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Lecture 11

Lower Bounds for SAT
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Satisfiability

We cannot rule out that SAT could be solved in
e linear time or
¢ logarithmic space

Situation similar for many NP-complete problems.

What about restricting time and space simultaneously?
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TISP

Definition (TISP)

Let S, T : N — N be constructible functions. A language L C {0, 1}*
is in the complexity class TISP(T(n), S(n)) if there exists a TM M
deciding L in time T(n) and space S(n).

Note: TISP(T(n), S(n)) # DTIME(T(n)) n SPACE(S(n))
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Lower Bound for Satisfiability

Theorem
SAT ¢ TISP(n'1, n1).

In order to decide SAT we need
e either more than linear time
e or more than logarithmic space
e due to completeness this translates to any other problem in NP
o stronger results known (see further reading)
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Proof — Big Picture

Proof is by contradiction. So assume

0.

SAT € TISP(n'!, n®1)

1. This implies NTIME(n) € TISP(n'2, n%2)

o0 R W N

This implies NTIME(n'%) c TISP(n'2, %) by padding
1. also implies NTIME(n) € DTIME(n'?)
which implies Z, TIME(n®) € NTIME(n®®)
separately we can show TISP(n'2, n?) c 5, TIME(n®)

(2,4,5) together establish NTIME(n'%) € NTIME(n®®)
contradicting the non-deterministic time hierarchy theorem
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Proof — Part 1

can be proven by careful observation of the Cook-Levin
reduction.

problem decided in NTIME(T(n)) can be formulated as
satisfiability problem of size T(n) log(T(n))

every output bit of reduction computable in polylogarithmic time
and space

hence if SAT € TISP(n"!, n%1) then
NTIME(n) c TISP(n'?2, n%2)
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Proof — Part 2 (padding)

e let L € NTIME(n')
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Proof — Part 2 (padding)

e let L € NTIME(n')
e define L’ = {x1M"" | x € L}
e then L’ € NTIME(n)
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Proof — Part 2 (padding)

let L € NTIME(n'?)

define L” = {x1¥" | x e L}

then L’ € NTIME(n)

by part 1 of proof: L" € TISP(n'2, n®2)
thus L € TISP(n'2, n?)



TISP

By definition of TISP.

Proof — Part 3
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Proof — Part 4

Definition
Alanguage L is in Z> TIME(n®) iff there exists a TM M running in
time O(n®) and constants c, d such that

x e L iff Ju e {0, 11" vv e {0, )9, M(x, u, v) = 1
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TISP

Proof — Part 4

Definition
Alanguage L is in Z> TIME(n®) iff there exists a TM M running in
time O(n®) and constants c, d such that

x e L iff Ju e {0, 11" vv e {0, )9, M(x, u, v) = 1

let L € Z,TIME(n®)

define L" = {(x, u) | Yv € {0, 1}9%*_ M(x, u, v) = 1}
hence L’ € NTIME(n®)

by premise we obtain L’ € DTIME(n'?*®) and also L’

since L = {x | Ju € {0, 1}*" (x,u) € L’} we obtain
L € NTIME(n®®)
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Proof — Part 5

e let L € TISP(n'2, n?)

e then there exists a TM M such that x € {0, 1}" is accepted iff
there is a path of length n'? in the configuration graph from

Cstart 10 Caccept
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Proof — Part 5

let L € TISP(n'2, n?)
then there exists a TM M such that x € {0, 1}" is accepted iff
there is a path of length n'? in the configuration graph from
Cstart 10 Caccept
where each configuration takes space O(n?)
this is the case iff

o there exist configurations Cy, ..., Cps such that

e Co = Cstart, Crs = Caccept
e forall 1 <i<n® Ci.y is reachable from C;in n® steps
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Proof — Part 5

let L € TISP(n'2, n?)
then there exists a TM M such that x € {0, 1}" is accepted iff
there is a path of length n'? in the configuration graph from
Cstart 10 Caccept
where each configuration takes space O(n?)
this is the case iff

o there exist configurations Cy, ..., Cps such that

e Co = Cstart, Crs = Caccept
e forall 1 <i<n® Ci.y is reachable from C;in n® steps

this implies L € Z,TIME(n®)
which can be equivalently characterized using alternating TMs
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Agenda

¢ big picture v/
e TISP v
¢ lower bound for satisfiability v/
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Conclusion

Summary of today’s result

SAT cannot be decided in linear time and, simultaneously,
logarithmic space

neither can any other problem in NP

lower bounds are hard
nice combination of proof techniques
e padding
e reductions
e splitting paths in the configuration graph
e diagonalization
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Further Reading

AB, Theorem 5.11

original lower bound by Fortnow, Time-space tradeoffs for
satisfiability, CCC 1997.

current record: SAT ¢ TISP(n®, n°(")) for any ¢ < 2 cos(r/7)

by R. Williams Time-space tradeoffs for counting NP solutions
modulo integers, CCC 2007.
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