Solution

Computational Complexity – Homework 11

Discussed on 14.06.2019.

Definition 1. A language L is in $\mathbf{P}_{/\mathbf{poly}}$ if there exist a family $\{C_n\}$ of Boolean circuits of size polynomial in n such that for all $x \in \{0, 1\}^n$

 $x \in L$ iff $C_n(x) = 1$.

A family of Boolean circuits $\{C_n \mid n \in \mathbb{N}\}$ is *logspace uniform* if there is a deterministic Turing machine M running in logarithmic space which on input 1^n outputs a description of C_n . Similarly for *polytime uniform* we require M run in polynomial time.

(Note that the definition of **NC** requires the logspace uniformity together with polynomial size and polylog depth.)

Exercise 11.1

Show that $\mathbf{BPP} \subseteq \mathbf{P}_{/\mathbf{poly}}$.

Remark: Use one of the results on **BPP** which have already been shown in the lecture.

Solution: We have seen in the lecture that if $L \in \mathbf{BPP}$ is decided by some TM M(x, u) then for every $n \in \mathbb{N}$ there exists a $u_n \in \{0, 1\}^{p(n)}$ s.t.

$$\forall x \in \{0, 1\}^n : x \in L \text{ iff } M(x, u_n) = 1.$$

We therefore can first transform M(x, u) into a family of circuits of size polynomial in x (recall that $|u| \le p(|x|)$) and then hardwire u_n into the circuits.

Exercise 11.2

(a) Show that for every polynomial p the following language is in **coNP**:

 $L_p := \left\{ \langle C_1, C_2, \dots, C_n \rangle \left| \begin{array}{c} C_i \text{ is a circuit of size at most } p(i) \text{ which decides SAT for every formula} \\ \text{ of length exactly } i \end{array} \right.$

Remark: Assume w.l.o.g. that every formula has length at least one with 0 (false) and 1 (true) the two formulae of length 1. Now, use the circuits C_1, \ldots, C_i $(i \ge 0)$ to check the correctness of circuit C_{i+1} . (Recall the so-called self-reducibility of SAT.)

(b) Show that **PH** collapses to the second level if $NP \subseteq P_{/poly}$, i.e. if there is a sequnce of polynomial sized circuits for SAT.

Remark: It suffices to show that $\Pi_2 SAT \in \Sigma_2^p$.

(c) What happens if there is a sequnce of polynomial sized circuits for SAT that is moreover logspace uniform? What if it is polytime uniform?

Solution:

(a) The TM first checks that $|C_i| \leq p(i)$ and that C_i indeed encodes a Boolean circuit. This takes time $\mathcal{O}(n \cdot p(n))$ (assuming that p(n) grows monotonically). Next, the TM chooses some Boolean formula ϕ of length at most n. If $|\phi| = 1$, the TM directly checks if $C_1(\phi) = \phi$. Otherwise, it choose (deterministically) some variable x from ϕ and checks again in polynomial time that

$$C_{|\phi|}(\phi) = \bigvee_{b=0,1} C_{|\phi[x:=b]|}(\phi[x:=b]).$$

By definition of **coNP** the TM accepts $\langle C_1, \ldots, C_n \rangle$ only if it does not find any formula of length at most n for which this test fails.

(b) If $\mathbf{NP} \subseteq \mathbf{P}_{/\mathbf{poly}}$, then there exists some polynomial p and a circuit sequence $(C_n)_{n \in \mathbb{N}}$ with $|C_n| \leq p(n)$ which decides SAT. In particular, for this p every (encoding of a) prefix $\langle C_1, \ldots, C_n \rangle$ is in L_p .

Now, Π_2 SAT, i.e.,

decide if $\forall u \exists v : \phi(u, v)$ is true (with ϕ a Boolean expression)

is Π_2^p -complete where u and v are bounded by the length of ϕ .

We now have

$$\forall u \exists v : \phi(u, v) \text{ iff } \exists \langle C_1, \dots, C_{|\phi|} \rangle \in L_p : \forall u : C_{|\phi(u, \cdot)|}(\phi(u, \cdot))$$

where the latter describes a computation in Σ_2^p . So, $\Pi_2^p \subseteq \Sigma_2^p$ which implies $\mathbf{PH} = \Sigma_2^p \cap \Pi_2^p$.

(c) In both cases, we have $\mathbf{P} = \mathbf{NP}$. It suffices to show that SAT is then in \mathbf{P} . Given a formula ϕ of length $n = |\phi|$, we construct in log-space from the input 1^n the circuit C_n which decides SAT for all formulae of length exactly n. As $\mathbf{L} \subseteq \mathbf{P}$, this can be done in time polynomial in $n = |\phi|$. We then evaluate C_n on ϕ . This can again be done in time polynomial in the size of C_n which by definition is polynomial in the size of $n = |\phi|$.

Exercise 11.3

Prove that for $n \ge 100$, most of the boolean functions on n variables require circuits of size at least $2^n/n$.

Solution:

THEOREM 6.15 For $n \ge 100$, almost all boolean functions on n variables require circuits of size at least $2^n/(10n)$.

PROOF: We use a simple counting argument. There are at most s^{3s} circuits of size s (just count the number of labeled directed graphs, where each node has indegree at most 2). Hence this is an upperbound on the number of functions on n variables with circuits of size s. For $s = 2^n/(10n)$, this number is at most $2^{2^n/10}$, which is miniscule compared 2^{2^n} , the number of boolean functions on n variables. Hence most Boolean functions do not have such small circuits.

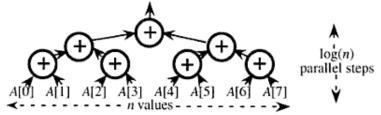
Exercise 11.4

- (a) Design a circuit family for the parity problem and describe it formally. Prove that there is a logspace uniform one.
- (b) Let A[0..n] be an array of integers. Design a PRAM for summing numbers in an array, i.e. compute ∑_{i=0}ⁿ A[i]. Can you compute the array-suffix-sum, i.e. ∑_{i=j}ⁿ A[i] for all 0 ≤ j ≤ n, with the same complexity?

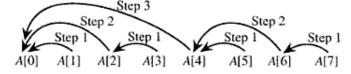
Solution:

Example: Summing an Array

Idea: To add up the items in an array A[0]...A[n-1], in one step items one apart are added to cut the problem in half, in a second step items two apart are added to again cut the size of the problem in half, etc. This approach can be viewed as simulating a tree network with the array A stored in the leaves and the sum coming out of the root:



In practice, we do not really need all of the processors; we can keep overwriting A. Concurrent reads are not used, and the algorithm works in the EREW model.



The summing algorithm:

function erewSUM(A[0]...A[n-1]) for k=0 to $\lceil \log_2(n) \rceil - 1$ do for $0 \le i < n-2^{k+1}$ in parallel do if *i* is a multiple of 2^{k+1} then $A[i] := A[i] + A[i+2^k]$ return A[0]end k+1

Note: The test if *i* is a multiple of 2^{k+1} is not necessary (see the exercises).

An equivalent way to express the summing algorithm:

```
function erewSUM(A[0]...A[n-1])

k := 1

while k < n do begin

for 0 \le i < n-2k in parallel do

if i is a multiple of 2k then A[i] := A[i] + A[i+k]

k := k*2

end

return A[0]

end
```

Complexity: Each of the $\lceil \log_2(n) \rceil$ iterations uses O(1) time (since O(1) time is used for the body of the parallel *for* loop); hence the algorithm is $O(\log(n))$ time. O(1) space is used in addition to the space used by A. The number of processors used is n/2; however, we shall see later (Brent's Lemma) that $O(n/\log(n))$ processors suffice.

CHAPTER 13

Example: List Prefix-Sum / List Ranking

Notation: L is a singly-linked list represented by A[0]...A[n-1], $0 \le first < n$ the index of the first item, and the array NEXT[0]...NEXT[n-1] such that by starting with i := A[first] and repeatedly doing i := NEXT[i], we visit all positions and end up at a position i such that NEXT[i]=nil; for simplicity assume items are ≥ 0 and nil = -1.

List suffix-sum: We wish to compute for each $0 \le i < n$ the sum of all positions from position *i* through the end of the list. We can use the same distance-doubling idea as for array sum, emanating from every vertex; only the EREW PRAM model is needed:

```
procedure erewListSuffixSum(L)

while NEXT[first]≠nil do

for 0 ≤ i < n in parallel do if NEXT[i]≠nil then begin

A[i] := A[i] + A[NEXT[i]]

NEXT[i] := NEXT[NEXT[i]]

end

end
```

List prefix-sum: We wish to compute for each $0 \le i < n$ the sum of all positions from position *i* through the start of the list. We can reverse the list (in parallel do NEXT[NEXT[*i*]] := *i*, set *first* to what used to be the last position, and set the NEXT field of what used to be the first position to *nil*) and then do a suffix sum (see the exercises).

List ranking: The special case of prefix-sum where all values of A are 1 (there could be additional data associated with each vertex), and we compute the position of each vertex.

Suffix-sum / prefix-sum / list ranking on an array: For the special case of a list in sequential positions of an array, define NEXT[i]=i+1, $0 \le i < n-1$, and NEXT[n-1]=nil. For example, suppose the array A[0]...A[9] initially contained 1 in each location and consider the successive iterations of the *while* loop of erewListSuffixSum:

array position	0	1	2	3	4	5	6	7	8	9
starting values	1	1	1	1	1	1	1	1	1	1
values after first iteration	2	2	2	2	2	2	2	2	2	1
values after second iteration	4	4	4	4	4	4	4	3	2	1
values after third iteration	8	8	8	7	6	5	4	3	2	1
values after fourth iteration	10	9	8	7	6	5	4	3	2	1

Complexity: $O(\log(n))$ time since each iteration of the outer *while* loop for suffix-sum doubles the distance over which sums are taken, and prefix-sum adds only O(1) additional time. O(n) space in addition to the space for L (or O(n) additional space if we cannot overwrite A and NEXT and must first make copies). O(n) processors are used.