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Solution

Computational Complexity – Homework 6

Discussed on 17.05.2019.

Recall that L ∈ RP if there exists a polynomial p and a polynomial-time TM M(x;u) using certificates
u of length p(|x|) such that for every x ∈ {0, 1}∗

x ∈ L⇒ Pr[AM ;x ≥ 3/4 and x /∈ L⇒ Pr[AM ;x] = 0

Further co−RP = {L̄ | L ∈ RP} and ZPP = RP ∩ co−RP.

Exercise 6.1

(a) Show that RP does not change if we replace in the definition ≥ 3/4 by ≥ n−k or ≥ 1 − 2−nk

(with k > 0).

(b) Let L ∈ NP be decided by a poly-time TM M(x, u) with certificates u of length p(|x|).

Prove or disprove that x ∈ L ⇒ Pr[AM,x] ≥ n−k needs to hold for some k > 0 if a polynomial
number r(|x|) of reruns should suffice to reduce the probability of false negatives below any given
bound c ∈ (0, 1).

Remark : Use that (1− 1/k)k ≈ e−1 for large k.

Exercise 6.2

A cut in a connected non-oriented graph is a set of edges such that their removal makes the graph
disconnected.

Consider the following problem: given a graph G and an integer k determine whether the graph G has
a cut of size at most k.

Prove that this problem is in RP.

Solution: Consider the following random algorithm to find a cut. As long as we have at least three
vertices we contract a random edge (declare its ends to be the same vertex and remove all the resulting
self-loops; there can be multiple edges between the remaining vertices). Once there are only two vertices,
we report all the remaining edges between the vertices as a cut.

This procedure always produces a cut. If the minimal cut has k edges, all vertices have degree at least
k (otherwise cutting off a single vertices would be a smaller cut) and there are at least kn

2 edges. The
same holds at each step.



The probability of not selecting any of the edges in the cut for contraction at the first step is at least
1 − k

kn
2

= 1 − 2
n . After each contraction, if we still have all k edges from the minimal cut intact and

there are m vertices left, the probability of choosing an edge not from the cut is at least 1 2
m .

The probability to keep all the edges from the cut to the end (and selecting the minimal cut) is at least∏n
i=3(1− 2

i ) = 1
3
2
4
3
5 . . . = 2

n)(n−1) .

We can use amplification to obtain the desired probability of success.

Exercise 6.3

Prove that verifying matrix multiplication (given matrices A,B,C check AB = C) is in coRP. Show
that the verifying algorithm can be made quadratic (for a constant error probability).

Solution: Select a uniformly random vector r with values 0 and 1. If AB = C, then ABr = Cr.
The latter condition can be verified in quadratic time. Let us see why the error will be detected with
probability at least 1

2 . (If there is no error, we will always accept).

An equivalent form of the condition is (AB − C)r = 0. If (AB − C) contains a nonzero entry at
position (i, j), changing j-th coordinate of r changes (AB − C)r, and therefore for eavery choice of
other coordinates at least one choice of the j-th coordinate leads to the error being discovered.

Exercise 6.4

Show that L ∈ ZPP if and only if L is decided by some PTM in expected polynomial time.

Exercise 6.5

For a given c > 0 let a language L be in PP≥c if x ∈ L ⇔ Pr[AM,x] ≥ c. Similarly, the class PP>c is
defined.

Show that

(a) PP>1/2 = PP≥1/2.

(b) PP>1/2 is closed under complement and symmetric difference.

Remark : The symmetric difference A∆B of two sets A,B is defined by A∆B := (A\B)∪ (B \A).

(c) MajSat is PP>1/2-complete.

Remark : MajSat is the following problem: Given a Boolean expression with n variables, is it
true that the majority of the 2n truth assignments to its variables, i.e., at least 2n−1 + 1 of them,
satisfy it?

*(d) PP≥3/4 = PP≥1/2.


