Computational Complexity - Homework 6

Discussed on 17.05.2019.

Recall that $L \in \mathbf{R P}$ if there exists a polynomial p and a polynomial-time TM $M(x ; u)$ using certificates u of length $p(|x|)$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Rightarrow \operatorname{Pr}\left[A_{M ; x} \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}\left[A_{M ; x}\right]=0\right.
$$

Further $\mathbf{c o}-\mathbf{R P}=\{\bar{L} \mid L \in \mathbf{R P}\}$ and $\mathbf{Z P P}=\mathbf{R P} \cap \mathbf{c o}-\mathbf{R P}$.

Exercise 6.1

(a) Show that $\mathbf{R P}$ does not change if we replace in the definition $\geq 3 / 4$ by $\geq n^{-k}$ or $\geq 1-2^{-n^{k}}$ (with $k>0$).
(b) Let $L \in \mathbf{N P}$ be decided by a poly-time TM $M(x, u)$ with certificates u of length $p(|x|)$.

Prove or disprove that $x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq n^{-k}$ needs to hold for some $k>0$ if a polynomial number $r(|x|)$ of reruns should suffice to reduce the probability of false negatives below any given bound $c \in(0,1)$.
Remark: Use that $(1-1 / k)^{k} \approx e^{-1}$ for large k.

Exercise 6.2

A cut in a connected non-oriented graph is a set of edges such that their removal makes the graph disconnected.

Consider the following problem: given a graph G and an integer k determine whether the graph G has a cut of size at most k.

Prove that this problem is in $\mathbf{R P}$.

Exercise 6.3

Prove that verifying matrix multiplication (given matrices A, B, C check $A B=C$) is in coRP. Show that the verifying algorithm can be made quadratic (for a constant error probability).

Exercise 6.4

Show that $L \in \mathbf{Z P P}$ if and only if L is decided by some PTM in expected polynomial time.

Exercise 6.5

For a given $c>0$ let a language L be in $\mathbf{P P}_{\geq c}$ if $x \in L \Leftrightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq c$. Similarly, the class $\mathbf{P P} P_{>c}$ is defined.
Show that
(a) $\mathbf{P} \mathbf{P}_{>1 / 2}=\mathbf{P} \mathbf{P}_{\geq 1 / 2}$.
(b) $\mathbf{P} \mathbf{P}_{>1 / 2}$ is closed under complement and symmetric difference.

Remark: The symmetric difference $A \Delta B$ of two sets A, B is defined by $A \Delta B:=(A \backslash B) \cup(B \backslash A)$.
(c) MajSAt is $\mathbf{P P}>1 / 2$-complete.

Remark: MajSat is the following problem: Given a Boolean expression with n variables, is it true that the majority of the 2^{n} truth assignments to its variables, i.e., at least $2^{n-1}+1$ of them, satisfy it?
*(d) $\mathbf{P P}_{\geq 3 / 4}=\mathbf{P} \mathbf{P}_{\geq 1 / 2}$.

