Solution

Computational Complexity - Homework 7

Discussed on 21.05.2019.

Exercise 7.1

Show that, if $\mathbf{N P} \subseteq \mathbf{B P P}$, then $\mathbf{R P}=\mathbf{N P}$.

Solution: It is known to be the case that $\mathbf{R P} \subseteq \mathbf{N P}$. (Simply forget the probability distribution over the certificates and one ends up with the definitoin of NP!)
Note that in case of NP we are only promised (at least) one certificate u such that $M_{1}(x, u=1)$. That is the probability of picking a witnessing certificate uniformly at random is just $2^{-p(|x|}$. Thus if $x \in L$, we have $P\left[A_{x, M}\right] \geq 2^{-p(|x|)}$.(3/4).

So now suppose that $\mathbf{N P} \subseteq \mathbf{B P P}$. We need to show that $\mathbf{N P} \subseteq \mathbf{R P}$.
As NP $\subseteq \mathbf{B P P}$, we can consider a polynomial-time Turing machine M that solves $S A T$ correctly with probability more than $1-\frac{1}{(n+1)^{2}}$ where n is the number of variables. But we can find the minimal satisfying assignment of a satisfiable formula but asking $n+1$ questions about satisfiability We ask whether the the formula itself is satisfiable; if it is, we compute lexicographically minimal prefixes of satisfying assignments of growing length. If $x_{1}=0$ can be extended to satisfyign assignment, it is the minimal prefix of length 1 , otherwise all satisfying assignments start with $x_{1}=1$. Then we check if fixing $x_{2}=0$ (using the chosen value of x_{1}) can be extended to satisfying assignment; if yes, the minimal assignment is obtained by fixing $x_{2}=0$ and extending further, otherwise it must have $x_{2}=1$. And so on. In the end we can easily check if the output is indeed a satisfying assignment.

Using M to generate a satisfying assignment then verifying the output accepts each formula from $S A T$ with probability at least $1-1 / n$ (the probability of any mistake is at most $(n+1) \frac{1}{(n+1)^{2}}$ as we make $n+1$ queries and can apply the union bound) and definitely rejects each formula not in $S A T$. This matches the definition of $\mathbf{R P}$, so $S A T \in \mathbf{R P}$ and as $S A T$ is $\mathbf{N P}$-complete we obtain $\mathbf{N P} \subseteq \mathbf{R P}$.

Exercise 7.2

Show that
(a) $\mathbf{R P}, \mathbf{B P P}$, and $\mathbf{P P}$ are closed under \leq_{p}.

Remark: Recall that a class \mathbf{C} is closed under \leq_{p} if $A \leq_{p} B \wedge B \in \mathbf{C} \Rightarrow A \in \mathbf{C}$.
(b) RP and BPP are closed under intersection and union.

Exercise 7.3

A probabilistic alternating Turing machine (short: PATM) is a tuple ($Q_{\frac{1}{2}}, Q_{\exists}, \Gamma, \delta_{0}, \delta_{1}$) where

- $Q:=Q_{\frac{1}{2}} \cup Q_{\exists}$ is the set of control states. ($Q_{\frac{1}{2}}$ and Q_{\exists} are required to be disjoint.)
- Γ is the alphabet.
- δ_{0}, δ_{1} are two transition functions.

A run of a PATM $M=\left(Q_{\frac{1}{2}}, Q_{\exists}, \Gamma, \delta_{0}, \delta_{1}\right)$ on a given input x is simply a run by the underlying NDTM defined by $\left(Q_{\frac{1}{2}} \cup Q_{\exists}, \Gamma, \delta_{0}, \delta_{1}\right)$. In particular, M runs in time $T(n)$ if every run on input x takes time at most $T(|x|)$, i.e., the computation tree of M on input x has height at most $T(|x|)$. (Recall the inductive definition of configuration tree: starting from the initial configuration on input x (the root), every inner node of the tree is a non-halting configuration c of M which has exactly two childrens $\delta_{0}(c)$ and $\delta_{1}(c)$, even if $\delta_{0}(c)=\delta_{1}(c)$.)

The intuition of a PATM is that it combines randomization with nondeterminism: in a configuration with a control state contained in Q_{\exists} a PATM basically explores both possible successors in parallel, while in a configuration with control state
in $Q_{\frac{1}{2}}$ it chooses on of the two possible successors uniformly at random. More formally, the probability that M accepts x $(\operatorname{Pr}[M(x)=1])$ is then defined by labeling the computation tree bottom-up as follows:

- A leaf is labeled by 1 if it corresponds to a accepting configuration, otherwise it is labeled by 0 .
- An inner node which corresponds to a control state from $Q_{\frac{1}{2}}$ is labeled by the average of the labels of its two children;
- while an inner node corresponding to a control state from Q_{\exists} is labeled by the maximum of its two children.

The label of the root of the computation tree of M on input x is then the probability that M accepts $x, \operatorname{short} \operatorname{Pr}[M(x)=1]$. Similarly, $\operatorname{Pr}[M(x)=0]:=1-\operatorname{Pr}[M(x)=1]$.
(a) Show that for every poly-time PATM M there is a poly-time PATM N s.t.:

- $\operatorname{Pr}[M(x)=1]=\operatorname{Pr}[N(x)=1]$ for all $x \in\{0,1\}^{*}$.
- Every run of N on a given input x takes time exactly $2|x|^{k}$ for some $k>0$.
- Every inner node with control state in $Q_{\frac{1}{2}}\left(Q_{\exists}\right)$ has only children with control state in $Q_{\exists}\left(Q_{\frac{1}{2}}\right)$.
(b) Let $M=\left(Q_{\exists}, Q_{\forall}, \Gamma, \delta_{0}, \delta_{1}\right)$ be a poly-time ATM deciding the language L. We can reinterpret M also a PATM by setting $Q_{\frac{1}{2}}:=Q_{\forall}$. Show that

$$
x \in L \Leftrightarrow \operatorname{Pr}[M(x)=1]=1
$$

(c) The class APP is defined as follows:

A language L is contained in APP if there is a poly-time PATM M s.t.

$$
x \in L \Leftrightarrow \operatorname{Pr}[M(x)=1] \geq 3 / 4 .
$$

- Show that APP \subseteq PSPACE by adapting the PSPACE-algorithm for deciding QSAT.
- Show that $\mathbf{P S P A C E} \subseteq \mathbf{A P P}$ by adapting the proof of $\mathbf{N P} \subseteq \mathbf{P P}$ given in the lecture.

Hint: Recall that AP $=\mathbf{P S P A C E}$, i.e., for every $L \in \mathbf{P S P A C E}$ there is a poly-time alternating Turing machine deciding L. Now copy the construction from the proof of $\mathbf{N P} \subseteq \mathbf{P P}$ in order to obtain from a poly-time ATM a poly-time PATM M with $x \in L \Leftrightarrow \operatorname{Pr}[M(x)=1] \geq 3 / 4$.
(d) The class ABPP is defined as follows:

A language L is contained in $\mathbf{A B P P}$ if there is a poly-time PATM M s.t.

$$
x \in L \Rightarrow \operatorname{Pr}[M(x)=1] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}[M(x)=1] \leq 1 / 4
$$

Obviously, we have $\mathbf{A B P P} \subseteq \mathbf{A P P}$.

- Show that $\mathbf{A B P P}=\mathbf{I P}=\mathbf{A P P}=\mathbf{P S P A C E}$.

Hint: You already know ABPP from the lecture by some other name.
(e) Assume we extend the definition of PATMs by partitioning the control states into three classes $Q_{\frac{1}{2}}, Q_{\exists}, Q_{\forall}$; the acceptance probability $\operatorname{Pr}[M(x)=1]$ is defined as above where the value of a node corresponding to a control state of Q_{\forall} is defined to be the minimum of the values of its two children. Call such a Turing machine a PAATM.

- Using PAATMs define the complexity classes AAPP and AABPP analogously to APP and ABPP.

Discuss how these relate to APP, PP, ABPP, BPP, AP, PSPACE, IP, AM.

