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Lecture 10

The polynomial hierarchy PH
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Intro

Agenda

• ExactIndset, MinEqDNF, and bounded QBF

• Σp
i , Πp

i , and PH
• properties of the polynomial hierarchy

• more examples
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Intro

Exact independent set

Recall the independent set problem

Indset = {〈G, k 〉 | G has an independent set of size k }

which was shown to be NP-complete.

What about the variation

ExactIndset = {〈G, k 〉 | the largest independent set of G has size k }

One needs to show

1. there exists an independent set of size k and

2. all other independent set have size at most k

(1) is a ∃ certificate (as in NP) while (2) is a ∀ certificate (as in
coNP)!
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Intro

Minimizing Boolean formulas

Let DNF be disjunctive normal form and ≡ denote logic equivalence.

MinEqDNF = {〈ϕ, k 〉 | there is a DNF formula ψ

of size at most k s.t. ϕ ≡ ψ}

What about certificates for membership?

• there exists a formula ψ such that

• for all assignments ϕ and ψ evaluate to the same

What about MinEqDNF?

5



Intro

Minimizing Boolean formulas

Let DNF be disjunctive normal form and ≡ denote logic equivalence.

MinEqDNF = {〈ϕ, k 〉 | there is a DNF formula ψ

of size at most k s.t. ϕ ≡ ψ}

What about certificates for membership?

• there exists a formula ψ such that

• for all assignments ϕ and ψ evaluate to the same

What about MinEqDNF?

5



Intro

Minimizing Boolean formulas

Let DNF be disjunctive normal form and ≡ denote logic equivalence.

MinEqDNF = {〈ϕ, k 〉 | there is a DNF formula ψ

of size at most k s.t. ϕ ≡ ψ}

What about certificates for membership?

• there exists a formula ψ such that

• for all assignments ϕ and ψ evaluate to the same

What about MinEqDNF?

5



Intro

Σp
2

Recall the certificate-based definitions of NP and coNP, where
q : N→ N is a polynomial, x ∈ {0, 1}∗ and M is a polynomial-time,
det. verifier.

NP x ∈ L iff ∃u ∈ {0, 1}q(|x |). M(x, u) = 1

coNP x ∈ L iff ∀u ∈ {0, 1}q(|x |). M(x, u) = 1

ExactIndset and MinEqDNF are in a class defined by

x ∈ L iff ∃u ∈ {0, 1}q(|x |).∀v ∈ {0, 1}q(|x |). M(x, u, v) = 1

This class is called Σp
2 .
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Intro

Bounded QBF

Another natural problem within Σp
2 is QBF with one alternation!

Σ2SAT = {∃ ~u1∀ ~u2.ϕ( ~u1, ~u2) | formula is true }

where ~ui denotes a finite sequence of Boolean variables.

Remarks

• in fact, Σ2SAT is complete for Σp
2

• more alternations lead to a whole hierarchy

• all of it is contained in PSPACE
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Intro

Agenda

• ExactIndset, MinEqDNF, and bounded QBF X

• Σp
i , Πp

i , and PH
• properties of the polynomial hierarchy

• more examples
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Definition of PH

Definition

Definition (Polynomial Hierarchy)

For i ≥ 1, a language L ⊆ {0, 1}∗ is in Σp
i if there exists a

polynomial-time TM M and a polynomial q such that

x ∈ L
if and only if
∃u1 ∈ {0, 1}q(|x |).
∀u2 ∈ {0, 1}q(|x |).
. . .

Qiui ∈ {0, 1}q(|x |).
M(x, u1, u2, . . . , ui) = 1

where Qi is ∃ if i is odd and ∀ otherwise.

• the polynomial hierarchy is the set PH =
⋃

i≥1 Σ
p
i

• Πp
i = coΣp

i = {L | L ∈ Σp
i }
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Properties

Generalization of NP and coNP

• NP = Σp
1 and coNP = Πp

1

• Σp
i ⊆ Π

p
i+1 ⊆ Σ

p
i+2

• hence PH =
⋃

i≥1 Π
p
i

• PH ⊆ PSPACE
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Properties

Collapse

It is an open problem whether there is an i such that Σp
i = Σp

i+1.

This would imply that Σp
i = PH: the hierarchy collapses to the i-th

level.

Most researchers believe that the hierarchy does not collapse.

Theorem (Collapse)

• For every i ≥ 1, if Σp
i = Πp

i then PH = Σp
i

• If P = NP then PH = P, i.e. the hierarchy collapses to P.
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Properties

Completeness

For each level of the hierarchy completeness is defined in terms of
polynomial Karp reductions.

• if there exists a PH-complete language, then the hierarchy
collapses

• PH , PSPACE unless the hierarchy collapses

Theorem (bounded QBF)

For each i ≥ 1, ΣiSAT is Σp
i -complete, where ΣiSAT is the language

of true quantified Boolean formulas of the form

∃ ~u1∀ ~u2 . . .Qi ~ui .ϕ( ~u1, ~u1, . . . , ~ui)
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Agenda

• ExactIndset, MinEqDNF, and bounded QBF X
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i , and PH X
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Examples

Integer Expressions

An integer expression I is defined by the following BNF for binary
numbers ~b:

I ::= ~b | I + I | I ∪ I

The language L(I) ⊆ N is defined by

• L(~b) = {n} where n is the natural number represented by ~b

• L(I1 + I2) = {n1 + n2 | ni ∈ L(Ii)}

• L(I1 ∪ I2) = L(I1) ∪ L(I2)

Example: L(1 + (2 ∪ (3 + 4))) = {3, 8}

A set M ⊆ N is connected if for all x, z ∈ M and every x < y < z also
y ∈ M.

A component of M is a maximal connected subset of M.
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Examples

Integer Expressions

• membership of a number in the language of an integer
expression: NP-complete

• integer expression inequivalence: Σp
2-complete

• Does L(I) have a component of size at least k?: Σp
3-complete

15



Examples

Regular Expressions

Consider regular expressions with union and concatentation only. In
addition, we define an interleaving operator on words

x1x2 . . . xk | y1y2 . . . yk

=
x1y1x2y2 . . . xk yk

where yi can be strings of arbitrary length.

Regular expression equivalence for star-free expressions with
interleaving is Πp

2-complete.
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Examples

Context-free languages

Consider context-free grammars defining unary languages.

• {〈G1,G2〉 | L(G1) , L(G2)} is Σp
2-complete

• note that for non-unary languages this problem is undecidable
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Conclusion

Further Reading

Survey on complete problems for various levels of the hierarchy:

• Schaefer and Umans Completeness in the Polynomial-Time
Hierarchy — A Compendium
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Conclusion

What have we learnt?

• the polynomial hierarchy is a natural generalization of NP and
coNP

• bounded alternation QBFs are complete problems for each
level of the hierarchy

• in the limit – unbounded alternations – the hierarchy
approaches PSPACE

• the hierarchy is widely believed not to collapse to any level
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