Technische Universitdt Miinchen (I7) Summer term 2019
Prof. J. Kfetinsky / Dr. M.Raskin 09.06.2019

Solution

Computational Complexity — Homework 11

Discussed on 14.06.2019.

Definition 1. A language L is in P /541y if there exist a family {C),} of Boolean circuits of size
polynomial in n such that for all z € {0,1}"

xe Liff Cp(z) =1.

A family of Boolean circuits {C,, | n € N} is logspace uniform if there is a deterministic Turing
machine M running in logarithmic space which on input 1™ outputs a description of C,. Similarly
for polytime uniform we require M run in polynomial time.

(Note that the definition of NC requires the logspace uniformity together with polynomial size
and polylog depth.)

Exercise 11.1
Show that BPP C P /a1y

Remark: Use one of the results on BPP which have already been shown in the lecture.

Solution: We have seen in the lecture that if L € BPP is decided by some TM M (z,u) then
for every n € N there exists a u,, € {0,1}P(") s.t.

Vo e {0,1}" :x € L iff M(z,u,) = 1.
We therefore can first transform M (z,u) into a family of circuits of size polynomial in z (recall
that |u| < p(|z|)) and then hardwire u,, into the circuits.
Exercise 11.2

(a) Show that for every polynomial p the following language is in coNP:

Ly = {<Cl’ Cay o5 Cn) of length exactly ¢

Remark: Assume w.l.o.g. that every formula has length at least one with 0 (false) and 1
(true) the two formulae of length 1. Now, use the circuits Cy,...,C; (i > 0) to check the
correctness of circuit C;y1. (Recall the so-called self-reducibility of SAT.)

C; is a circuit of size at most p(i) which decides SAT for every formula

b

(b)

()

Show that PH collapses to the second level if NP C P /p1y, i.e. if there is a sequnce of
polynomial sized circuits for SAT.

Remark: Tt suffices to show that IIoSAT € X5,

What happens if there is a sequnce of polynomial sized circuits for SAT that is moreover
logspace uniform?
What if it is polytime uniform?

Solution:

(a)

The TM first checks that |C;| < p(é) and that C; indeed encodes a Boolean circuit. This
takes time O(n - p(n)) (assuming that p(n) grows monotonically). Next, the TM chooses
some Boolean formula ¢ of length at most n. If |¢| = 1, the TM directly checks if Cy(¢) =
¢. Otherwise, it choose (deterministically) some variable z from ¢ and checks again in
polynomial time that

Clg/(9) = \/ C\gw:=b)| (D[:= b]).

b=0,1

By definition of coNP the TM accepts (Cy, ..., C,) only if it does not find any formula of
length at most n for which this test fails.

If NP C P/po1y, then there exists some polynomial p and a circuit sequence (C,)nen
with |Cy,| < p(n) which decides SAT. In particular, for this p every (encoding of a) prefix
(Cy,...,Cp) isin Ly,

Now, II3SAT, i.e.,
decide if Yu3v : ¢(u,v) is true (with ¢ a Boolean expression)

is II5-complete where u and v are bounded by the length of ¢.

We now have
Vudv : (;5(’11,,1}) iff 3<Cl, ceey C‘¢‘> S Lp :Yu C|¢(u,_)|(qb(u,))

where the latter describes a computation in 3%. So, IT5 C 2% which implies PH = 35 NII5.

In both cases, we have P = NP. It suffices to show that SAT is then in P. Given a formula ¢
of length n = |¢|, we construct in log-space from the input 1" the circuit C,, which decides
SAT for all formulae of length exactly n. As L C P, this can be done in time polynomial
in n = |¢|. We then evaluate C,, on ¢. This can again be done in time polynomial in the
size of C,, which by definition is polynomial in the size of n = |¢|.

Exercise 11.3

Prove that for n > 100, most of the boolean functions on n variables require circuits of size at
least 2™ /n.

Solution:

THEORENM .15
For n = 100, almaost all bodlean functions on n variables require circuits of size at least 2 [(10n).

ProoF: We use a simple counting argument. There are ab most *° cirouits of size s (just count
the mumber of labeled directed graphs, where each node has indegree at most 2). Hence this is an
upperbound on the munber of functions on n variables with circnits of size s. For s = 27 /(10n),
this mumber is at most 7271 which is miniscule compared 227, the mumber of boolean functions
on n variables. Hence most Boolean hinctions do not have such small circuits. B

Exercise 11.4

(a) Design a circuit family for the parity problem and describe it formally. Prove that there is
a logspace uniform one.

(b) Let A[0..n] be an array of integers. Design a PRAM for summing numbers in an array, i.e.
compute y_"_ Ald].
Can you compute the array-suffix-sum, i.e. Z?:j Ali] for all 0 < j < n, with the same
complexity?

Solution:

Example: Summing an Array

Idea: To add up the items in an array A[0]...A[n-1], in one step items one apart are added
to cut the problem in half, in a second step items two apurt are added to again cut the size
of the problem in half, etc. This approach can be viewed as simulating a tree network
with the array A stored in the leaves and the sum coming out of the root:

A
Iﬂf_:{n)
p:!rEI"til steps
A0 A[1] A[2] AI3] A[4] AlS] A[6] A[7] v

I nvalugs- - - - - - - - - - -

In practice, we do not really need all of the processors; we can keep overwriting A.
Concurrent reads are not used, and the algorithm works in the EREW model.

Step 3

Step 2 Step 2
Step | Step 1 Step | Step 1
@ P @ e

AlO] A[LT A[2] A[3] Al4]) AIS] Ale] A[T)

The summing algorithm:
function erewSUM(A[0]...A[n=1]}
for k=0 to ﬂongn)h do
for 0<i < n-2"'inpa ligl do)
if / is a multiple of 2 then A[{] := A[i]+A[i+27]
return A[(]
end

e . k+1, .
Note: The test if i is a multiple of 27 is not necessary (see the exercises).

An equivalent way to express the summing algorithm:
function erewSUM(A[0]...A[n=1])
k=1
while k<n do begin
for 0 =i < n-2k in parallel do
if i is a multiple of 2k then A[{] := A[i]+A[i+k]
k= k*2
end
return A[0]
end

Complexity: Each of the [log,(n) | iterations uses (1) time (since O(1) time is used for
the body of the parallel for loop); hence the algorithm is O(log(n)) time. O(1) space is
used in addition to the space used by A. The number of processors used is n/2; however,
we shall see later (Brent's Lemma) that O(n/log{n)) processors suffice.

478 CHAPTER 13

Example: List Prefix-Sum / List Ranking

Notation: L is a singly-linked list represented by A[0]...A[n-1], 0 £ first < n the index of
the first item, and the array NEXT[0]...NEXT{n-1] such that by starting with i := A[first]
and repeatedly doing i := NEXT[i], we visit all positions and end up at a position i such
that NEXT|i]=nil; for simplicity assume itemns are =z 0 and nil =-1.

List suffix-sum: We wish to compute for each 0 < i < n the sum of all positions from
position i through the end of the list. We can use the same distance-doubling idea as for
array sum, emanating from every vertex; only the EREW PRAM model is needed:

procedure erewListSuffixSum(L)
while NEXT|first)=nil do
for 0 =i < n in parallel do if NEXTTi]#nul then begin
Alf] := Ali] + A[INEXTTi]]
NEXTi] = NEXTINEXTTI]]
end
end

List prefix-sum: We wish to compute for each 0= i < n the sum of all positions from
position i through the start of the list. We can reverse the list (in parallel do
NEXTINEXTIil]] := i, set first to what used to be the last position, and set the NEXT field
of what used to be the first position to nif) and then do a suffix sum (see the exercises).

List ranking: The special case of prefix-sum where all values of A are 1 (there could be
additional data associated with each vertex), and we compute the position of each vertex.

Suffix-sum / prefix-sum / list ranking on an array: For the special case of a list in
sequential positions of an array, define NEXTTi]=i+1, 0 =i < n~1, and NEXT[n—1]=nil.
For example, suppose the array A[0]...A[9] initially contained 1 in each location and
consider the successive iterations of the while loop of erewListSuffixSum:

arrayposition] 0 | 1 [2 131415167819
startinegvalues| 1 | 1 [1] B 11 (1) 1}j111

values after firstiteration) 2 | 2 1 2 12 1212121 2]12]1
values after second iteration] 4 | 4 | 4 |4 | 4 | 4143 |2]1
values after thirditeration] 8 | 8 | 8 | 7| 6 | 514131211
values after fourth iteration] 10] 9 al7 0 5] 4 3|2 1

Complexity: ((log(n)) time since each iteration of the outer while loop for suffix-sum
doubles the distance over which sums are taken, and prefix-sum adds only O(1)
additional time. O(n) space in addition to the space for L (or O(n) additional space if we
cannot overwrite A and NEXT and must first make copies). O(n) processors are used.

CHAPTER 13 479

