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Exercise 9.1

Given an undirected graph G = (V, E) we call C C V a (vertex) cover of G if
Y(u,v) e E :ueCVwveC.

In the following, we want to study the relation between several decision and function problems
related to vertex cover. These are:

e VCp := {{(G,k) | G has a vertex cover of size at most k}.

MINVCp := {(G, k) | G has a minimal vertex cover of size exactly k}.
MINSOLVCp := {{(G,C) | C is a minimal vertex cover of G}.

Calculate the minimal size minVC(G) of a vertex cover of G.
e Calculate a minimal vertex cover MinVC(G) of G.
Show:
(a) MINSOLVCp <, MINVCp.
(b) MINSoLVC)p <, VCp
(¢) MinVCp is DP-complete. (We have already discussed that MaxClique is DP-complete)
(d) VCp <, MinVCp and VCp <, MinVCp.
Remark: You only have to show that such reductions exist.
(e) Assume that minVC(G) can be calculated in time T'(|G|).

Give bounds on the time needed to decide MINVCp and MINSOLVCp, resp. calculate
MinVC(G).

In particular, show that, if T'(n) is polynomial, then so are the other bounds.

(f) Analogously to (e), give time bounds on the considered problems assuming that (G, k) €
MinVCp (resp. (G, k) € VCp) can be decided in time T'(|G]).

(g) If MinVCp <, MinSolVCp, then PH C 37.



Exercise 9.2

Let ® = {¢1,...,6m} be a set of m Boolean expressions in the variables z1,...,x, with the
restriction that every expression involves at most 3 of these n variables.

Assume we choose a truth assignment v uniformly at random from {0, 1}". Denote then by Pr[¢;]
the probability that u satisfies ¢;.

(a) Show that Pr[¢;] can be calculated in time polynomial in the length of ¢;.
(b) Give a lower bound for the complexity of calculating probability of satisfying all ¢;?

(c) Let N be the random variable which counts the number of expressions ¢; satisfied by the
random assignment u. Show that

EIN] = Y Prlo].

(d) We write E[N | u; = 0] for the expected number of expressions satisfied by a random
assignment u which assigns 0 to z7. Similarly, define E[N | u3 = 1]. Show:

E[N] = = - (B[N | uy = 0] + B[N | uy = 1]).

N |

(e) Show that there is always a value b s.t. E[N | uq = b] > E[N].

(f) Give now a polynomial-time algorithms which computes an assignment which satisfies at
least E[N] expressions of ®.

Exercise 9.3
The decision version of the traveling salesman problem (short TSP) is defined as follows:

Given distances d;; > 0 between n cities and a bound B > 0, decide if there is a tour
of the cities of length at most B.

We denote the corresponding decision problem by TSPp, i.e.,
(di1s...,dnn, B) € TSPp iff there is TSP-tour w.r.t. (d;;) of length at most B.

A Hamilton path in an undirected graph G = (V, E) is a path in G which visits every node exactly
once. The corresponding decision problem HAMILTONPATHp is known to be NP-complete.

(a) Show that the following is polynomial-time reduction from HPp to TSPp:

Given G = (V, E) with n = |V| and assume that V = {1,2,...,n}. Set d; ; := 1 if the
nodes ¢ and j are connected by some edge, otherwise d; ; := n + 1. Further, set B := 2n.

(b) Show that m-approximating the optimal solution of TSP (i.e. finding a cycle at most n
times longer than the optimal) is NP-hard.

(c) We call a TSP-instance (d11, ..., dn n, B) metric if d;; < d;, + di; holds for all 4, j, k.

e Give an example of a graph G where the TSP-instance produced by the reduction
above is not metric.

e Modify the reduction such that it always yields a metric TSP-instance.



(d) The following algorithm for approximating the optimal solution of a metric TSP is by
Christofides:

First, compute a minimal spanning tree T' = (Vp, E7) of the complete graph
K, with distance matrix (d;;). Let O be the nodes of T' which have odd degree
(w.r.t. T1). Consider now the complete graph Ko consisting only of these nodes
O, and calculate a minimal matching M for it, i.e., find a subset M of the edges
of Ko s.t. every node is connected to exactly one other node (no loops) and
the total weight of M, i.e., Z(m)eM d;;, is minimal. Add now the edges M to
T yielding a multigraph G, i.e., assume that the original edges of T are colored
black, while those of M are colored red. Still, the weight of an edge (7,j) in G
is dj; independent of its color. Calculate a Eulerian walk of G, i.e., a path of G
which uses every edge, both black and red, of G exactly once. The approximation
is then the tour embedded in the Eulerian walk.

e Convince yourself that every step of the algorithm by Christofides can be implemented
in polynomial time (look it up on the Internet).

e Apply the algorithm by Christofides to the following example:

The coordinates of the inner nodes are R - (cos k'%,sin k%), for the outer nodes

(R + ¢) - (cos k27 sink'%) where n = 6, k = 1,2,...,6, R = 2c¢m, ¢ = 0.5¢m.

n ?

Distances are given by the Euclidean norm if there is an edge, otherwise oco.
e Try to show that Christofides’ algorithm always yields a tour which is at most 50%
longer than the optimal tour for a metric TSP-instance.
Exercise 9.4
We know that 3SAT is reducible to CLIQUE.

Consider the use of that reduction to approximate Max-3SAT using an approximation for
Max-CLIQUE. What happens with the approximation factor?



