
Technische Universität München (I7) Summer term 2019
Prof. J. Křet́ınský / Dr. M.Raskin 16.05.2019

Solution

Computational Complexity – Homework 7

Discussed on 21.05.2019.

Exercise 7.1

Show that, if NP ⊆ BPP, then RP = NP.

Solution: It is known to be the case that RP ⊆ NP. (Simply forget the probability distribution over the certificates and
one ends up with the definitoin of NP!)

Note that in case of NP we are only promised (at least) one certificate u such that M1(x, u = 1). That is the probability of
picking a witnessing certificate uniformly at random is just 2−p(|x|. Thus if x ∈ L, we have P [Ax,M] ≥ 2−p(|x|).(3/4).

So now suppose that NP ⊆ BPP. We need to show that NP ⊆ RP.

As NP ⊆ BPP, we can consider a polynomial-time Turing machine M that solves SAT correctly with probability more than
1 − 1

(n+1)2 where n is the number of variables. But we can find the minimal satisfying assignment of a satisfiable formula

but asking n + 1 questions about satisfiability We ask whether the the formula itself is satisfiable; if it is, we compute
lexicographically minimal prefixes of satisfying assignments of growing length. If x1 = 0 can be extended to satisfyign
assignment, it is the minimal prefix of length 1, otherwise all satisfying assignments start with x1 = 1. Then we check if
fixing x2 = 0 (using the chosen value of x1) can be extended to satisfying assignment; if yes, the minimal assignment is
obtained by fixing x2 = 0 and extending further, otherwise it must have x2 = 1. And so on. In the end we can easily check
if the output is indeed a satisfying assignment.

Using M to generate a satisfying assignment then verifying the output accepts each formula from SAT with probability at
least 1 − 1/n (the probability of any mistake is at most (n + 1) 1

(n+1)2 as we make n + 1 queries and can apply the union

bound) and definitely rejects each formula not in SAT . This matches the definition of RP, so SAT ∈ RP and as SAT is
NP-complete we obtain NP ⊆ RP.

Exercise 7.2

Show that

(a) RP, BPP, and PP are closed under ≤p.

Remark : Recall that a class C is closed under ≤p if A ≤p B ∧B ∈ C⇒ A ∈ C.

(b) RP and BPP are closed under intersection and union.

Exercise 7.3

A probabilistic alternating Turing machine (short: PATM) is a tuple (Q 1
2
, Q∃,Γ, δ0, δ1) where

• Q := Q 1
2
∪Q∃ is the set of control states. (Q 1

2
and Q∃ are required to be disjoint.)

• Γ is the alphabet.

• δ0, δ1 are two transition functions.

A run of a PATM M = (Q 1
2
, Q∃,Γ, δ0, δ1) on a given input x is simply a run by the underlying NDTM defined by

(Q 1
2
∪Q∃,Γ, δ0, δ1). In particular, M runs in time T (n) if every run on input x takes time at most T (|x|), i.e., the computation

tree of M on input x has height at most T (|x|). (Recall the inductive definition of configuration tree: starting from the initial
configuration on input x (the root), every inner node of the tree is a non-halting configuration c of M which has exactly
two childrens δ0(c) and δ1(c), even if δ0(c) = δ1(c).)

The intuition of a PATM is that it combines randomization with nondeterminism: in a configuration with a control state
contained in Q∃ a PATM basically explores both possible successors in parallel, while in a configuration with control state

in Q 1
2

it chooses on of the two possible successors uniformly at random. More formally, the probability that M accepts x

(Pr[M(x) = 1]) is then defined by labeling the computation tree bottom-up as follows:

• A leaf is labeled by 1 if it corresponds to a accepting configuration, otherwise it is labeled by 0.

• An inner node which corresponds to a control state from Q 1
2

is labeled by the average of the labels of its two children;

• while an inner node corresponding to a control state from Q∃ is labeled by the maximum of its two children.

The label of the root of the computation tree of M on input x is then the probability that M accepts x, short Pr[M(x) = 1].
Similarly, Pr[M(x) = 0] := 1− Pr[M(x) = 1].

(a) Show that for every poly-time PATM M there is a poly-time PATM N s.t.:

• Pr[M(x) = 1] = Pr[N(x) = 1] for all x ∈ {0, 1}∗.

• Every run of N on a given input x takes time exactly 2|x|k for some k > 0.

• Every inner node with control state in Q 1
2

(Q∃) has only children with control state in Q∃ (Q 1
2
).

(b) Let M = (Q∃, Q∀,Γ, δ0, δ1) be a poly-time ATM deciding the language L. We can reinterpret M also a PATM by
setting Q 1

2
:= Q∀. Show that

x ∈ L⇔ Pr[M(x) = 1] = 1.

(c) The class APP is defined as follows:

A language L is contained in APP if there is a poly-time PATM M s.t.

x ∈ L⇔ Pr[M(x) = 1] ≥ 3/4.

• Show that APP ⊆ PSPACE by adapting the PSPACE-algorithm for deciding QSat.

• Show that PSPACE ⊆ APP by adapting the proof of NP ⊆ PP given in the lecture.

Hint : Recall that AP = PSPACE, i.e., for every L ∈ PSPACE there is a poly-time alternating Turing machine
deciding L. Now copy the construction from the proof of NP ⊆ PP in order to obtain from a poly-time ATM a
poly-time PATM M with x ∈ L⇔ Pr[M(x) = 1] ≥ 3/4.

(d) The class ABPP is defined as follows:

A language L is contained in ABPP if there is a poly-time PATM M s.t.

x ∈ L⇒ Pr[M(x) = 1] ≥ 3/4 and x 6∈ L⇒ Pr[M(x) = 1] ≤ 1/4.

Obviously, we have ABPP ⊆ APP.

• Show that ABPP = IP = APP = PSPACE.

Hint : You already know ABPP from the lecture by some other name.

(e) Assume we extend the definition of PATMs by partitioning the control states into three classes Q 1
2
, Q∃, Q∀; the

acceptance probability Pr[M(x) = 1] is defined as above where the value of a node corresponding to a control state of
Q∀ is defined to be the minimum of the values of its two children. Call such a Turing machine a PAATM.

• Using PAATMs define the complexity classes AAPP and AABPP analogously to APP and ABPP.

Discuss how these relate to APP, PP, ABPP, BPP, AP, PSPACE, IP, AM.

