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Lecture 11

Lower Bounds for SAT
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Intro

Agenda

• big picture

• TISP
• lower bound for satisfiability
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Intro

What is complexity all about?

• formalize the notion of computation

• resource consumption of computations

• depending on input size

• in the worst-case

• computing precise solutions

complexity classes
separation

lower bounds
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Intro

Satisfiability

We cannot rule out that SAT could be solved in

• linear time or

• logarithmic space

Situation similar for many NP-complete problems.

What about restricting time and space simultaneously?
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TISP

TISP

Definition (TISP)

Let S,T : N→ N be constructible functions. A language L ⊆ {0, 1}∗

is in the complexity class TISP(T(n),S(n)) if there exists a TM M
deciding L in time T(n) and space S(n).

Note: TISP(T(n),S(n)) , DTIME(T(n)) ∩ SPACE(S(n))
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TISP

Agenda

• big picture X

• TISP X
• lower bound for satisfiability

• big picture
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TISP

Lower Bound for Satisfiability

Theorem
SAT < TISP(n1.1, n0.1).

In order to decide SAT we need

• either more than linear time

• or more than logarithmic space

• due to completeness this translates to any other problem in NP
• stronger results known (see further reading)
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TISP

Proof – Big Picture

Proof is by contradiction. So assume

0. SAT ∈ TISP(n1.1, n0.1)

1. This implies NTIME(n) ⊆ TISP(n1.2, n0.2)

2. This implies NTIME(n10) ⊆ TISP(n12, n02) by padding

3. 1. also implies NTIME(n) ⊆ DTIME(n1.2)

4. which implies Σ2TIME(n8) ⊆ NTIME(n9.6)

5. separately we can show TISP(n12, n2) ⊆ Σ2TIME(n8)

6. (2,4,5) together establish NTIME(n10) ⊆ NTIME(n9.6)
contradicting the non-deterministic time hierarchy theorem
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TISP

Proof – Part 1

• can be proven by careful observation of the Cook-Levin
reduction.

• problem decided in NTIME(T(n)) can be formulated as
satisfiability problem of size T(n) log(T(n))

• every output bit of reduction computable in polylogarithmic time
and space

• hence if SAT ∈ TISP(n1.1, n0.1) then
NTIME(n) ⊆ TISP(n1.2, n0.2)
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TISP

Proof – Part 2 (padding)

• let L ∈ NTIME(n10)

• define L ′ = {x1|x |
10
| x ∈ L}

• then L ′ ∈ NTIME(n)
• by part 1 of proof: L ′ ∈ TISP(n1.2, n0.2)

• thus L ∈ TISP(n12, n2)
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TISP

Proof – Part 3

By definition of TISP.
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TISP

Proof – Part 4

Definition
A language L is in Σ2TIME(n8) iff there exists a TM M running in
time O(n8) and constants c, d such that

x ∈ L iff ∃u ∈ {0, 1}c |x |
8
. ∀v ∈ {0, 1}d|x |

8
. M(x, u, v) = 1

• let L ∈ Σ2TIME(n8)

• define L ′ = {(x, u) | ∀v ∈ {0, 1}d|x |
8
. M(x, u, v) = 1}

• hence L ′ ∈ NTIME(n8)

• by premise we obtain L ′ ∈ DTIME(n1.2∗8) and also L ′

• since L = {x | ∃u ∈ {0, 1}c |x |
8
, (x, u) ∈ L ′} we obtain

L ∈ NTIME(n9.6)
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TISP

Proof – Part 5

• let L ∈ TISP(n12, n2)

• then there exists a TM M such that x ∈ {0, 1}n is accepted iff
there is a path of length n12 in the configuration graph from
Cstart to Caccept

• where each configuration takes space O(n2)

• this is the case iff
• there exist configurations C0, . . . ,Cn6 such that
• C0 = Cstart , Cn6 = Caccept
• for all 1 ≤ i ≤ n6 Ci+1 is reachable from Ci in n6 steps

• this implies L ∈ Σ2TIME(n8)

• which can be equivalently characterized using alternating TMs
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TISP

Agenda

• big picture X

• TISP X
• lower bound for satisfiability X
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Conclusion

Summary of today’s result

• SAT cannot be decided in linear time and, simultaneously,
logarithmic space

• neither can any other problem in NP
• lower bounds are hard
• nice combination of proof techniques

• padding
• reductions
• splitting paths in the configuration graph
• diagonalization
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Conclusion

Further Reading

• AB, Theorem 5.11

• original lower bound by Fortnow, Time-space tradeoffs for
satisfiability, CCC 1997.

• current record: SAT < TISP(nc , no(1)) for any c < 2 cos(π/7)

• by R. Williams Time-space tradeoffs for counting NP solutions
modulo integers, CCC 2007.
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