { (perfect })
$$

- Problem is known to be solvable in time $O\left(n^{5}\right)$ (and better).
- So it is in RP.

Perfect Matchings in Bipartite Graphs

- Given: bipartite graph $G=(U, V, E)$ with

$$
|U|=|V|=n \text { and } E \subseteq U \times V
$$

- Wanted: $M \subseteq E$ such that

$$
\begin{gathered}
\forall(u, v),\left(u^{\prime}, v^{\prime}\right) \in M: u \neq u^{\prime} \wedge v \neq v^{\prime} \quad \text { (matching) } \\
|M|=n \quad \text { (perfect) }
\end{gathered}
$$

- Problem is known to be solvable in time $O\left(n^{5}\right)$ (and better).
- So it is in RP.
- Still. some "easy" randomized alaorithm relvina on ZEROP.

Perfect Matchings in Bipartite Graphs

- For bipartite graph $G=(U, V, E)$ define square matrix M :

$$
M_{i j}=\left\{\begin{array}{cl}
x_{i j} & \text { if }\left(u_{i}, v_{j}\right) \in E \\
0 & \text { else } .
\end{array}\right.
$$

- Output:
- "has perfect matching" if $\operatorname{det}(M) \notin$ ZEROP
- "might not have perfect matching" if $\operatorname{det}(M) \in Z E R O P$

$$
\left|\left(\begin{array}{ccc}
0 & x_{1,2} & x_{1,3} \\
x_{2,1} & 0 & x_{2,3} \\
0 & x_{3,2} & 0
\end{array}\right)\right|=x_{1,3} x_{2,1} x_{3,2}
$$

- Relies on Leibniz formula: $\operatorname{det} M=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} M_{i, \sigma(i)}$.

Perfect Matchings in Bipartite Graphs

- For bipartite graph $G=(U, V, E)$ define square matrix M :

$$
M_{i j}=\left\{\begin{array}{cl}
x_{i j} & \text { if }\left(u_{i}, v_{j}\right) \in E \\
0 & \text { else } .
\end{array}\right.
$$

- Output:
- "has perfect matching" if $\operatorname{det}(M) \notin$ ZEROP
- "might not have perfect matching" if $\operatorname{det}(M) \in Z E R O P$

$$
\left|\left(\begin{array}{ccc}
0 & x_{1,2} & x_{1,3} \\
x_{2,1} & 0 & x_{2,3} \\
0 & x_{3,2} & 0
\end{array}\right)\right|=x_{1,3} x_{2,1} x_{3,2}
$$

- Relies on Leibniz formula: $\operatorname{det} M=\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} M_{i, \sigma(i)}$.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP \checkmark
- Definitions \checkmark
- Monte Carlo and Las Vegas algorithms \checkmark
- Examples: ZEROP and perfect matchings \checkmark
- Power of randomization with two-sided error: PP, BPP
- Enlarging RP by false negatives and false positives
- Comparison: NP, RP, coRP, ZPP, BPP, PP
- Probabilistic Turing machines
- Expected running time
- Error reduction for BPP
- Some kind of derandomization for BPP
- BPP in the polynomial hierarchy

Probability of error for both $x \in L$ and $x \notin L$

- RP obtained from NP by
- choosing certificate u uniformly at random
- requiring a fixed fraction of accept-certificates if $x \in L$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=0
$$

- RP-algorithms can only make errors for $x \in L$.

Probability of error for both $x \in L$ and $x \notin L$

- RP obtained from NP by
- choosing certificate u uniformly at random
- requiring a fixed fraction of accept-certificates if $x \in L$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=0
$$

- RP-algorithms can only make errors for $x \in L$.
- By allowing both errors for both cases, can we obtain a class that is
- larger than RP,
- but still more realistic than NP?

Probability of error for both $x \in L$ and $x \notin L$

- RP obtained from NP by
- choosing certificate u uniformly at random
- requiring a fixed fraction of accept-certificates if $x \in L$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=0
$$

- RP-algorithms can only make errors for $x \in L$.
- By allowing both errors for both cases, can we obtain a class that is
- larger than RP,
- but still more realistic than NP?
- Assume we change the definition of RP to:

$$
x \in L \Leftrightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4
$$

- Two-sided error probabilities:
- False negatives: If $x \in L: \operatorname{Pr}\left[R_{M, x}\right] \leq 1 / 4$
- False positives: If $x \notin L: \operatorname{Pr}\left[A_{M, x}\right]<3 / 4$
- Outputs: probably, $x \in L$ and probably, $x \notin L$

Probabilistic Polynomial Time (PP)

Definition (PP)

$L \in P P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time $T M$ $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 .
$$

Probabilistic Polynomial Time (PP)

Definition (PP)

$L \in P P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4
$$

- $R P \subseteq P P \subseteq E X P$

Probabilistic Polynomial Time (PP)

Definition (PP)

$L \in P P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 .
$$

- $R P \subseteq P P \subseteq E X P$
- One can show:
- May replace \geq by $>$.
- May replace $3 / 4$ by $1 / 2$.
- $\mathrm{PP}=\mathrm{coPP}$

Probabilistic Polynomial Time (PP)

Definition (PP)

$L \in P P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4
$$

- $R P \subseteq P P \subseteq E X P$
- One can show:
- May replace \geq by $>$.
- May replace $3 / 4$ by $1 / 2$.
- $\mathrm{PP}=\mathrm{coPP}$
- PP: " $x \in L$ iff x is accepted by a majority"
- If $x \notin L$, then x is not accepted by a majority (\neq a majority rejects x !)

Probabilistic Polynomial Time (PP)

Definition (PP)

$L \in P P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time $T M$ $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4
$$

- $R P \subseteq P P \subseteq E X P$
- One can show:
- May replace \geq by $>$.
- May replace $3 / 4$ by $1 / 2$.
- $\mathrm{PP}=\mathrm{coPP}$
- PP: " $x \in L$ iff x is accepted by a majority"
- If $x \notin L$, then x is not accepted by a majority (\neq a majority rejects x !)
- Next: PP is at least as untractable as NP.

$N P \subseteq P P$

Theorem

$N P \subseteq P P$

- Assume TM $M(x, u)$ for $L \in \mathbf{N P}$ uses certificates u of length $p(|x|)$.
- Consider TM $N(x, w)$ with $|w|=p(|x|)+2$:
- If $w=00 u$, define $N(x, w):=M(x, u)$.
- Else $N(x, w)=1$ iff $w \neq 11 \ldots 1$.

$N P \subseteq P P$

Theorem

$N P \subseteq P P$

- Assume TM $M(x, u)$ for $L \in \mathbf{N P}$ uses certificates u of length $p(|x|)$.
- Consider TM $N(x, w)$ with $|w|=p(|x|)+2$:
- If $w=00 u$, define $N(x, w):=M(x, u)$.
- Else $N(x, w)=1$ iff $w \neq 11 \ldots 1$.
- Choose w uniformly on $\{0,1\}^{p(|x|)+2}$ at random:
- If $x \in L: \operatorname{Pr}\left[A_{N, x}\right] \geq$
- If $x \notin L: \operatorname{Pr}\left[A_{N, x}\right]=$

$N P \subseteq P P$

Theorem

$N P \subseteq P P$

- Assume TM $M(x, u)$ for $L \in \mathbf{N P}$ uses certificates u of length $p(|x|)$.
- Consider TM $N(x, w)$ with $|w|=p(|x|)+2$:
- If $w=00 u$, define $N(x, w):=M(x, u)$.
- Else $N(x, w)=1$ iff $w \neq 11 \ldots 1$.
- Choose w uniformly on $\{0,1\}^{p(|x|)+2}$ at random:
- If $x \in L: \operatorname{Pr}\left[A_{N, x}\right] \geq 3 / 4-2^{-p(|x|)-2}+2^{-p(|x|)-2}=3 / 4$
- If $x \notin L: \operatorname{Pr}\left[A_{N, x}\right]=$

$N P \subseteq P P$

Theorem

$N P \subseteq P P$

- Assume TM $M(x, u)$ for $L \in \mathbf{N P}$ uses certificates u of length $p(|x|)$.
- Consider TM $N(x, w)$ with $|w|=p(|x|)+2$:
- If $w=00 u$, define $N(x, w):=M(x, u)$.
- Else $N(x, w)=1$ iff $w \neq 11 \ldots 1$.
- Choose w uniformly on $\{0,1\}^{p(|x|)+2}$ at random:
- If $x \in L: \operatorname{Pr}\left[A_{N, x}\right] \geq 3 / 4-2^{-p(|x|)-2}+2^{-p(|x|)-2}=3 / 4$
- If $x \notin L: \operatorname{Pr}\left[A_{N, x}\right]=3 / 4-2^{-p(|x|)-2}<3 / 4$

"Bounded probability of error"-P (BPP)

- By the previous result:
- PP does not seem to capture realistic computation.

"Bounded probability of error"-P (BPP)

- By the previous result:
- PP does not seem to capture realistic computation.
- Proof relied on the dependency of the two error bounds:
- We traded one-sided error probability

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 2^{-p(|x|)} \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=0
$$

for two-sided error probability

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]<3 / 4
$$

by adding enough accept-certificates, i.e.,

"Bounded probability of error"-P (BPP)

- By the previous result:
- PP does not seem to capture realistic computation.
- Proof relied on the dependency of the two error bounds:
- We traded one-sided error probability

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 2^{-p(x \mid x)} \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=0
$$

for two-sided error probability

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]<3 / 4
$$

by adding enough accept-certificates, i.e.,

- we increased the probability for false positives,
- while decreasing the probability for false negatives.

"Bounded probability of error"-P (BPP)

- By the previous result:
- PP does not seem to capture realistic computation.
- Proof relied on the dependency of the two error bounds:
- We traded one-sided error probability

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 2^{-p(|x|)} \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]=0
$$

for two-sided error probability

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]<3 / 4
$$

by adding enough accept-certificates, i.e.,

- we increased the probability for false positives,
- while decreasing the probability for false negatives.
- Possible fix:
- Require bounds on both error probabilities.
- "Bounded error probability of error"-P

BPP

Definition (BPP)

$L \in B P P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[R_{M, x}\right] \geq 3 / 4
$$

- $R P \subseteq B P P=\operatorname{coBPP} \subseteq P P$
- Reminder: if $L \in \operatorname{PP}$, then $x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]<3 / 4$.

BPP

Definition (BPP)

$L \in B P P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[R_{M, x}\right] \geq 3 / 4
$$

- $\mathrm{RP} \subseteq \mathrm{BPP}=\operatorname{coBPP} \subseteq \mathrm{PP}$
- Reminder: if $L \in P P$, then $x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]<3 / 4$.
- Two-sided error probabilities:
- False negatives: If $x \in L$, then $\operatorname{Pr}\left[R_{M, x}\right] \leq 1 / 4$.
- False positives: If $x \notin L$, then $\operatorname{Pr}\left[A_{M, x}\right] \leq 1 / 4$.
- Outputs: probably, $x \in L$ and probably, $x \notin L$.
- Error reduction to 2^{-n} by rerunning (later).

BPP

Definition (BPP)

$L \in B P P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time
TM $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[R_{M, x}\right] \geq 3 / 4
$$

- $\mathrm{RP} \subseteq \mathrm{BPP}=\operatorname{coBPP} \subseteq \mathrm{PP}$
- Reminder: if $L \in P P$, then $x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]<3 / 4$.
- Two-sided error probabilities:
- False negatives: If $x \in L$, then $\operatorname{Pr}\left[R_{M, x}\right] \leq 1 / 4$.
- False positives: If $x \notin L$, then $\operatorname{Pr}\left[A_{M, x}\right] \leq 1 / 4$.
- Outputs: probably, $x \in L$ and probably, $x \notin L$.
- Error reduction to 2^{-n} by rerunning (later).
- It is unknown whether $\mathrm{BPP}=\mathrm{NP}$ or even $\mathrm{BPP}=\mathrm{P}$!
- Under some non-trivial but "very reasonable" assumptions: BPP $=\mathrm{P}$!

BPP

Definition (BPP)

$L \in B P P$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time
TM $M(x, u)$ using certificates u of length $|u|=p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[R_{M, x}\right] \geq 3 / 4
$$

- $\mathrm{RP} \subseteq \mathrm{BPP}=\operatorname{coBPP} \subseteq \mathrm{PP}$
- Reminder: if $L \in P P$, then $x \notin L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right]<3 / 4$.
- Two-sided error probabilities:
- False negatives: If $x \in L$, then $\operatorname{Pr}\left[R_{M, x}\right] \leq 1 / 4$.
- False positives: If $x \notin L$, then $\operatorname{Pr}\left[A_{M, x}\right] \leq 1 / 4$.
- Outputs: probably, $x \in L$ and probably, $x \notin L$.
- Error reduction to 2^{-n} by rerunning (later).
- It is unknown whether $\mathrm{BPP}=\mathrm{NP}$ or even $\mathrm{BPP}=\mathrm{P}$!
- Under some non-trivial but "very reasonable" assumptions: $\mathrm{BPP}=\mathrm{P}$!
- BPP = "most comprehensive, yet plausible notion of realistic computation" (Papadimitriou p. 259)

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP \checkmark
- Power of randomization with two-sided error: PP, BPP
- Enlarging RP by false negatives and false positives \checkmark
- Comparison: NP, RP, coRP, ZPP, BPP, PP
- Probabilistic Turing machines
- Expected running time
- Error reduction for BPP
- Some kind of derandomization for BPP
- BPP in the polynomial hierarchy

- $L \in N P$:
- if $x \in L$: at least one o
- if $x \notin L$: all \bullet

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

- $L \in N P$:
- if $x \in L$: at least one o
- if $x \notin L$: all \bullet

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

- $L \in R P$:
- if $x \in L$: at least 75% o
- if $x \notin L$: all \bullet

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

- $L \in R P$:
- if $x \in L$: at least 75% o
- if $x \notin L$: all \bullet

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

- $L \in \operatorname{coRP}$:
- if $x \in L$: all \circ
- if $x \notin L$: at least 75% -

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

- $L \in \operatorname{coRP}$:
- if $x \in L$: all \circ
- if $x \notin L$: at least 75% -

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

- $L \in$ ZPP:
- if $x \in L$: no 0
- if $x \notin L$: no o

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

- $L \in$ ZPP:
- if $x \in L$: no 0
- if $x \notin L$: no o

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

- $L \in B P P:$
- if $x \in L$: at least 75% o
- if $x \notin L$: at least 75% -

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

- $L \in B P P:$
- if $x \in L$: at least 75% o
- if $x \notin L$: at least 75% -

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

- $L \in P P$:
- if $x \in L$: at least 75% o
- if $x \notin L$: less than 75% 。

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

- $L \in P P$:
- if $x \in L$: at least 75% o
- if $x \notin L$: less than 75% 。

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP \checkmark
- Power of randomization with two-sided error: PP, BPP
- Enlarging RP by false negatives and false positives \checkmark
- Comparison: NP, RP, coRP, ZPP, BPP, PP \checkmark
- Probabilistic Turing machines
- Expected running time
- Error reduction for BPP
- Some kind of derandomization for BPP
- BPP in the polynomial hierarchy

Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM $M=\left(\Gamma, Q, \delta_{1}, \delta_{2}\right)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of M on x of length exactly / occurs with probability 2^{-1}.
A PTM runs in time $T(n)$ if the underlying NDTM runs in time $T(n)$, i.e., if M halts on x within at most $T(|x|)$ steps regardless of the random choices it makes.

Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM $M=\left(\Gamma, Q, \delta_{1}, \delta_{2}\right)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of M on x of length exactly / occurs with probability 2^{-1}.
A PTM runs in time $T(n)$ if the underlying NDTM runs in time $T(n)$, i.e., if M halts on x within at most $T(|x|)$ steps regardless of the random choices it makes.

Corollary

$L \in R P$ iff there is a poly-time PTM M s.t. for all $x \in\{0,1\}^{*}$:

$$
x \in L \Rightarrow \operatorname{Pr}[M(x)=1] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}[M(x)=1]=0 .
$$

Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM $M=\left(\Gamma, Q, \delta_{1}, \delta_{2}\right)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of M on x of length exactly I occurs with probability 2^{-1}.
A PTM runs in time $T(n)$ if the underlying NDTM runs in time $T(n)$, i.e., if M halts on x within at most $T(|x|)$ steps regardless of the random choices it makes.

Corollary

$L \in$ coRP iff there is a poly-time PTM M s.t. for all $x \in\{0,1\}^{*}$:

$$
x \in L \Rightarrow \operatorname{Pr}[M(x)=1]=1 \text { and } x \notin L \Rightarrow \operatorname{Pr}[M(x)=1] \leq 1 / 4 .
$$

Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM $M=\left(\Gamma, Q, \delta_{1}, \delta_{2}\right)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of M on x of length exactly I occurs with probability 2^{-1}.
A PTM runs in time $T(n)$ if the underlying NDTM runs in time $T(n)$, i.e., if M halts on x within at most $T(|x|)$ steps regardless of the random choices it makes.

Corollary

$L \in$ BPP iff there is a poly-time PTM M s.t. for all $x \in\{0,1\}^{*}$:

$$
x \in L \Rightarrow \operatorname{Pr}[M(x)=1] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}[M(x)=1] \leq 1 / 4 .
$$

Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM $M=\left(\Gamma, Q, \delta_{1}, \delta_{2}\right)$ a probabilistic TM (PTM) by choosing in every computation step the transition function uniformly at random, i.e., any given run of M on x of length exactly I occurs with probability 2^{-1}.
A PTM runs in time $T(n)$ if the underlying NDTM runs in time $T(n)$, i.e., if M halts on x within at most $T(|x|)$ steps regardless of the random choices it makes.

Corollary

$L \in$ PP iff there is a poly-time PTM M s.t. for all $x \in\{0,1\}^{*}$:

$$
x \in L \Rightarrow \operatorname{Pr}[M(x)=1] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}[M(x)=1]<3 / 4 .
$$

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP \checkmark
- Power of randomization with two-sided error: PP, BPP
- Enlarging RP by false negatives and false positives \checkmark
- Comparison: NP, RP, coRP, ZPP, BPP, PP \checkmark
- Probabilistic Turing machines \checkmark
- Expected running time
- Error reduction for BPP
- Some kind of derandomization for BPP
- BPP in the polynomial hierarchy

Expected vs. Exact Running Time

- Recall: if $L \in$ ZPP
- RP-algorithms for L and \bar{L}.
- Rerun both algorithms on x until one outputs yes.
- This decides L in expected polynomial time.
- But might run infinitely long in the worst case.
- So, is expected time more powerful than exact time?

Expected Running Time

Definition (Expected running time of a PTM)

For a PTM M let $T_{M, x}$ be the random variable that counts the steps of a computation of M on x, i.e., $\operatorname{Pr}\left[T_{M, x} \leq t\right]$ is the probability that M halts on x within at most t steps.
We say that M runs in expected time $T(n)$ if $\mathbb{E}\left[T_{M, x}\right] \leq T(|x|)$ for every x.

Expected Running Time

Definition (Expected running time of a PTM)

For a PTM M let $T_{M, x}$ be the random variable that counts the steps of a computation of M on x, i.e., $\operatorname{Pr}\left[T_{M, x} \leq t\right]$ is the probability that M halts on x within at most t steps.
We say that M runs in expected time $T(n)$ if $\mathbb{E}\left[T_{M, x}\right] \leq T(|x|)$ for every x.

- Possibly infinite runs.

Expected Running Time

Definition (Expected running time of a PTM)

For a PTM M let $T_{M, x}$ be the random variable that counts the steps of a computation of M on x, i.e., $\operatorname{Pr}\left[T_{M, x} \leq t\right]$ is the probability that M halts on x within at most t steps.
We say that M runs in expected time $T(n)$ if $\mathbb{E}\left[T_{M, x}\right] \leq T(|x|)$ for every x.

- Possibly infinite runs.
- So, certificates would need to be unbounded.

Expected Running Time

Definition (Expected running time of a PTM)

For a PTM M let $T_{M, x}$ be the random variable that counts the steps of a computation of M on x, i.e., $\operatorname{Pr}\left[T_{M, x} \leq t\right]$ is the probability that M halts on x within at most t steps.
We say that M runs in expected time $T(n)$ if $\mathbb{E}\left[T_{M, x}\right] \leq T(|x|)$ for every x.

- Possibly infinite runs.
- So, certificates would need to be unbounded.

Definition (BPeP)

A language L is in BPeP if there is a polynomial $T: \mathbb{N} \rightarrow \mathbb{N}$ and a PTM M such that for every $x \in\{0,1\}^{*}$:

$$
x \in L \Rightarrow \operatorname{Pr}[M(x)=1] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}[M(x)=0] \geq 3 / 4
$$

and $\mathbb{E}\left[T_{M, x}\right] \leq T(|x|)$.

Expected Running Time

- Assume $L \in B$ BeP.
- PTM M deciding L within expected running time $T(n)$.

Expected Running Time

- Assume $L \in B$ BeP.
- PTM M deciding L within expected running time $T(n)$.
- Probability that M does more than k steps on input x :

$$
\operatorname{Pr}\left[T_{M, x} \geq k\right] \leq \frac{\mathbb{E}\left[T_{M, x}\right]}{k} \leq \frac{T(|x|)}{k}
$$

by Markov's inequality.

Expected Running Time

- Assume $L \in B$ BeP.
- PTM M deciding L within expected running time $T(n)$.
- Probability that M does more than k steps on input x :

$$
\operatorname{Pr}\left[T_{M, x} \geq k\right] \leq \frac{\mathbb{E}\left[T_{M, x}\right]}{k} \leq \frac{T(|x|)}{k}
$$

by Markov's inequality.

- So, for $k=10 T(|x|)$ (polynomial in $|x|)$:

$$
\operatorname{Pr}\left[T_{M, x} \geq 10 T(|x|)\right] \leq 0.1
$$

for every input x.

Expected Running Time

- New algorithm \tilde{M} :
- Simulate M for at most $10 T(|x|)$ steps.
- If simulation terminates, forward the reply of M.
- Otherwise, choose reply uniformly at random.

Expected Running Time

- New algorithm \tilde{M} :
- Simulate M for at most $10 T(|x|)$ steps.
- If simulation terminates, forward the reply of M.
- Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.

Expected Running Time

- New algorithm \tilde{M} :
- Simulate M for at most $10 T(|x|)$ steps.
- If simulation terminates, forward the reply of M.
- Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
- Assume $x \in L$.
- If simulation halts:
- Otherwise:

Expected Running Time

- New algorithm \tilde{M} :
- Simulate M for at most $10 T(|x|)$ steps.
- If simulation terminates, forward the reply of M.
- Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
- Assume $x \in L$.
- If simulation halts: $\leq 1 / 4$
- Otherwise:

Expected Running Time

- New algorithm \tilde{M} :
- Simulate M for at most $10 T(|x|)$ steps.
- If simulation terminates, forward the reply of M.
- Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
- Assume $x \in L$.
- If simulation halts: $\leq 1 / 4$
- Otherwise: $=1 / 2$

Expected Running Time

- New algorithm \tilde{M} :
- Simulate M for at most $10 T(|x|)$ steps.
- If simulation terminates, forward the reply of M.
- Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
- Assume $x \in L$.
- If simulation halts: $\leq 1 / 4$
- Otherwise: = 1/2
- In total: $1 / 4 \cdot \underbrace{\operatorname{Pr}\left[T_{M, x} \leq 10 T(|x|)\right]}_{\leq 1}+1 / 2 \cdot \underbrace{\left(1-\operatorname{Pr}\left[T_{M, x} \leq 10 T(|x|)\right]\right)}_{\leq 0.1} \leq 0.3$

Expected Running Time

- New algorithm \tilde{M} :
- Simulate M for at most $10 T(|x|)$ steps.
- If simulation terminates, forward the reply of M.
- Otherwise, choose reply uniformly at random.
- Runs in (exact) polynomial time.
- Error probabilities:
- Assume $x \in L$.
- If simulation halts: $\leq 1 / 4$
- Otherwise: $=1 / 2$
- In total: $1 / 4 \cdot \underbrace{\operatorname{Pr}\left[T_{M, x} \leq 10 T(|x|)\right]}_{\leq 1}+1 / 2 \cdot \underbrace{\left(1-\operatorname{Pr}\left[T_{M, x} \leq 10 T(|x|)\right]\right)}_{\leq 0.1} \leq 0.3$

Lemma

$$
\mathrm{BPP}=\mathrm{BPeP}
$$

Lemma

$L \in$ ZPP iff L is decided by some PTM in expected polynomial time.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP \checkmark
- Power of randomization with two-sided error: PP, BPP
- Enlarging RP by false negatives and false positives \checkmark
- Comparison: NP, RP, coRP, ZPP, BPP, PP \checkmark
- Probabilistic Turing machines \checkmark
- Expected running time \checkmark
- Error reduction for BPP
- Some kind of derandomization for BPP
- BPP in the polynomial hierarchy

Error reduction

- Consider: $L \in R P$:
- Probability for error after r reruns:
- if $x \notin L$: $=0$
- if $x \in L: \leq 4^{-r}$, i.e., r-times probably, $x \notin L$.

Error reduction

- Consider: $L \in R P$:
- Probability for error after r reruns:
- if $x \notin L$: $=0$
- if $x \in L: \leq 4^{-r}$, i.e., r-times probably, $x \notin L$.
- Similarly for $L \in \operatorname{coRP}$ and $L \in$ ZPP.

Error reduction

- Consider: $L \in R P$:
- Probability for error after r reruns:
- if $x \notin L$: $=0$
- if $x \in L: \leq 4^{-r}$, i.e., r-times probably, $x \notin L$.
- Similarly for $L \in$ coRP and $L \in$ ZPP.
- What if $L \in B P P$?
- We cannot wait for a yes
- Instead use the majority.

Error reduction for BPP

Definition (BPP(f))

Let $f: \mathbb{N} \rightarrow \mathbb{Q}$ be a function.
$L \in \operatorname{BPP}(f)$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM M such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq f(|x|) \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[R_{M, x}\right] \geq f(|x|) .
$$

Theorem (Error reduction for BPP)
For any $c>0$:

$$
B P P=\operatorname{BPP}\left(1 / 2+n^{-c}\right)
$$

- The longer the input, the less dominant the "majority" has to be.

Error reduction for BPP (Proof)

- Assume $L \in B P P$, and
- Choose any $c>0$.

Error reduction for BPP (Proof)

- Assume $L \in B P P$, and
- Choose any $c>0$.
- There exists certainly an n_{0} s.t. for all $n \geq n_{0}$:

$$
1 / 2+n^{-c} \leq 3 / 4 .
$$

Error reduction for BPP (Proof)

- Assume $L \in B P P$, and
- Choose any $c>0$.
- There exists certainly an n_{0} s.t. for all $n \geq n_{0}$:

$$
1 / 2+n^{-c} \leq 3 / 4 .
$$

- So: $L \cap\{0,1\}^{\geq n_{0}} \in \operatorname{BPP}\left(1 / 2+n^{-c}\right)$.

Error reduction for BPP (Proof)

- Assume $L \in B P P$, and
- Choose any $c>0$.
- There exists certainly an n_{0} s.t. for all $n \geq n_{0}$:

$$
1 / 2+n^{-c} \leq 3 / 4 .
$$

- So: $L \cap\{0,1\}^{\geq n_{0}} \in \operatorname{BPP}\left(1 / 2+n^{-c}\right)$.
- Thus, $\operatorname{BPP}\left(1 / 2+n^{-c}\right)$-algorithm for L :
- If $|x|<n_{0}$, decide $x \in L$ in $P($ error prob. $=0)$
- Else run BPP-algorithm (error prob. $\leq 1 / 4$)

Error reduction for BPP (Proof)

- Let $L \in \operatorname{BPP}\left(1 / 2+n^{-c}\right)$ for some $c>0$.

Error reduction for BPP (Proof)

- Let $L \in \operatorname{BPP}\left(1 / 2+n^{-c}\right)$ for some $c>0$.
- Run $1 / 2+n^{-c}$-algorithm r-times on input x :
- Outputs: $y=y_{1} y_{2} y_{3} \ldots y_{r}$
- with $y_{i} \in\{0,1\}$ and $y_{i}=1$ if output probably, $x \in L$
- $Y_{1}=\sum_{i=1}^{r} y_{i}$ number of 1 s
- $Y_{0}=r-Y_{1}$ number of $0 s$

Error reduction for BPP (Proof)

- Let $L \in \operatorname{BPP}\left(1 / 2+n^{-c}\right)$ for some $c>0$.
- Run $1 / 2+n^{-c}$-algorithm r-times on input x :
- Outputs: $y=y_{1} y_{2} y_{3} \ldots y_{r}$
- with $y_{i} \in\{0,1\}$ and $y_{i}=1$ if output probably, $x \in L$
- $Y_{1}=\sum_{i=1}^{r} y_{i}$ number of 1 s
- $Y_{0}=r-Y_{1}$ number of $0 s$
- Probability of $y_{i}=1$ if $x \in L$, resp. $y_{i}=0$ if $x \notin L$:
$x \in L: \operatorname{Pr}\left[y_{i}=1\right] \geq 1 / 2+|x|^{-c}$ resp. $x \notin L: \operatorname{Pr}\left[y_{i}=0\right] \geq 1 / 2+|x|^{-c}$
(y_{i} indepedent, Bernoulli distributed RVs)

Error reduction for BPP (Proof)

- Let $L \in \operatorname{BPP}\left(1 / 2+n^{-c}\right)$ for some $c>0$.
- Run $1 / 2+n^{-c}$-algorithm r-times on input x :
- Outputs: $y=y_{1} y_{2} y_{3} \ldots y_{r}$
- with $y_{i} \in\{0,1\}$ and $y_{i}=1$ if output probably, $x \in L$
- $Y_{1}=\sum_{i=1}^{r} y_{i}$ number of 1 s
- $Y_{0}=r-Y_{1}$ number of $0 s$
- Probability of $y_{i}=1$ if $x \in L$, resp. $y_{i}=0$ if $x \notin L$:
$x \in L: \operatorname{Pr}\left[y_{i}=1\right] \geq 1 / 2+|x|^{-c}$ resp. $x \notin L: \operatorname{Pr}\left[y_{i}=0\right] \geq 1 / 2+|x|^{-c}$
(y_{i} indepedent, Bernoulli distributed RVs)
- Expected number of 1 s for $x \in L$, resp. of 0s if $x \notin L$:

$$
x \in L: \mathbb{E}\left[Y_{1}\right] \geq r / 2+r|x|^{-c} \text { resp. } x \notin L: \mathbb{E}\left[Y_{0}\right] \geq r / 2+r|x|^{-c}
$$

Error reduction for BPP (Proof)

- Let $L \in \operatorname{BPP}\left(1 / 2+n^{-c}\right)$ for some $c>0$.
- Run $1 / 2+n^{-c}$-algorithm r-times on input x :
- Outputs: $y=y_{1} y_{2} y_{3} \ldots y_{r}$
- with $y_{i} \in\{0,1\}$ and $y_{i}=1$ if output probably, $x \in L$
- $Y_{1}=\sum_{i=1}^{r} y_{i}$ number of 1 s
- $Y_{0}=r-Y_{1}$ number of $0 s$
- Probability of $y_{i}=1$ if $x \in L$, resp. $y_{i}=0$ if $x \notin L$:
$x \in L: \operatorname{Pr}\left[y_{i}=1\right] \geq 1 / 2+|x|^{-c}$ resp. $x \notin L: \operatorname{Pr}\left[y_{i}=0\right] \geq 1 / 2+|x|^{-c}$
(y_{i} indepedent, Bernoulli distributed RVs)
- Expected number of 1 s for $x \in L$, resp. of 0 s if $x \notin L$:

$$
x \in L: \mathbb{E}\left[Y_{1}\right] \geq r / 2+r|x|^{-c} \text { resp. } x \notin L: \mathbb{E}\left[Y_{0}\right] \geq r / 2+r|x|^{-c}
$$

- Intuitively, for e.g. $r=|x|^{c+d}$ for some $d \in \mathbb{N}$ we get:

$$
x \in L: \mathbb{E}\left[Y_{1}-Y_{0}\right] \geq 2|x|^{d} \text { resp. } x \notin L: \mathbb{E}\left[Y_{0}-Y_{1}\right] \geq 2|x|^{d}
$$

i.e., expect significant majority in favor of correct answer.

Error reduction for BPP (Proof)

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_{1}>Y_{0}$.

Error reduction for BPP (Proof)

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_{1}>Y_{0}$.
- Assume $x \in L$ in the following
- Case $x \notin L$ symmetric:
- set $z_{i}:=1-y_{i}$ and consider Y_{0} instead of Y_{1}

Error reduction for BPP (Proof)

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_{1}>Y_{0}$.
- Assume $x \in L$ in the following
- Case $x \notin L$ symmetric:
- set $z_{i}:=1-y_{i}$ and consider Y_{0} instead of Y_{1}
- Probability that "majority" wrongly says $x \notin L$:

$$
\operatorname{Pr}\left[Y_{1} \leq Y_{0}\right]=\operatorname{Pr}\left[Y_{1} \leq r / 2\right]
$$

Error reduction for BPP (Proof)

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_{1}>Y_{0}$.
- Assume $x \in L$ in the following
- Case $x \notin L$ symmetric:
- set $z_{i}:=1-y_{i}$ and consider Y_{0} instead of Y_{1}
- Probability that "majority" wrongly says $x \notin L$:

$$
\operatorname{Pr}\left[Y_{1} \leq Y_{0}\right]=\operatorname{Pr}\left[Y_{1} \leq r / 2\right]
$$

- Chernoff bound: for $X \sim \operatorname{Bin}(n ; p)$ with $\mu:=\mathbb{E}[X]$ and $\delta \in(0,1)$

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq e^{-\mu \delta^{2} / 2}
$$

Error reduction for BPP (Proof)

- Idea: let majority decide, i.e., output $x \in L$ iff $Y_{1}>Y_{0}$.
- Assume $x \in L$ in the following
- Case $x \notin L$ symmetric:
- set $z_{i}:=1-y_{i}$ and consider Y_{0} instead of Y_{1}
- Probability that "majority" wrongly says $x \notin L$:

$$
\operatorname{Pr}\left[Y_{1} \leq Y_{0}\right]=\operatorname{Pr}\left[Y_{1} \leq r / 2\right]
$$

- Chernoff bound: for $X \sim \operatorname{Bin}(n ; p)$ with $\mu:=\mathbb{E}[X]$ and $\delta \in(0,1)$

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq e^{-\mu \delta^{2} / 2}
$$

- Thus:

$$
\operatorname{Pr}\left[Y_{1} \leq r / 2\right]=\operatorname{Pr}\left[Y_{1} \leq(1-(1-r /(2 \mu))) \mu\right] \leq e^{-\mu \delta^{2} / 2}
$$

as long as $\delta:=1-r /(2 \mu) \in(0,1)$.

Error reduction for BPP (Proof)

- Bounds on $\delta=1-r /(2 \mu)$:

$$
0<\delta<1 \Leftrightarrow 0<r / 2<\mu \Leftarrow r / 2+r|x|^{-c} \leq \mu
$$

- Thus, choose r s.t.

$$
\operatorname{Pr}\left[Y_{1} \leq r / 2\right] \leq e^{-\mu \delta^{2} / 2} \leq 1 / 4 .
$$

i.e.,

$$
\mu \delta^{2} \geq 2 \log _{e} 4
$$

- With

$$
\mu \geq r / 2+r|x|^{-c}
$$

we obtain:

$$
\mu \delta^{2}=(\mu-r / 2)(1-(r / 2) / \mu)^{2} \geq r|x|^{-c}\left(1-\frac{r / 2}{r / 2+r|x|^{-c}}\right)^{2}=r \cdot \frac{|x|^{-3 c}}{\left(1 / 2+|x|^{-c}\right)^{2}}
$$

- So, choose $r \geq\left(\log _{e} 4\right) \cdot\left(|x|^{3 c} / 2+2|x|^{2 c}+2|x|^{c}\right)$.

Error reduction for BPP (Proof)

- For $x \notin L$ we obtain analogously:

$$
\operatorname{Pr}\left[Y_{0} \leq Y_{1}\right] \leq 1 / 4 \text { if } r \geq\left(|x|^{3 c} / 2+2|x|^{2 c}+2|x|^{c}\right) .
$$

- So, a polynomial number of rounds suffices to reduce error probability to at most 1/4.
- Proof also yields:

Theorem (Error reduction for BPP)
For any $d>0$:

$$
B P P=B P P\left(1-2^{-n^{d}}\right)
$$

Error reduction for BPP (Proof)

- For $x \notin L$ we obtain analogously:

$$
\operatorname{Pr}\left[Y_{0} \leq Y_{1}\right] \leq 1 / 4 \text { if } r \geq\left(|x|^{3 c} / 2+2|x|^{2 c}+2|x|^{c}\right) .
$$

- So, a polynomial number of rounds suffices to reduce error probability to at most 1/4.
- Proof also yields:

Theorem (Error reduction for BPP)

For any $d>0$:

$$
B P P=B P P\left(1-2^{-n^{d}}\right)
$$

- Ex.: Show the theorem.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP \checkmark
- Power of randomization with two-sided error: PP, BPP
- Enlarging RP by false negatives and false positives \checkmark
- Comparison: NP, RP, coRP, ZPP, BPP, PP \checkmark
- Probabilistic Turing machines \checkmark
- Expected running time \checkmark
- Error reduction for BPP \checkmark
- Some kind of derandomization for BPP
- BPP in the polynomial hierarchy

Some Kind of Derandomization

Theorem

Let $L \in$ BPP be decided by a poly-time TM $M(x, u)$ using certificates of poly-length p(n).
Then for every $n \in \mathbb{N}$ there exists a certificate u_{n} s.t. for all x with $|x|=n$:

$$
x \in L \text { iff } M\left(x, u_{n}\right)=1
$$

Some Kind of Derandomization

Theorem

Let $L \in$ BPP be decided by a poly-time TM $M(x, u)$ using certificates of poly-length p(n).
Then for every $n \in \mathbb{N}$ there exists a certificate u_{n} s.t. for all x with $|x|=n$:

$$
x \in L \text { iff } M\left(x, u_{n}\right)=1
$$

- Error reduction: $\operatorname{BPP}=\operatorname{BPP}\left(1-4^{-n}\right)$
- For a given n let choose $u \in\{0,1\}^{p(n)}$ uniformly at random.

Some Kind of Derandomization

Theorem

Let $L \in$ BPP be decided by a poly-time TM $M(x, u)$ using certificates of poly-length p(n).
Then for every $n \in \mathbb{N}$ there exists a certificate u_{n} s.t. for all x with $|x|=n$:

$$
x \in L \text { iff } M\left(x, u_{n}\right)=1
$$

- Error reduction: $\operatorname{BPP}=\operatorname{BPP}\left(1-4^{-n}\right)$
- For a given n let choose $u \in\{0,1\}^{p(n)}$ uniformly at random.
- Let B_{x} be the event of bad certificates for x :

$$
B_{x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u)=0\right\} .
$$

Some Kind of Derandomization

Theorem

Let $L \in$ BPP be decided by a poly-time TM $M(x, u)$ using certificates of poly-length p(n).
Then for every $n \in \mathbb{N}$ there exists a certificate u_{n} s.t. for all x with $|x|=n$:

$$
x \in L \text { iff } M\left(x, u_{n}\right)=1
$$

- Error reduction: $\operatorname{BPP}=\operatorname{BPP}\left(1-4^{-n}\right)$
- For a given n let choose $u \in\{0,1\}^{p(n)}$ uniformly at random.
- Let B_{x} be the event of bad certificates for x :

$$
B_{x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u)=0\right\} .
$$

- $\operatorname{Pr}\left[B_{x}\right] \leq$

Some Kind of Derandomization

Theorem

Let $L \in$ BPP be decided by a poly-time TM $M(x, u)$ using certificates of poly-length p(n).
Then for every $n \in \mathbb{N}$ there exists a certificate u_{n} s.t. for all x with $|x|=n$:

$$
x \in L \text { iff } M\left(x, u_{n}\right)=1
$$

- Error reduction: $\operatorname{BPP}=\operatorname{BPP}\left(1-4^{-n}\right)$
- For a given n let choose $u \in\{0,1\}^{p(n)}$ uniformly at random.
- Let B_{x} be the event of bad certificates for x :

$$
B_{x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u)=0\right\} .
$$

- $\operatorname{Pr}\left[B_{x}\right] \leq 4^{-n}$

Some Kind of Derandomization

Theorem

Let $L \in$ BPP be decided by a poly-time TM $M(x, u)$ using certificates of poly-length p(n).
Then for every $n \in \mathbb{N}$ there exists a certificate u_{n} s.t. for all x with $|x|=n$:

$$
x \in L \text { iff } M\left(x, u_{n}\right)=1
$$

- Error reduction: $\operatorname{BPP}=\operatorname{BPP}\left(1-4^{-n}\right)$
- For a given n let choose $u \in\{0,1\}^{p(n)}$ uniformly at random.
- Let B_{x} be the event of bad certificates for x :

$$
B_{x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u)=0\right\} .
$$

- $\operatorname{Pr}\left[B_{x}\right] \leq 4^{-n}$
- $\operatorname{Pr}\left[\bigcup_{|x|=n} B_{x}\right] \leq$

Some Kind of Derandomization

Theorem

Let $L \in$ BPP be decided by a poly-time TM $M(x, u)$ using certificates of poly-length p(n).
Then for every $n \in \mathbb{N}$ there exists a certificate u_{n} s.t. for all x with $|x|=n$:

$$
x \in L \text { iff } M\left(x, u_{n}\right)=1
$$

- Error reduction: $\operatorname{BPP}=\operatorname{BPP}\left(1-4^{-n}\right)$
- For a given n let choose $u \in\{0,1\}^{p(n)}$ uniformly at random.
- Let B_{x} be the event of bad certificates for x :

$$
B_{x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u)=0\right\} .
$$

- $\operatorname{Pr}\left[B_{x}\right] \leq 4^{-n}$
- $\operatorname{Pr}\left[\bigcup_{|x|=n} B_{x}\right] \leq \sum_{|x|=n} \operatorname{Pr}\left[B_{x}\right] \leq 2^{n} \cdot 4^{-n}=2^{-n}$

Some Kind of Derandomization

Theorem

Let $L \in$ BPP be decided by a poly-time TM $M(x, u)$ using certificates of poly-length p(n).
Then for every $n \in \mathbb{N}$ there exists a certificate u_{n} s.t. for all x with $|x|=n$:

$$
x \in L \text { iff } M\left(x, u_{n}\right)=1
$$

- Error reduction: $\operatorname{BPP}=\operatorname{BPP}\left(1-4^{-n}\right)$
- For a given n let choose $u \in\{0,1\}^{p(n)}$ uniformly at random.
- Let B_{x} be the event of bad certificates for x :

$$
B_{x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u)=0\right\} .
$$

- $\operatorname{Pr}\left[B_{x}\right] \leq 4^{-n}$
- $\operatorname{Pr}\left[\bigcup_{|x|=n} B_{x}\right] \leq \sum_{|x|=n} \operatorname{Pr}\left[B_{x}\right] \leq 2^{n} \cdot 4^{-n}=2^{-n}$
- $\operatorname{Pr}\left[\bigcap_{|x|=n} \bar{B}_{x}\right] \geq$

Some Kind of Derandomization

Theorem

Let $L \in$ BPP be decided by a poly-time TM $M(x, u)$ using certificates of poly-length p(n).
Then for every $n \in \mathbb{N}$ there exists a certificate u_{n} s.t. for all x with $|x|=n$:

$$
x \in L \text { iff } M\left(x, u_{n}\right)=1
$$

- Error reduction: $\operatorname{BPP}=\operatorname{BPP}\left(1-4^{-n}\right)$
- For a given n let choose $u \in\{0,1\}^{p(n)}$ uniformly at random.
- Let B_{x} be the event of bad certificates for x :

$$
B_{x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u)=0\right\} .
$$

- $\operatorname{Pr}\left[B_{x}\right] \leq 4^{-n}$
- $\operatorname{Pr}\left[\bigcup_{|x|=n} B_{x}\right] \leq \sum_{|x|=n} \operatorname{Pr}\left[B_{x}\right] \leq 2^{n} \cdot 4^{-n}=2^{-n}$
- $\operatorname{Pr}\left[\bigcap_{|x|=n} \bar{B}_{x}\right] \geq 1-2^{-n}>0$

Some Kind of Derandomization

Theorem

Let $L \in$ BPP be decided by a poly-time TM $M(x, u)$ using certificates of poly-length p(n).
Then for every $n \in \mathbb{N}$ there exists a certificate u_{n} s.t. for all x with $|x|=n$:

$$
x \in L \text { iff } M\left(x, u_{n}\right)=1
$$

- Error reduction: $\operatorname{BPP}=\operatorname{BPP}\left(1-4^{-n}\right)$
- For a given n let choose $u \in\{0,1\}^{p(n)}$ uniformly at random.
- Let B_{x} be the event of bad certificates for x :

$$
B_{x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid x \in L \Leftrightarrow M(x, u)=0\right\} .
$$

- $\operatorname{Pr}\left[B_{x}\right] \leq 4^{-n}$
- $\operatorname{Pr}\left[\bigcup_{|x|=n} B_{x}\right] \leq \sum_{|x|=n} \operatorname{Pr}\left[B_{x}\right] \leq 2^{n} \cdot 4^{-n}=2^{-n}$
- $\operatorname{Pr}\left[\bigcap_{|x|=n} \bar{B}_{x}\right] \geq 1-2^{-n}>0$
- Seems unlikely for NP.

Agenda

- Motivation: From NP to a more realistic class by randomization \checkmark
- Randomized poly-time with one-sided error: RP, coRP, ZPP \checkmark
- Power of randomization with two-sided error: PP, BPP
- Enlarging RP by false negatives and false positives \checkmark
- Comparison: NP, RP, coRP, ZPP, BPP, PP \checkmark
- Probabilistic Turing machines \checkmark
- Expected running time \checkmark
- Error reduction for BPP \checkmark
- Some kind of derandomization for BPP \checkmark
- BPP in the polynomial hierarchy

BPP in the Polynomial Hierarchy PH

Theorem

$B P P \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

- Reminder:
- Definition of $L \in \Sigma_{2}^{p}$:

$$
x \in L \text { iff } \exists u \in\{0,1\}^{p(|x|)} \forall v \in\{0,1\}^{p(|x|)}: M(x, u, v)=1 .
$$

- Definition of $L \in \Pi_{2}^{p}$:

$$
x \in L \text { iff } \forall u \in\{0,1\}^{p(|x|)} \exists v \in\{0,1\}^{p(|x|)}: M(x, u, v)=1 .
$$

BPP in the Polynomial Hierarchy PH

Theorem

$B P P \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

- Reminder:
- Definition of $L \in \Sigma_{2}^{p}$:

$$
x \in L \text { iff } \exists u \in\{0,1\}^{p(|x|)} \forall v \in\{0,1\}^{p(|x|)}: M(x, u, v)=1 .
$$

- Definition of $L \in \Pi_{2}^{p}$:

$$
x \in L \text { iff } \forall u \in\{0,1\}^{p(|x|)} \exists v \in\{0,1\}^{p(|x|)}: M(x, u, v)=1
$$

- As $B P P=c o B P P$ it suffices to show $B P P \subseteq \Sigma_{2}^{p}$:

$$
L \in B P P \Rightarrow \bar{L} \in B P P \Rightarrow \bar{L} \in \Sigma_{2}^{p} \Rightarrow L \in \Pi_{2}^{p}
$$

BPP in the Polynomial Hierarchy PH

- We use again that $\operatorname{BPP}=\operatorname{BPP}\left(1-4^{-n}\right)$.
- Let $p(\cdot)$ be the polynomial bounding the certificate length.
- Recall $A_{M, x}$: "accept-certificates"

$$
A_{M, x}:=\left\{u \in\{0,1\}^{p(|x|)} \mid M(x, u)=1\right\}
$$

- Then

$$
x \in L \Rightarrow\left|A_{M, x}\right| \geq\left(1-4^{-|x|}\right) 2^{p(|x|)} \text { and } x \notin L \Rightarrow\left|A_{M, x}\right| \leq 4^{-n} \cdot 2^{p(|x|)}
$$

- Need a formula to distinguish the two cases.

BPP in the Polynomial Hierarchy PH

BPP in the Polynomial Hierarchy PH

- Assume $|x|=1$ and $p(|x|)=3$,
- i.e., possible certificates in $\{0,1\}^{3}$.
- If $x \in L$, then $\left|A_{M, x}\right| \geq 3 / 4 \cdot 2^{3}=6$.
- If $x \notin L$, then $\left|A_{M, x}\right| \leq 1 / 4 \cdot 2^{3}=2$.

BPP in the Polynomial Hierarchy PH

- Assume $x \notin L$, i.e., $\left|A_{M, x}\right| \leq 1 / 4 \cdot 8=2$

BPP in the Polynomial Hierarchy PH

- Assume $x \notin L$, i.e., $\left|A_{M, x}\right| \leq 1 / 4 \cdot 8=2$
- Choose any $u_{1}, u_{2} \in\{0,1\}^{3}$.

BPP in the Polynomial Hierarchy PH

- Assume $x \notin L$, i.e., $\left|A_{M, x}\right| \leq 1 / 4 \cdot 8=2$
- Choose any $u_{1}, u_{2} \in\{0,1\}^{3}$.
- By chance, we might hit $A_{M, x}$.

BPP in the Polynomial Hierarchy PH

- Assume $x \notin L$, i.e., $\left|A_{M, x}\right| \leq 1 / 4 \cdot 8=2$
- Choose any $u_{1}, u_{2} \in\{0,1\}^{3}$.
- By chance, we might hit $A_{M, x}$.
- Claim: But there is some $r \in\{0,1\}^{3}$ s.t.

$$
\left\{u_{1} \oplus r, u_{2} \oplus r\right\} \cap A_{M, x}=\emptyset .
$$

(\oplus : bitwise xor)

BPP in the Polynomial Hierarchy PH

- Note:

$$
u_{i} \oplus r \in A_{M, x} \text { iff } r \in A_{M, x} \oplus u_{i} .
$$

BPP in the Polynomial Hierarchy PH

- Note:

$$
u_{i} \oplus r \in A_{M, x} \text { iff } r \in A_{M, x} \oplus u_{i} .
$$

- So, choose

$$
r \in \overline{A_{M, x} \oplus u_{1} \cup A_{M, x} \oplus u_{2}}=\overline{\{000,011\} \cup\{101,110\}}
$$

BPP in the Polynomial Hierarchy PH

- Note:

$$
u_{i} \oplus r \in A_{M, x} \text { iff } r \in A_{M, x} \oplus u_{i} .
$$

- So, choose

$$
r \in \overline{A_{M, x} \oplus u_{1} \cup A_{M, x} \oplus u_{2}}=\overline{\{000,011\} \cup\{101,110\}} .
$$

- E.g. $r=001$.

BPP in the Polynomial Hierarchy PH

- Note:

$$
u_{i} \oplus r \in A_{M, x} \text { iff } r \in A_{M, x} \oplus u_{i} .
$$

- So, choose

$$
r \in \overline{A_{M, x} \oplus u_{1} \cup A_{M, x} \oplus u_{2}}=\overline{\{000,011\} \cup\{101,110\}} .
$$

- E.g. $r=001$.

BPP in the Polynomial Hierarchy PH

- Assume $x \in L$, i.e., $\left|A_{M, x}\right| \geq 6$.

BPP in the Polynomial Hierarchy PH

- Assume $x \in L$, i.e., $\left|A_{M, x}\right| \geq 6$.
- Claim: We can choose u_{1}, u_{2} s.t. for any $r \in\{0,1\}^{3}$

$$
\left\{u_{1} \oplus r, u_{2} \oplus r\right\} \cap A_{M, x} \neq \emptyset .
$$

- Note: this is exactly the negation of the previous claim.

BPP in the Polynomial Hierarchy PH

- E.g., take $u_{1}=000$.

BPP in the Polynomial Hierarchy PH

- E.g., take $u_{1}=000$.
- Then $u_{1} \oplus r \in R_{M, x}$ iff $r \in u_{1} \oplus R_{M, x}=\{100,110\}$.

BPP in the Polynomial Hierarchy PH

- E.g., take $u_{1}=000$.
- Then $u_{1} \oplus r \in R_{M, x}$ iff $r \in u_{1} \oplus R_{M, x}=\{100,110\}$.
- So, take $u_{2} \notin 100 \oplus R_{M, x} \cup 110 \oplus R_{M, x}$.

BPP in the Polynomial Hierarchy PH

- E.g., take $u_{1}=000$.
- Then $u_{1} \oplus r \in R_{M, x}$ iff $r \in u_{1} \oplus R_{M, x}=\{100,110\}$.
- So, take $u_{2} \notin 100 \oplus R_{M, x} \cup 110 \oplus R_{M, x}$.

BPP in the Polynomial Hierarchy PH

- E.g., take $u_{1}=000$.
- Then $u_{1} \oplus r \in R_{M, x}$ iff $r \in u_{1} \oplus R_{M, x}=\{100,110\}$.
- So, take $u_{2} \notin 100 \oplus R_{M, x} \cup 110 \oplus R_{M, x}$.
- E.g., $u_{2}=011$.

BPP in the Polynomial Hierarchy PH

- Summary:

$$
x \in L \cap\{0,1\}^{1} \text { iff } \exists u_{1}, u_{2} \in\{0,1\}^{3} \forall r \in\{0,1\}^{3}: \bigvee_{i=1,2} u_{i} \oplus r \in A_{M, x} .
$$

Reminder: $u_{i} \oplus r \in A_{M, x}$ iff $M\left(x, u_{i} \oplus r\right)=1$.

BPP in the Polynomial Hierarchy PH

- Summary:

$$
x \in L \cap\{0,1\}^{1} \text { iff } \exists u_{1}, u_{2} \in\{0,1\}^{3} \forall r \in\{0,1\}^{3}: \bigvee_{i=1,2} u_{i} \oplus r \in A_{M, x} .
$$

Reminder: $u_{i} \oplus r \in A_{M, x}$ iff $M\left(x, u_{i} \oplus r\right)=1$.

- So, this is in Σ_{2}^{p}.
- And works also for $|x|>1$ and arbitrary $p(|x|)$.

BPP in the Polynomial Hierarchy PH

Claim:

Given x set $k:=\lceil p(|x|) /|x|\rceil+1$. Then:

$$
x \in L \text { iff } \exists u_{1}, \ldots, u_{k} \in\{0,1\}^{p(|x|)} \forall r \in\{0,1\}^{p(|x|)}: \bigvee_{i=1}^{k} M\left(x, u_{i} \oplus r\right)=1 .
$$

- Note, the certificate $u_{1} u_{2} \ldots u_{k}$ has length polynomial in $|x|$.
- So, this formula represents a computation in Σ_{2}^{p}.

BPP in the Polynomial Hierarchy PH

Claim:

Given x set $k:=\lceil p(|x|) /|x|\rceil+1$. Then:

$$
x \in L \text { iff } \exists u_{1}, \ldots, u_{k} \in\{0,1\}^{p(|x|)} \forall r \in\{0,1\}^{p(|x|)}: \bigvee_{i=1}^{k} M\left(x, u_{i} \oplus r\right)=1 .
$$

- Assume $x \notin L$: To show there is always an r s.t.

$$
\bigwedge_{i=1}^{k} r \oplus u_{i} \notin A_{M, x} \equiv r \notin \bigcup_{i=1}^{k} u_{i} \oplus A_{M, x} .
$$

BPP in the Polynomial Hierarchy PH

Claim:

Given x set $k:=\lceil p(|x|) /|x|\rceil+1$. Then:

$$
x \in L \text { iff } \exists u_{1}, \ldots, u_{k} \in\{0,1\}^{p(|x|)} \forall r \in\{0,1\}^{p(|x|)}: \bigvee_{i=1}^{k} M\left(x, u_{i} \oplus r\right)=1
$$

- Assume $x \notin L$: To show there is always an r s.t.

$$
\bigwedge_{i=1}^{k} r \oplus u_{i} \notin A_{M, x} \equiv r \notin \bigcup_{i=1}^{k} u_{i} \oplus A_{M, x}
$$

- Size of the complement of this set:

$$
\left|\bigcup_{i=1}^{k} u_{i} \oplus A_{M, x}\right| \leq \sum_{i=1}^{k}\left|u_{i} \oplus A_{M, x}\right|=k\left|A_{M, x}\right| \leq k 4^{-|x|} 2^{p(|x|)}<2^{p(|x|)}
$$

BPP in the Polynomial Hierarchy PH

Claim:

Given x set $k:=\lceil p(|x|) /|x|\rceil+1$. Then:

$$
x \in L \text { iff } \exists u_{1}, \ldots, u_{k} \in\{0,1\}^{p(|x|)} \forall r \in\{0,1\}^{p(|x|)}: \bigvee_{i=1}^{k} M\left(x, u_{i} \oplus r\right)=1
$$

- Assume $x \notin L$: To show there is always an r s.t.

$$
\bigwedge_{i=1}^{k} r \oplus u_{i} \notin A_{M, x} \equiv r \notin \bigcup_{i=1}^{k} u_{i} \oplus A_{M, x}
$$

- Size of the complement of this set:

$$
\left|\bigcup_{i=1}^{k} u_{i} \oplus A_{M, x}\right| \leq \sum_{i=1}^{k}\left|u_{i} \oplus A_{M, x}\right|=k\left|A_{M, x}\right| \leq k 4^{-|x|} 2^{p(|x|)}<2^{p(|x|)}
$$

- So, this set cannot be empty no matter how we choose u_{1}, \ldots, u_{k}.

BPP in the Polynomial Hierarchy PH

Claim:

Given x set $k:=\lceil p(|x|) /|x|\rceil+1$. Then:

$$
x \in L \text { iff } \exists u_{1}, \ldots, u_{k} \in\{0,1\}^{p(|x|)} \forall r \in\{0,1\}^{p(|x|)}: \bigvee_{i=1}^{k} M\left(x, u_{i} \oplus r\right)=1 .
$$

- Assume $x \in L$: To show there are u_{1}, \ldots, u_{k} s.t.

$$
\forall r: \bigvee_{i=1}^{k} u_{i} \oplus r \in A_{M, x} \equiv \neg \exists r: \bigwedge_{i=1}^{k} u_{i} \in r \oplus R_{M, x} .
$$

BPP in the Polynomial Hierarchy PH

Claim:

Given x set $k:=\lceil p(|x|) /|x|\rceil+1$. Then:

$$
x \in L \text { iff } \exists u_{1}, \ldots, u_{k} \in\{0,1\}^{p(|x|)} \forall r \in\{0,1\}^{p(|x|)}: \bigvee_{i=1}^{k} M\left(x, u_{i} \oplus r\right)=1
$$

- Assume $x \in L$: To show there are u_{1}, \ldots, u_{k} s.t.

$$
\forall r: \bigvee_{i=1}^{k} u_{i} \oplus r \in A_{M, x} \equiv \neg \exists r: \bigwedge_{i=1}^{k} u_{i} \in r \oplus R_{M, x} .
$$

- Let U_{1}, \ldots, U_{k} be independent random variables, uniformly distributed on $\{0,1\}^{p(|x|)}$. (Doesn't matter if some coincide!)

BPP in the Polynomial Hierarchy PH

Claim:

Given x set $k:=\lceil p(|x|) /|x|\rceil+1$. Then:

$$
x \in L \text { iff } \exists u_{1}, \ldots, u_{k} \in\{0,1\}^{p(|x|)} \forall r \in\{0,1\}^{p(|x|)}: \bigvee_{i=1}^{k} M\left(x, u_{i} \oplus r\right)=1
$$

- Assume $x \in L$: To show there are u_{1}, \ldots, u_{k} s.t.

$$
\forall r: \bigvee_{i=1}^{k} u_{i} \oplus r \in A_{M, x} \equiv \neg \exists r: \bigwedge_{i=1}^{k} u_{i} \in r \oplus R_{M, x} .
$$

- Let U_{1}, \ldots, U_{k} be independent random variables, uniformly distributed on $\{0,1\}^{p(|x|)}$. (Doesn't matter if some coincide!)
- For any given $r: \operatorname{Pr}\left[U_{i} \in r \oplus R_{M, x}\right]=\frac{\left|r \oplus R_{M x x}\right|}{2^{p(x)}}=\frac{\left|R_{m \times x}\right|}{2^{p(x)}} \leq 4^{-n}$.

BPP in the Polynomial Hierarchy PH

Claim:

Given x set $k:=\lceil p(|x|) /|x|\rceil+1$. Then:

$$
x \in L \text { iff } \exists u_{1}, \ldots, u_{k} \in\{0,1\}^{p(|x|)} \forall r \in\{0,1\}^{p(|x|)}: \bigvee_{i=1}^{k} M\left(x, u_{i} \oplus r\right)=1
$$

- Assume $x \in L$: To show there are u_{1}, \ldots, u_{k} s.t.

$$
\forall r: \bigvee_{i=1}^{k} u_{i} \oplus r \in A_{M, x} \equiv \neg \exists r: \bigwedge_{i=1}^{k} u_{i} \in r \oplus R_{M, x} .
$$

- Let U_{1}, \ldots, U_{k} be independent random variables, uniformly distributed on $\{0,1\}^{p(|x|)}$. (Doesn't matter if some coincide!)
- For any given $r: \operatorname{Pr}\left[U_{i} \in r \oplus R_{M, x}\right]=\frac{\left|r \oplus R_{M, x}\right|}{2^{p(x)}}=\frac{\left|R_{M, x}\right|}{2^{p(x))}} \leq 4^{-n}$.
- $\operatorname{Pr}\left[\bigwedge_{i=1}^{k} U_{i} \in r \oplus R_{M, X}\right]=\operatorname{Pr}\left[U_{1} \in r \oplus R_{M, x}\right]^{k} \leq 4^{-k n}$.

BPP in the Polynomial Hierarchy PH

Claim:

Given x set $k:=\lceil p(|x|) /|x|\rceil+1$. Then:

$$
x \in L \text { iff } \exists u_{1}, \ldots, u_{k} \in\{0,1\}^{p(|x|)} \forall r \in\{0,1\}^{p(|x|)}: \bigvee_{i=1}^{k} M\left(x, u_{i} \oplus r\right)=1
$$

- Assume $x \in L$: To show there are u_{1}, \ldots, u_{k} s.t.

$$
\forall r: \bigvee_{i=1}^{k} u_{i} \oplus r \in A_{M, x} \equiv \neg \exists r: \bigwedge_{i=1}^{k} u_{i} \in r \oplus R_{M, x} .
$$

- Let U_{1}, \ldots, U_{k} be independent random variables, uniformly distributed on $\{0,1\}^{p(|x|)}$. (Doesn't matter if some coincide!)
- For any given $r: \operatorname{Pr}\left[U_{i} \in r \oplus R_{M, x}\right]=\frac{\left|r \oplus R_{M, x}\right|}{2^{p(x)}}=\frac{\left|R_{M, x}\right|}{2^{p(x))}} \leq 4^{-n}$.
- $\operatorname{Pr}\left[\bigwedge_{i=1}^{k} U_{i} \in r \oplus R_{M, x}\right]=\operatorname{Pr}\left[U_{1} \in r \oplus R_{M, x}\right]^{k} \leq 4^{-k n}$.
- $\operatorname{Pr}\left[\exists r: \bigwedge_{i=1}^{k} U_{i} \in r \oplus R_{M, x}\right] \leq \sum_{r \in\{0,1\}^{*}} 4^{-k n}=2^{p(|x|)-2 k n}<1$.

BPP in the Polynomial Hierarchy PH

Claim:

Given x set $k:=\lceil p(|x|) /|x|\rceil+1$. Then:

$$
x \in L \text { iff } \exists u_{1}, \ldots, u_{k} \in\{0,1\}^{p(|x|)} \forall r \in\{0,1\}^{p(|x|)}: \bigvee_{i=1}^{k} M\left(x, u_{i} \oplus r\right)=1
$$

- For both cases there is an n_{0} s.t. the bounds hold for all x with $|x|>n_{0}$.
- $L \cap\{0,1\}^{\leq n_{0}}$ can be decided trivially in P.

Summary

- Obtain RP from NP by
- choosing the certificate (transition function) uniformaly at random
- requiring a bound on $\operatorname{Pr}\left[A_{M, x}\right]$ if $x \in L$ s.t.
- error prob. can be reduced within a polynomial number of reruns.

Summary

- Obtain RP from NP by
- choosing the certificate (transition function) uniformaly at random
- requiring a bound on $\operatorname{Pr}\left[A_{M, x}\right]$ if $x \in L$ s.t.
- error prob. can be reduced within a polynomial number of reruns.
- One-sided probability of error:
- RP: false negatives
- coRP: false postives
- Monte Carlo algorithms: ZEROP \in coRP, perfect matchings \in RP

Summary

- Obtain RP from NP by
- choosing the certificate (transition function) uniformaly at random
- requiring a bound on $\operatorname{Pr}\left[A_{M, x}\right]$ if $x \in L$ s.t.
- error prob. can be reduced within a polynomial number of reruns.
- One-sided probability of error:
- RP: false negatives
- coRP: false postives
- Monte Carlo algorithms: ZEROP \in coRP, perfect matchings \in RP
- ZPP := RP \cap coRP can be decided in expected polynomial time
- Zero probability of error (if we wait for the definitive answer)
- Las Vegas algorithms

Summary

- Obtained PP from RP by
- allowing also for false positives
- Error probabilities depend on each other: $\leq 1 / 4$ and $<1-1 / 4$
- NP \subseteq PP: "PP allows for trading one error prob. for the other"

Summary

- Obtained PP from RP by
- allowing also for false positives
- Error probabilities depend on each other: $\leq 1 / 4$ and $<1-1 / 4$
- NP \subseteq PP: "PP allows for trading one error prob. for the other"
- Obtained BPP from PP by
- bounding both error prob. independently of each other.
- Papadimitriou: "most comprehensive, yet plausible notion of realistic computation"
- Conjecture: $\mathrm{BPP}=\mathrm{P}$
- Expected running time as powerful as exact running time.
- One certificate u_{n} for all x with $|x|=n$.
- Error reduction to $2^{-n^{k}}$ within a polynomial number of reruns.

Summary

- $\Pi_{2}^{p} \cap \Sigma_{2}^{p} \subseteq P P$ unknown.
- NP \cup coNP \subseteq PP known.

Summary

- Gödel Prize (1998) for Toda's theorem (1989): PH \subseteq PPP
- PPP: poly-time TMs having access to a PP-oracle.
- If $\mathrm{PP} \subseteq \Sigma_{\mathrm{k}}^{\mathrm{p}}$ for some k, then $\mathrm{PH}=\Sigma_{\mathrm{k}}^{\mathrm{p}}$.
- If $\mathrm{PP} \subseteq \mathrm{PH}$, then PH collapses at some finite level as PP has complete problems (see exercises).

Syntactic and Semantic Complexity Classes

- Just mentioned: PP has complete probems
- $\phi \in$ MAJSAT iff at least $2^{n-1}+1$ satisfying assignments of 2^{n} possible (see exercises).
- Unknown if there are complete problems for ZPP, RP, BPP.

Syntactic and Semantic Complexity Classes

- Just mentioned: PP has complete probems
- $\phi \in$ MAJSAT iff at least $2^{n-1}+1$ satisfying assignments of 2^{n} possible (see exercises).
- Unknown if there are complete problems for ZPP, RP, BPP.
- Reason to believe that there are none:
- P, NP, coNP are syntatic complexity classes (complete problems).
- ZPP, RP, coRP, BPP are semantic complexity classes.
- Example:
- NP:

$$
x \in L \Leftrightarrow \operatorname{Pr}\left[A_{M, x}\right]>0
$$

Every poly-time TM $M(x, u)$ defines a language in NP.

- BPP:

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[R_{M, x}\right] \geq 3 / 4
$$

Not every poly-time TM $M(x, u)$ defines a language in BPP.

Syntactic and Semantic Complexity Classes

- Just mentioned: PP has complete probems
- $\phi \in$ MAJSAT iff at least $2^{n-1}+1$ satisfying assignments of 2^{n} possible (see exercises).
- Unknown if there are complete problems for ZPP, RP, BPP.
- Reason to believe that there are none:
- P, NP, coNP are syntatic complexity classes (complete problems).
- ZPP, RP, coRP, BPP are semantic complexity classes.
- Example:
- NP:

$$
x \in L \Leftrightarrow \operatorname{Pr}\left[A_{M, x}\right]>0
$$

Every poly-time TM $M(x, u)$ defines a language in NP.

- BPP:

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[R_{M, x}\right] \geq 3 / 4
$$

Not every poly-time TM $M(x, u)$ defines a language in BPP.

- Ex.: What about PP?

Leaf languages

Definition

For a poly-time $M(x, u)$ using certificates $u \in\{0,1\}^{p(|x|)}$ set

$$
L_{M}(x):=y_{0} y_{1} \ldots y_{2^{p(x)}-1} \text { with } y_{i}=M\left(x, u_{i}\right) \text { and }\left(u_{i}\right)_{2}=i
$$

The leaf-language of M is then $L_{M}:=\left\{L_{M}(x) \mid x \in\{0,1\}^{*}\right\}$.

Leaf languages

For $A, R \subseteq\{0,1\}^{*}$ with $A \cap R=\emptyset$ the class $C[A, R]$ consists of all language L for which there is a TM $M(x, u)$ s.t. $\forall x \in\{0,1\}^{*}$:

$$
x \in L \Rightarrow L_{M}(x) \in A \text { and } x \notin L \Rightarrow L_{M}(x) \in R .
$$

Leaf languages

Definition (cont'd)
$C[A, R]$ is called syntactic if $A \cup R=\{0,1\}^{*}$, otherwise it is called semantic.

Leaf languages

- $N P=C\left[(0+1)^{*} 1(0+1)^{*}, 0^{*}\right]$

Leaf languages

- $N P=C\left[(0+1)^{*} 1(0+1)^{*}, 0^{*}\right]$

Leaf languages

- $N P=C\left[(0+1)^{*} 1(0+1)^{*}, 0^{*}\right]$
- $\mathrm{RP}=\mathrm{C}\left[\left\{w \in\{0,1\}^{*} \left\lvert\, \frac{\# \uparrow w}{\#{ }_{0} w} \geq 3\right.\right\}, 0^{*}\right]$

Leaf languages

- $N P=C\left[(0+1)^{*} 1(0+1)^{*}, 0^{*}\right]$
- $\mathrm{RP}=\mathrm{C}\left[\left\{w \in\{0,1\}^{*} \left\lvert\, \frac{\# \uparrow w}{\#{ }_{0} w} \geq 3\right.\right\}, 0^{*}\right]$

Leaf languages

- $N P=C\left[(0+1)^{*} 1(0+1)^{*}, 0^{*}\right]$
- $R P=C\left[\left\{w \in\{0,1\}^{*} \left\lvert\, \frac{\#+w}{\#{ }_{0} w} \geq 3\right.\right\}, 0^{*}\right]$
- $P P=C\left[\left\{w \in\{0,1\}^{*} \left\lvert\, \frac{\# 1 w}{\# 0 w} \geq 3\right.\right\},\left\{w \in\{0,1\}^{*} \left\lvert\, \frac{\#+w}{\# \eta_{0} w}<3\right.\right\}\right]$

Leaf languages

- $N P=C\left[(0+1)^{*} 1(0+1)^{*}, 0^{*}\right]$
- $R P=C\left[\left\{w \in\{0,1\}^{*} \left\lvert\, \frac{\#+w}{\#{ }_{0} w} \geq 3\right.\right\}, 0^{*}\right]$
- $P P=C\left[\left\{w \in\{0,1\}^{*} \left\lvert\, \frac{\# 1 w}{\# 0 w} \geq 3\right.\right\},\left\{w \in\{0,1\}^{*} \left\lvert\, \frac{\#+w}{\# \eta_{0} w}<3\right.\right\}\right]$

Leaf languages

- What about P?

Leaf languages

- What about P ?
- $P=C\left[1(0+1)^{*}, 0(0+1)^{*}\right]$.

Leaf languages

- What about P ?
- $P=C\left[1(0+1)^{*}, 0(0+1)^{*}\right]$.

Leaf languages

- What about P ?
- $P=C\left[1(0+1)^{*}, 0(0+1)^{*}\right]$.
- Certificate $0 \ldots 0$ can always be used (compare this to BPP)

