Complexity Theory

Jan Křetínský

Technical University of Munich Summer 2019

May 22, 2019

Lecture 10 The polynomial hierarchy PH

- ExactIndset, MinEqDNF, and bounded QBF
- Σ^{p} , Π^{p} , and PH
- properties of the polynomial hierarchy
- more examples

Recall the independent set problem

Indset = { $\langle G, k \rangle$ | G has an independent set of size k}

which was shown to be NP-complete.

Recall the independent set problem

Indset = { $\langle G, k \rangle$ | G has an independent set of size k}

which was shown to be NP-complete.

What about the variation

ExactIndset = {(G, k) | the largest independent set of G has size k}

Recall the independent set problem

Indset = { $\langle G, k \rangle$ | G has an independent set of size k}

which was shown to be NP-complete.

What about the variation

ExactIndset = { $\langle G, k \rangle$ | the largest independent set of G has size k}

One needs to show

- 1. there exists an independent set of size k and
- 2. all other independent set have size at most k

Recall the independent set problem

Indset = { $\langle G, k \rangle$ | G has an independent set of size k}

which was shown to be NP-complete.

What about the variation

ExactIndset = {(G, k) | the largest independent set of G has size k}

One needs to show

- 1. there exists an independent set of size k and
- 2. all other independent set have size at most k

(1) is a \exists certificate (as in NP) while (2) is a \forall certificate (as in coNP)!

Minimizing Boolean formulas

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

Minimizing Boolean formulas

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

What about certificates for membership?

- for all assignments φ and ψ evaluate to the same

Minimizing Boolean formulas

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

What about certificates for membership?

- there exists a formula ψ such that
- for all assignments φ and ψ evaluate to the same

What about MinEqDNF?

Recall the certificate-based definitions of NP and coNP, where $q : \mathbb{N} \to \mathbb{N}$ is a polynomial, $x \in \{0, 1\}^*$ and *M* is a polynomial-time, det. verifier.

NP $x \in L$ iff $\exists u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1CONP $x \in L$ iff $\forall u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1 Recall the certificate-based definitions of NP and coNP, where $q : \mathbb{N} \to \mathbb{N}$ is a polynomial, $x \in \{0, 1\}^*$ and *M* is a polynomial-time, det. verifier.

NP $x \in L$ iff $\exists u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1CONP $x \in L$ iff $\forall u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1

ExactIndset and MinEqDNF are in a class defined by

 $x \in L$ iff $\exists u \in \{0, 1\}^{q(|x|)}$. $\forall v \in \{0, 1\}^{q(|x|)}$. M(x, u, v) = 1

Recall the certificate-based definitions of NP and coNP, where $q : \mathbb{N} \to \mathbb{N}$ is a polynomial, $x \in \{0, 1\}^*$ and *M* is a polynomial-time, det. verifier.

NP $x \in L$ iff $\exists u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1CONP $x \in L$ iff $\forall u \in \{0, 1\}^{q(|x|)}$. M(x, u) = 1

ExactIndset and MinEqDNF are in a class defined by

 $x \in L$ iff $\exists u \in \{0, 1\}^{q(|x|)}$. $\forall v \in \{0, 1\}^{q(|x|)}$. M(x, u, v) = 1

This class is called Σ_2^p .

Bounded QBF

Another natural problem within Σ_2^p is QBF with one alternation!

 Σ_2 SAT = { $\exists \vec{u_1} \forall \vec{u_2}. \varphi(\vec{u_1}, \vec{u_2})$ | formula is true }

where $\vec{u_i}$ denotes a finite sequence of Boolean variables.

Bounded QBF

Another natural problem within Σ_2^p is QBF with one alternation!

 $\Sigma_2 \text{SAT} = \{ \exists \vec{u_1} \forall \vec{u_2}. \varphi(\vec{u_1}, \vec{u_2}) \mid \text{formula is true} \}$

where $\vec{u_i}$ denotes a finite sequence of Boolean variables.

Remarks

- in fact, Σ₂SAT is complete for Σ₂^p
- more alternations lead to a whole hierarchy
- all of it is contained in PSPACE

- ExactIndset, MinEqDNF, and bounded QBF \checkmark
- Σ_i^p , Π_i^p , and PH
- properties of the polynomial hierarchy
- more examples

Definition

Definition (Polynomial Hierarchy)

For $i \ge 1$, a language $L \subseteq \{0, 1\}^*$ is in Σ_i^p if there exists a polynomial-time TM *M* and a polynomial *q* such that

 $x \in L$ **if and only if** $\exists u_1 \in \{0, 1\}^{q(|x|)}.$ $\forall u_2 \in \{0, 1\}^{q(|x|)}.$... $Q_i u_i \in \{0, 1\}^{q(|x|)}.$ $M(x, u_1, u_2, ..., u_i) = 1$

where Q_i is \exists if *i* is odd and \forall otherwise.

Definition

Definition (Polynomial Hierarchy)

For $i \ge 1$, a language $L \subseteq \{0, 1\}^*$ is in Σ_i^p if there exists a polynomial-time TM *M* and a polynomial *q* such that

 $\begin{aligned} x \in L \\ & \text{if and only if} \\ \exists u_1 \in \{0, 1\}^{q(|x|)}. \\ \forall u_2 \in \{0, 1\}^{q(|x|)}. \\ & \cdots \\ Q_i u_i \in \{0, 1\}^{q(|x|)}. \\ & M(x, u_1, u_2, \dots, u_i) = 1 \end{aligned}$

where Q_i is \exists if *i* is odd and \forall otherwise.

• the polynomial hierarchy is the set $PH = \bigcup_{i \ge 1} \Sigma_i^p$

•
$$\Pi^{\mathsf{p}}_{\mathsf{i}} = \mathsf{co}\Sigma^{\mathsf{p}}_{\mathsf{i}} = \{\overline{L} \mid L \in \Sigma^{\mathsf{p}}_{\mathsf{i}}\}$$

Properties

Generalization of NP and coNP

• NP = Σ_1^p and coNP = Π_1^p

Properties

Generalization of NP and coNP

- $NP = \Sigma_1^p$ and $coNP = \Pi_1^p$
- $\bullet \ \Sigma^p_i \subseteq \Pi^p_{i+1} \subseteq \Sigma^p_{i+2}$

Generalization of NP and coNP

- $NP = \Sigma_1^p$ and $coNP = \Pi_1^p$
- $\Sigma_i^p \subseteq \Pi_{i+1}^p \subseteq \Sigma_{i+2}^p$
- hence $\mathbf{PH} = \bigcup_{i \ge 1} \Pi_{\mathbf{i}}^{\mathbf{p}}$
- PH ⊆ PSPACE

It is an open problem whether there is an *i* such that $\Sigma_{i}^{p} = \Sigma_{i+1}^{p}$.

It is an open problem whether there is an *i* such that $\Sigma_{i}^{p} = \Sigma_{i+1}^{p}$.

This would imply that $\Sigma_i^p = PH$: the hierarchy collapses to the *i*-th level.

It is an open problem whether there is an *i* such that $\Sigma_{i}^{p} = \Sigma_{i+1}^{p}$.

This would imply that $\Sigma_i^p = PH$: the hierarchy collapses to the *i*-th level.

Most researchers believe that the hierarchy does not collapse.

It is an open problem whether there is an *i* such that $\Sigma_{i}^{p} = \Sigma_{i+1}^{p}$.

This would imply that $\Sigma_i^p = PH$: the hierarchy collapses to the *i*-th level.

Most researchers believe that the hierarchy does not collapse.

Theorem (Collapse)

- For every $i \ge 1$, if $\Sigma_i^p = \Pi_i^p$ then $PH = \Sigma_i^p$
- If **P** = **NP** then **PH** = **P**, i.e. the hierarchy collapses to **P**.

Completeness

For each level of the hierarchy completeness is defined in terms of polynomial Karp reductions.

Completeness

For each level of the hierarchy completeness is defined in terms of polynomial Karp reductions.

- if there exists a PH-complete language, then the hierarchy collapses
- **PH** \neq **PSPACE** unless the hierarchy collapses

Completeness

For each level of the hierarchy completeness is defined in terms of polynomial Karp reductions.

- if there exists a PH-complete language, then the hierarchy collapses
- **PH** \neq **PSPACE** unless the hierarchy collapses

Theorem (bounded QBF)

For each $i \ge 1$, Σ_i SAT is Σ_i^p -complete, where Σ_i SAT is the language of true quantified Boolean formulas of the form

 $\exists \vec{u_1} \forall \vec{u_2} \dots \vec{Q_i} \vec{u_i} . \varphi(\vec{u_1}, \vec{u_1}, \dots, \vec{u_i})$

- ExactIndset, MinEqDNF, and bounded QBF \checkmark
- Σ^{p} , Π^{p} , and PH \checkmark
- properties of the polynomial hierarchy \checkmark
- more examples

Integer Expressions

An integer expression *I* is defined by the following BNF for binary numbers \vec{b} :

 $I ::= \vec{b} \mid I + I \mid I \cup I$

The language $\mathcal{L}(I) \subseteq \mathbb{N}$ is defined by

- $\mathcal{L}(\vec{b}) = \{n\}$ where *n* is the natural number represented by \vec{b}
- $\mathcal{L}(I_1 + I_2) = \{n_1 + n_2 \mid n_i \in \mathcal{L}(I_i)\}$
- $\mathcal{L}(I_1 \cup I_2) = \mathcal{L}(I_1) \cup \mathcal{L}(I_2)$

Example: $\mathcal{L}(1 + (2 \cup (3 + 4))) = \{3, 8\}$

A set $M \subseteq \mathbb{N}$ is connected if for all $x, z \in M$ and every x < y < z also $y \in M$.

A component of *M* is a maximal connected subset of *M*.

Examples

Integer Expressions

- membership of a number in the language of an integer expression: NP-complete
- integer expression inequivalence: Σ₂^p-complete
- Does $\mathcal{L}(I)$ have a component of size at least k?: Σ_3^p -complete

Regular Expressions

Consider regular expressions with union and concatentation only. In addition, we define an interleaving operator on words

 $x_1 x_2 \dots x_k \mid y_1 y_2 \dots y_k$ = $x_1 y_1 x_2 y_2 \dots x_k y_k$

where y_i can be strings of arbitrary length.

Regular expression equivalence for star-free expressions with interleaving is Π_2^p -complete.

Context-free languages

Consider context-free grammars defining unary languages.

- $\{\langle G_1, G_2 \rangle \mid \mathcal{L}(G_1) \neq \mathcal{L}(G_2)\}$ is Σ_2^p -complete
- note that for non-unary languages this problem is undecidable

Further Reading

Survey on complete problems for various levels of the hierarchy:

• Schaefer and Umans Completeness in the Polynomial-Time Hierarchy — A Compendium

Conclusion

What have we learnt?

- the polynomial hierarchy is a natural generalization of NP and coNP
- bounded alternation QBFs are complete problems for each level of the hierarchy
- in the limit unbounded alternations the hierarchy approaches PSPACE
- the hierarchy is widely believed not to collapse to any level