
Technische Universität München (I7) Summer term 2019
Prof. J. Křet́ınský / Dr. M.Raskin 07.06.2019

Computational Complexity – Homework 10

Discussed on .

Exercise 10.1

(a) Modify the approximation algorithm for vertex cover shown in the lecture (lecture 18, slide
19) such that it always computes an optimal solution if the given graph is a disjoint union
of linear chains.

(b) Consider the following algorithm for approximating an optimal vertex cover:

While G has edges choose any node v of maximal degree of G; add it to C; and
remove v and all edges connected to it from G.

• Quantify the approximation this algorithm obtains on the following graph:

V := {a1, a2, a3, a4}∪{b1, b2} E := {{ai, ai}|1 ≤ i ≤ 4}∪{{ai, bj}|1 ≤ i ≤ 4, 1 ≤ j ≤ 2}

• Can you generalize the graph from above to show that the approximation error can
be as large as ≈ ln |V |?

Exercise 10.2

Show that, if Sat ∈ PCP(r(n), 1) for some r(n) = o(log n), then P = NP.

Exercise 10.3

Prove that QuadEq is NP-complete.

Exercise 10.4

Consider the following problem:

Input : A matrix A ∈ Qm×n, a vector b ∈ Qm.
Target : Determine the maximal number of equations in Ax = b which can

simultaneously be satisfied by some x ∈ Qn.

Show that there is a constant ρ < 1 such that approximating the maximal size is NP-hard.

Exercise 10.5

We consider the optimization variant of the KnapsackProblem:

Input : Values v1, . . . , vn, weights w1, . . . , wn and a weight bound W , all natural
numbers representable by n bits.

Target : Compute the maximal total value attainable by any selection S of total weight
at most W , i.e.,

vopt := max{
∑
i∈S

vi | S ⊆ {1, 2, . . . , n} ∧
∑
i∈S

wi ≤W}.

(a) In Exercise 3.2(c) we have discussed a pseudo-polynomial algorithm which solves this pro-
blem in time O(nW). Similarly, design an algorithm which finds the maximal total value
by computing an array A with

A[j, v] = min{W + 1,
∑
i∈S

wi | S ⊆ {1, 2, . . . , j} ∧
∑
i∈S

vi = v}.

Your algorithm should be polynomial in n and V :=
∑n

i=1 vi.

(a’) Modify your algorithms so that it runs in time polynomial in n and vopt.

(b) Assume you replace all values vi by v′i := bvi/2kc for some fixed k ≥ 0, i.e., you remove the
k least significant bits. The weights wi and the weight limit W stay unchanged. Let vopt,
resp. v′opt be the optimal value for the original resp. reduced instance.

We take v′opt · 2k as an approximation for vopt.

• Show that vopt ≥ v′opt2k. What is the approximation error in the worst case?

• Choose k s.t. the approximation error is at most ε > 0. Show that for this k the
algorithm runs in time polynomial in n and 1/ε.

Exercise 10.6

Show that optimal Steiner tree in Euclidean space (the tree with minimal sum of edge lengths
containing the given points) has a constant-factor approximation algorithm.

