
Technische Universität München (I7) Summer term 2019
Prof. J. Křet́ınský / Dr. M.Raskin 08.05.2019

Computational Complexity – Homework 5

Discussed on 14.05.2019.

Exercise 5.1

(a) Show that for any L ∈ PSPACE there is single-tape TM M (which may also write on its input
tape) which decides L also in polynomial space.

(b) Show that it is PSPACE-complete to decide if a given word w can be derived by a given context-
sensitive grammar G, i.e.,

ConSens := {〈G,w〉 | if G is a context-sensitive grammar and w ∈ L(G)}.

Exercise 5.2

Prove that EXPTIME = APSPACE.

[Hint: For the ⊆ direction consider breaking the work tape(s) into exponentially many segments which
are then independently simulated in polynomial space. Use alternatation to coordinate these simulati-
ons.]

Remark: We can also show that P = AL (alternating logarithmic space).

Exercise 5.3

We will revisit two-player graph games, but this time we will not bound the number of moves in a play,
and even allow the number of moves to be infinite.

A game graph is a structure 〈V,E, V0, V1, v〉 where 〈V,E〉 is a finite directed graph, and V0, V1 is a
partition of the vertices V . Moreover v ∈ V is the initial node.

Consider a sequence of nodes (u)u∈I where I ⊆ N is a downward closed index set (which may or may not
be infinite) for the sequence. Such a sequence is called a partial play if (i) u0 = v, and (ii) (ui, ui+1) ∈ E
for all i + 1 ∈ I. A partial play is called a play if either I = N, or it is a finitely long play u0, . . . , uk
such that there is no edge (uk, u) ∈ E for any u ∈ V .

Two players (player 0 and player 1) between them construct a partial play. The partial play begins
with v. If a partial play v0, . . . , vi has been constructed, and vi ∈ Vj , and there exists u ∈ V such that
(vi, v) ∈ E, then player j must choose the next node vi+1 in the partial play such that (vi, vi+1) ∈ E.
The partial play is extended no further if no such move exists.

Thus after either finitely many or infinitely many moves the two players will have constructed a partial
play that is a play.

We consider three different types of game that are distinguished by their winning conditions W . Given
a play σ, we write Occ(σ) for the set of nodes occurring at least once in σ, and Inf (σ) for the set of
nodes occurring infinitely often in σ (which will in particular be empty if σ is only finitely long).

• In a reachability game W ⊆ V and player 0 wins a play σ if W ∩Occ(σ) 6= ∅.



• In a Rabin game, W is a set of pairs of the form (F, I) where F, I ⊆ V . Player 0 wins the play σ
if there exists (F, I) ∈W such that F ∩ Inf (σ) = ∅ and I ∩ Inf (σ) 6= ∅.

• In a Müller game, W = 〈C, C, χ〉 where C is a finite set of colours, C ⊆ 2C , and χ : V → C. Player
0 wins a play σ if χ(Inf (σ)) ∈ C.

The decision problem associated with a particular type of game is the set containing elements 〈G,W 〉
where G is a game graph, W is an appropriate winning condition, and Player 0 can play in such a way
that a play winning for Player 0 always results regardless of how Player 1 moves.

(a) Prove that the decision problem for reachability games is P-hard. (Remember that logarithmic
space reductions must be used for this). For this take it as given that AL = P.

[Remark: It is possible to see that the version of reachability games defined in the previous problem
sheet are equivalent to those defined above. Thus in fact reachability games are P-complete.]

(b) Prove that the decision problem for Rabin games is NP-complete.

[Hint: For hardness reduce from 3-SAT. Make Player 0 ‘prove’ that they know some satisfying
assignment. Allow Player 1 to ‘interrogate’ player 0’s knowledge of such an assignment. Using the
winning condition to ensure that for some literal player 0 is eventually consistent should suffice
to allow Player 1 to successfully catch out Player 0 if no satisfying assignment exists. ]

(c) Prove that the decision problem for Müller games is PSPACE-complete.

[Hint: For hardness reduce from QBF. Observe that Rabin conditions can be (in polynomial
time) translated into Müller conditions. Note further that the complement of a Rabin condition
can also be so translated. You might also find it helpful to work with a slight generalisation of
Müller games allowing one to have a Müller game equivalent of adding quantifiers to the front of
a propositional formula. ]

Exercise 5.4

You have seen that 2SAT is in NL. Show that 2SAT is also NL-hard.

Exercise 5.5

Show that deciding the inequivalence of context-free grammars over one-letter terminal alphabet is
Σp

2-hard. You can make use of Σp
2-hardness of integer expression inequivalence.

What does it imply for the equivalence problem?

Exercise 5.6

Under the assumption that 3Sat ≤p 3Sat show that NP = PH.

Exercise 5.7

Apart from the certificate definition and the alternative bounded alternating Turing machine characte-
rization, there is one more standard characterization of the polynomial hierarchy via oracles.

For a language L, an oracle machine ML is a Turing machine which can moreover do the following kind
of computation steps. It can write down a word w on a special tape and ask whether w ∈ L and it
immediately receives the correct answer. One can also talk about this machine even when the oracle is
not specified, then we write M?.

Example: In Exercise 3.4 (a), you have constructed an example of MSAT where M? is a polynomial
time TM.

• Prove or disprove: for every M?, if A ⊆ B then L(MA) ⊆ L(MB).



• Prove or disprove: if A ⊆ B then PA ⊆ PB (as classes).

The polynomial hierarchy can be defined inductively setting Σp
0 = Πp

0 = P and

Σp
i+1 = NPΣp

i

Πp
i+1 = co-NPΣp

i

where AB is the set of decision problems solvable by a Turing machine in class A with an oracle for
some complete problem in class B.

• Show this yields the same hierarchy as the original definition.

One can also define ∆p
i+1 = PΣp

i and show that ∆p
i+1 ⊆ Σp

i+1 ∩ Πp
i+1 and it contains all languages

expressible as Boolean combinations (unions, intersections, complements) of languages of Σp
i and Πp

i .

• What is the relationship of these classes to DP = {L | ∃M,N ∈ NP : L = M \N}?


