
Technische Universität München (I7) Summer term 2019
Prof. J. Křet́ınský / Dr. M.Raskin 24.05.2019

Solution

Computational Complexity – Homework 9

Discussed on 31.05.2016.

Exercise 9.1

Given an undirected graph G = (V,E) we call C ⊆ V a (vertex) cover of G if

∀(u, v) ∈ E : u ∈ C ∨ v ∈ C.

In the following, we want to study the relation between several decision and function problems
related to vertex cover. These are:

• VCD := {〈G, k〉 | G has a vertex cover of size at most k}.

• MinVCD := {〈G, k〉 | G has a minimal vertex cover of size exactly k}.

• MinSolVCD := {〈G,C〉 | C is a minimal vertex cover of G}.

• Calculate the minimal size minVC(G) of a vertex cover of G.

• Calculate a minimal vertex cover MinVC(G) of G.

Show:

(a) MinSolVCD ≤p MinVCD.

(b) MinSolVCD ≤p VCD

(c) MinVCD is DP-complete. (We have already discussed that MaxClique is DP-complete)

(d) VCD ≤p MinVCD and VCD ≤p MinVCD.

Remark : You only have to show that such reductions exist.

(e) Assume that minVC(G) can be calculated in time T (|G|).

Give bounds on the time needed to decide MinVCD and MinSolVCD, resp. calculate
MinVC(G).

In particular, show that, if T (n) is polynomial, then so are the other bounds.

(f) Analogously to (e), give time bounds on the considered problems assuming that 〈G, k〉 ∈
MinVCD (resp. 〈G, k〉 ∈ VCD) can be decided in time T (|G|).

(g) If MinVCD ≤p MinSolVCD, then PH ⊆ Σp
1.

Solution:

(a) Consider the following reduction f(〈G, k〉) assuming input 〈G,C〉.

• If C is not a vertex cover, then output f(〈G, k〉) := 〈G,−1〉.

• Else, output f(〈G, k〉) := 〈G, |C|〉.

(b) We can reduce MinSolVCD to VCD in polynomial-time as:

〈G,C〉 ∈MinSolVCD iff C is a vertex cover of G ∧ 〈G, |C| − 1〉 ∈ VCD.

(c) We first show that MinVCD is in DP:

〈G, k〉 ∈ MinVCD iff 〈G, k〉 ∈ VCD ∧ 〈G, k − 1〉 ∈ VDD.

Define therefore L = {〈G, i〉 | 〈G, i− 1〉 ∈ VCD}, then:

〈G, k〉 ∈ MinVCD iff 〈G, k〉 ∈ VCD ∧ 〈G, k〉 ∈ L.

Obviously, VCD, L ∈ NP.

C is a cover of G iff V \ C is an independent set of G. So:

〈G, k〉 ∈MinVCD
iff G has a minimal vertex cover C of size exactly k
iff G has a maximal independent set V \ C of size exactly |V | − k
iff the largest independent set of G has size exactly |V | − k
iff 〈G, |V | − k〉 ∈ ExactIndset

So, MinVCD and ExactIndset are equivalent w.r.t. polynomial-time reductions. As the
latter is DP-complete, so is the former.

(d) As MinVCD is DP-complete and NP ∪ coNP ⊆ DP, these reductions have to exist.

(e) • Given 〈G, k〉, we calculate minVC(G) in time T (|G|) and check that k = minVC(G).
This amounts to run time of T (|G|) + |G|.

• Given 〈G,C〉, we fist check in time |E| that C is a vertex cover, then we decide
〈G, |C|〉 ∈ MinVCD in time at most T (|G|) + |G|. In total T (|G|) + 2|G|.

• For a (undirected) graph G = (V,E) and a node v ∈ V , define G− v as the graph we
obtain from G be removing v and all edges connected to v. Note that vertex covers of
G resp. G − v can be transformed to a cover of the other graph by simply removing
resp. adding v to the cover. In particular, if G has a minimal cover C, then for every
v ∈ C it has to hold that C \ {v} is a minimal cover of G − v. This leads to the
following algorithm:

Given 〈G〉, we calculate minVC(G) in time T (|G|) and set C := ∅. Assume that
V = {1, 2, . . . , n}, i.e., fix some total order on V . Then for v = 1, 2, . . . , n do:

– Calculate k′ := minVC(G− v).

– If k′ < k, i.e., k′ = k − 1, set k := k′, G := G− v, and C := C ∪ {v}.

We consider every node at most once, i.e., remove every edge at most twice, leading
to an upper bound of |V |T (|G|) + |E|.

So, if T (n) is polynomial, all the problems can be decided, resp. calculated in polynomial
time.

Remark : Obviously, we can calculate minVC(G) in time linear in |G| from MinVC(G). So,
the same holds when we start from MinVC(G).

(f) We first show how the time T ′(n) for deciding VCD can be bounded by the running
time T (n) of MinVCD: We have already seen in (d) that there exists a polynomial-time
reduction r from VCD to MinVCD. Let Tr be the time needed to compute the reduction.
So, T ′(|G|) ≤ T (Tr(|G|)). In particular, if T is polynomial, then also T ′ is polynomial.

Recall that we can also compute minVC(G) by using VCD as an oracle for the binary search
on the interval [0, |V |]. Hence, minVC(G) can be computed in time O(T ′(|G|) · log |V |).

So, together with (e) it follows that: if either T (n) or T ′(n) is polynomial, again all the
other problems can also be computed/decided in polynomial time.

(g) If MinVCD ≤p MinSolVCD, then also MinVCD ≤p VCD by (b) and transitivity of
≤p. So, VCD is DP-complete, in particular, this means VCD ≤p VCD which implies
NP = coNP and, subsequently, Σp

1 = Σp
2 = PH.

This also shows that if either MinVCD ≤ VCD or MinVCD ≤ VCD, then again the
NP = coNP.

So, probably MinVCD is indeed harder to solve than the other two decision problems.

What remains is to decide if one should assume that MinSolVCD is indeed easier to solve
than VCD, or if the two problems are equivalent w.r.t. polynomial-time reductions, i.e., if
V CD ≤p MinSolVCD also holds.

Exercise 9.2

Let Φ = {φ1, . . . , φm} be a set of m Boolean expressions in the variables x1, . . . , xn with the
restriction that every expression involves at most 3 of these n variables.

Assume we choose a truth assignment u uniformly at random from {0, 1}n. Denote then by Pr[φi]
the probability that u satisfies φi.

(a) Show that Pr[φi] can be calculated in time polynomial in the length of φi.

(b) Give a lower bound for the complexity of calculating probability of satisfying all φi?

(c) Let N be the random variable which counts the number of expressions φi satisfied by the
random assignment u. Show that

E[N] =

m∑
i=1

Pr[φi] .

(d) We write E[N | u1 = 0] for the expected number of expressions satisfied by a random
assignment u which assigns 0 to x1. Similarly, define E[N | u1 = 1]. Show:

E[N] =
1

2
· (E[N | u1 = 0] + E[N | u1 = 1]).

(e) Show that there is always a value b s.t. E[N | u1 = b] ≥ E[N].

(f) Give now a polynomial-time algorithms which computes an assignment which satisfies at
least E[N] expressions of Φ.

Solution:

(a) By definition, we have

Pr[φi] =
#{u ∈ {0, 1}n | φi(u) = 1}

2n
.

Let Var(φi) be the set of variables appearing in φ. By assumption, we have Var(φi) ≤ k := 3
for all i = 1, 2, . . . , n. As the truth value of φi is completely determined by any truth
assignment for Var(φi), we also have

Pr[φi] =
#{u ∈ {0, 1}Var(φi) | φi(u) = 1}

2|Var(φi)
.

We there only need to evaluate every constraint φi for at most 2k = 8 assignments where
evaluating a constraint φi can obviously be done in time polynomial in |φi|.

(b) If we could calculate such a probability, we could compare it with 0 and 1 to solve SAT
and SAT. Such a problem is DP-complete.

(c) We may consider the constraints φi also as random variables, i.e., φi(u) = 1 for an event
u ∈ {0, 1}n if u is a satisfying assignment for φi. Hence,

N =

n∑
i=1

φi and by linearity of E E[N] =

n∑
i=1

E[φi].

Note that
E[φi] = 0 · Pr[φi = 0] + 1 · Pr[φi = 1] = Pr[φi] .

Hence, we can calculate E[N] in time polynomial in |Φ|.

Remark : Recall that for any Bernoulli random-variable X ∼ Bin(1, p) we have E[X] =
Pr[X = 1] = p.

(d) Intuitively, as we can simply separately consider the two cases u1 = 0 and u1 = 1 and first
take the average for each of these cases:

E[N] =
∑
u∈{0,1}n N(u)Pr[u]

=
∑
u∈0{0,1}n−1 N(u)Pr[u | u1 = 0] Pr[u1 = 0] +

∑
u∈1{0,1}n−1 N(u)Pr[u|u1 = 1] Pr[u1 = 1]

= E[N |u1 = 0] · 1/2 + E[N |u1 = 1] · 1/2.

(e) Otherwise, the average would be smaller than E[N].

(f) We now know that in time polynomial in |Φ| we can always determine a value b for x1 s.t.

E[NΦ] ≤ E[NΦ | u1 = b] = E[NΦ[x1:=b]],

i.e., if we substitute b for x1 in Φ and simplify, the expected number of simultaneously
satisfied constraints in the resulting constraint system Φ[x1 := b] does not decrease. In
particular, after n steps we have determined an assignment which satisfies at least E[N]
constraints.

Exercise 9.3

The decision version of the traveling salesman problem (short TSP) is defined as follows:

Given distances dij ≥ 0 between n cities and a bound B ≥ 0, decide if there is a tour
of the cities of length at most B.

We denote the corresponding decision problem by TSPD, i.e.,

〈d1,1, . . . , dn,n, B〉 ∈ TSPD iff there is TSP-tour w.r.t. (dij) of length at most B.

A Hamilton path in an undirected graph G = (V,E) is a path in G which visits every node exactly
once. The corresponding decision problem HamiltonPathD is known to be NP-complete.

(a) Show that the following is polynomial-time reduction from HPD to TSPD:

Given G = (V,E) with n = |V | and assume that V = {1, 2, . . . , n}. Set di,j := 1 if the
nodes i and j are connected by some edge, otherwise di,j := n+ 1. Further, set B := 2n.

(b) Show that n-approximating the optimal solution of TSP (i.e. finding a cycle at most n
times longer than the optimal) is NP-hard.

(c) We call a TSP-instance 〈d1,1, . . . , dn,n, B〉 metric if dij ≤ dik + dkj holds for all i, j, k.

• Give an example of a graph G where the TSP-instance produced by the reduction
above is not metric.

• Modify the reduction such that it always yields a metric TSP-instance.

(d) The following algorithm for approximating the optimal solution of a metric TSP is by
Christofides:

First, compute a minimal spanning tree T = (VT , ET) of the complete graph
Kn with distance matrix (dij). Let O be the nodes of T which have odd degree
(w.r.t. T !). Consider now the complete graph KO consisting only of these nodes
O, and calculate a minimal matching M for it, i.e., find a subset M of the edges
of KO s.t. every node is connected to exactly one other node (no loops) and
the total weight of M , i.e.,

∑
(i,j)∈M dij , is minimal. Add now the edges M to

T yielding a multigraph G, i.e., assume that the original edges of T are colored
black, while those of M are colored red. Still, the weight of an edge (i, j) in G
is dij independent of its color. Calculate a Eulerian walk of G, i.e., a path of G
which uses every edge, both black and red, of G exactly once. The approximation
is then the tour embedded in the Eulerian walk.

• Convince yourself that every step of the algorithm by Christofides can be implemented
in polynomial time (look it up on the Internet).

• Apply the algorithm by Christofides to the following example:

The coordinates of the inner nodes are R · (cos k·2πn , sin k·2π
n), for the outer nodes

(R + c) · (cos k·2πn , sin k·2π
n) where n = 6, k = 1, 2, . . . , 6, R = 2cm, c = 0.5cm.

Distances are given by the Euclidean norm if there is an edge, otherwise ∞.

• Try to show that Christofides’ algorithm always yields a tour which is at most 50%
longer than the optimal tour for a metric TSP-instance.

