
Technische Universität München (I7) Summer term 2019
Prof. J. Křet́ınský / Dr. M.Raskin 08.05.2019

Solution

Computational Complexity – Homework 5

Discussed on 14.05.2019.

Exercise 5.1

(a) Show that for any L ∈ PSPACE there is single-tape TM M (which may also write on its input
tape) which decides L also in polynomial space.

(b) Show that it is PSPACE-complete to decide if a given word w can be derived by a given context-
sensitive grammar G, i.e.,

ConSens := {〈G,w〉 | if G is a context-sensitive grammar and w ∈ L(G)}.

Solution:

(a) As we are allowed to used polynomial space, we can compress all k tapes into a single tape using
a vector alphabet (Γ ∪ Γ̂)k where Γ̂ is used to encode the positions of the original heads. We
then can simulate a single step of the original machine within a bounded number of “oblivious”
macro-steps: scan the single tape from left to right and back again and remember the symbols
necessary for determining the next step of the original machine. Then change in a second scan
from left to right and back again the tape content. The new machine will use at most the space
used by the original machine.

(b) We first show that ConSens is in PSPACE:

Let G = (Σ, V, P, S) be a context-sensitive grammar with Σ the alphabet/terminals, V the set of
variables/nonterminals, P the set of productions, and S ∈ V the start symbol. By definition of
context-sensitive grammar, every rule is of the form αAβ → αγβ with α, β ∈ (Σ ∪ V)∗, A ∈ V ,
and γ ∈ (Σ ∪ V)+, i.e., |αAβ| ≤ |αγβ|.

A derivation in G is any finite sequence ω1ω2 . . . ωl such that ω1 = S and ωi can be rewritten to
ωi+1 by means of some production of P . Then L(G) is the set of all words x ∈ Σ∗ for which there
exists a derivation ending with x. Note that the length of the ωi is monotonocially increasing, i.e.,
|ωi| ≤ |ωi+1|. This means that in linear space we can nondeterministically guess a derivation of x
as every ωi has length at most |x|: given ωi construct some ωi+1 by nondeterministically applying
a production; if |ωi+1| > |x|, reject |x|; otherwise go on until ωi = x. Note that this NDTM might
not terminate. This is not a problem as there are only exponentially many different configurations,
so we can add some counter (which needs space polynomial in |x|) for forcing termination the
NDTM if too many steps have been made.

PSPACE-completeness:

Let M be a TM deciding some language L in space s(n) where s is some polynomial. (Note
that by Savitch’s theorem we may indeed assume that ML is deterministic.) By (a) we may also

assume that M has a single tape. As M decides L every computation ends in either (qhalt,B0) or
(qhalt,B1) with wlog. the head on the start symbol.

Given M and x we want to construct in polynomial time a context-sensitive grammar GM ;x and
word wx such that

M accepts x iff wx ∈ L(GM ;x).

We define GM ;x as follows:

Every transition of M is of the form δ(q, a) = (q′, b,→). We translate this into the rule ub(v, q′)→
u(a, q)v for every possible u, v ∈ Γ where Γ is the tape alphabet ofM , i.e., a production corresponds
to undoing a transition of M where we remember in the nonterminals the state, head position
and symbol read by the head. These rules can be written in time polynomial in the description
of M . Additionally, we add rules S → Bqhalt1B and B → �|�B. A derivation of the grammar
then obviously corresponds to the reverse of an accepting run of M . The grammar then has as
terminals the band alphabet Γ of M . The nonterminals are given by Γ×Q.

(In order to handle boundary cases one need to add additional left and right end symbols $ and
which never are overwritten.)

We therefore set wx = Bx�s(|x|). As the computation of M on x needs at most s(|x|) space, we
have x ∈ L iff wx ∈ L(GM ;x).

Exercise 5.2

Prove that EXPTIME = APSPACE.

[Hint: For the ⊆ direction consider breaking the work tape(s) into exponentially many segments which
are then independently simulated in polynomial space. Use alternatation to coordinate these simulati-
ons.]

Remark: We can also show that P = AL (alternating logarithmic space).

Solution: In order to get APSPACE ⊆ EXPTIME we note that a polynomial-space bounded
machine has at ost exponentially many configurations and that its run-tree can thus be exhaustively
explored (via a depth-first search) in exponential time. Without loss of generality we may assume that
M has only one work-tape.

We thus concentrate on the harder direction: EXPTIME ⊆ APSPACE. Suppose that we have a TM
M that terminates in at most c.2n

p

-steps on an input x of length n.

In particular this means that M must also work in space bounded by c.2n
p

. We can thus think of the
tape of M as being divided into 2n

p

many segments of constant length c. Each of these segments can
be assigned an address in [1, 2n

p

] from left-to-right.

We construct an alternating machine M̂ whose configurations (plus some extras implicit in the descrip-
tion of existential and universal branching of the machine) have one of the two following forms:

(q, P,A,w) and (P ′, A′, w′,m | q, P,A,w)

which we refer to as main configurations and check configurations respectively.

The main configurations should be viewed as simulating a configuration of M . They consist of the
following data:

(a) A control-state q of M ,

(b) A program counter P that keeps track of how many steps in the simulation have so far been made,

(c) A ‘segment pointer’ A that indicates the address of the segment of M ’s tape current being simu-
lated,

(d) A word w of constant length c indicating the contents of the segment of M ’s tape (including the
head position) at address A at step P .

A check configuration contains the following data:

(a) The data to the right of | is the same as in a main configuration.

(b) P ′, A′ and w′ are respectively (binary representations of) two numbers bounded by c.2n
p

and
a word of length c over the tape alphabet of M (plus head position marker). These should be
interpreted as specifying an assertion that needs to be checked: “Is it the case that at step P ′ the
segment with address A′ has content w′”?

(c) The element m is a Boolean value that is set to true when the address A′ current contains content
w′ and to false otherwise.

A main configuration can clearly simulate M faithfully until such a point that it must simulate moving
the head either to the left or to the right of A (i.e. to A′ = A − 1 or A′ = A + 1). In this case it
must guess the content w′ of the tape at address A′. (Such a guess can be made with an existential (∃)
transition).

This guess w′ needs to be verified. In order to do this, M makes a ∀ transition spawning the next main
configuration as well as a ‘check’ configuration to verify the guess:

(q′, P + 1, A′, w′) and (P,A′, w′,m | q0, 1, 1,�
c)

where m is set to true iff w′ = �c, otherwise it is set to false, and where q0 is the initial state of M .
Note that we are querying the content of the segment with address A′ at step P . This is OK because
its content must be the same at both step P + 1 and step P because at step P the head of M was in a
different segment.

A check configuration works in the same way to a main configuration on the right hand-side of the
| symbol. In particular it spawns new check configurations when it needs to simulate entering a new
address (of course this time two check configurations will be spawned instead of a main and a check
configuration).

The difference is that it must maintain the expected invariant for m. This is, however, trivial. The value
of m should not change when A 6= A′. When A = A′, after each modification of w, w can be changed
to w′ and m set to true if w = w′ and false otherwise.

A check configuration halts when P = P ′ and accepts if m is true, otherwise it rejects. Note that when a
check configuration whose first component is P ′ spawns a check configuration to verify a guess, this new
configuration will have first component P ′′ < P ′. This ensures that the run tree is indeed well-founded
(checking terminates).

Termination of the branch of the run tree consisting of main configurations can be ensured by checking
that the P counters never exceed c.2n

p

, and this can also be done in polynomial space.

Note that M̂ operates in polynomial space since all of the counters consume only c.nk space and all
other components of configurations use only constant space.

Exercise 5.3

We will revisit two-player graph games, but this time we will not bound the number of moves in a play,
and even allow the number of moves to be infinite.

A game graph is a structure 〈V,E, V0, V1, v〉 where 〈V,E〉 is a finite directed graph, and V0, V1 is a
partition of the vertices V . Moreover v ∈ V is the initial node.

Consider a sequence of nodes (u)u∈I where I ⊆ N is a downward closed index set (which may or may not
be infinite) for the sequence. Such a sequence is called a partial play if (i) u0 = v, and (ii) (ui, ui+1) ∈ E
for all i + 1 ∈ I. A partial play is called a play if either I = N, or it is a finitely long play u0, . . . , uk
such that there is no edge (uk, u) ∈ E for any u ∈ V .

Two players (player 0 and player 1) between them construct a partial play. The partial play begins
with v. If a partial play v0, . . . , vi has been constructed, and vi ∈ Vj , and there exists u ∈ V such that
(vi, v) ∈ E, then player j must choose the next node vi+1 in the partial play such that (vi, vi+1) ∈ E.
The partial play is extended no further if no such move exists.

Thus after either finitely many or infinitely many moves the two players will have constructed a partial
play that is a play.

We consider three different types of game that are distinguished by their winning conditions W . Given
a play σ, we write Occ(σ) for the set of nodes occurring at least once in σ, and Inf (σ) for the set of
nodes occurring infinitely often in σ (which will in particular be empty if σ is only finitely long).

• In a reachability game W ⊆ V and player 0 wins a play σ if W ∩Occ(σ) 6= ∅.

• In a Rabin game, W is a set of pairs of the form (F, I) where F, I ⊆ V . Player 0 wins the play σ
if there exists (F, I) ∈W such that F ∩ Inf (σ) = ∅ and I ∩ Inf (σ) 6= ∅.

• In a Müller game, W = 〈C, C, χ〉 where C is a finite set of colours, C ⊆ 2C , and χ : V → C. Player
0 wins a play σ if χ(Inf (σ)) ∈ C.

The decision problem associated with a particular type of game is the set containing elements 〈G,W 〉
where G is a game graph, W is an appropriate winning condition, and Player 0 can play in such a way
that a play winning for Player 0 always results regardless of how Player 1 moves.

(a) Prove that the decision problem for reachability games is P-hard. (Remember that logarithmic
space reductions must be used for this). For this take it as given that AL = P.

[Remark: It is possible to see that the version of reachability games defined in the previous problem
sheet are equivalent to those defined above. Thus in fact reachability games are P-complete.]

(b) Prove that the decision problem for Rabin games is NP-complete.

[Hint: For hardness reduce from 3-SAT. Make Player 0 ‘prove’ that they know some satisfying
assignment. Allow Player 1 to ‘interrogate’ player 0’s knowledge of such an assignment. Using the
winning condition to ensure that for some literal player 0 is eventually consistent should suffice
to allow Player 1 to successfully catch out Player 0 if no satisfying assignment exists.]

(c) Prove that the decision problem for Müller games is PSPACE-complete.

[Hint: For hardness reduce from QBF. Observe that Rabin conditions can be (in polynomial
time) translated into Müller conditions. Note further that the complement of a Rabin condition
can also be so translated. You might also find it helpful to work with a slight generalisation of
Müller games allowing one to have a Müller game equivalent of adding quantifiers to the front of
a propositional formula.]

Exercise 5.4

You have seen that 2SAT is in NL. Show that 2SAT is also NL-hard.

Solution: Since REACHABILITY is NL-hard and we know that NL is closed under complement, it
suffices to show that there exists a logspace reduction from REACHABILITY to 2SAT. Suppose that
we are given a graph G = 〈V,E〉, an initial vertex v0 and a target vertex vf . From this we assign a
variable xv to each node in V and then construct φG :=

∧
(v1,v2)∈E(xv1 → xv2) (where xv1 → xv2 is

¬xv1 ∨ xv2). Finally we take the result of the reduction to be ψG := xv0 ∧ xvf ∧ φG .

ψG is a 2SAT instance and can be constructed in logspace (in the size of the reachability problem
instance). Indeed the construction can be carried out in constant space: we can reuse the node IDs as
variable IDs and in particular φG is just a rewriting of E (copying node IDs from a pairs (v1, v2) and
adding the appropriate Boolean operators.

It just remains to check that vf is NOT reachable from v0 iff ψG is SAT. For this it suffices to show
that (i) if a valuation satisfies xv0 ∧ φG it must set xv to true for all v reachable from v0, and (ii) if a
node v is unreachable from v0, then there exists a valuation satisfying xv0 ∧ φG that sets xv to false for
every unreachable node v.

To prove (i) argue by induction on the number of steps to reach v from v0. To prove (ii) take the
valuation that sets xv to true if v is reachable and false otherwise. Assume for contradiction that this
is not a satisfying valuation. Since v0 is trivially reachable it follows that there is a clause xv1 → xv2 in
φG such that xv1 is set to true but xv2 is set to false. But if this clause exists, (v1, v2) ∈ E and by the
definition of valuation v1 is reachable whilst v2 is not, which is a contradiction.

Exercise 5.5

Show that deciding the inequivalence of context-free grammars over one-letter terminal alphabet is
Σp

2-hard. You can make use of Σp
2-hardness of integer expression inequivalence.

What does it imply for the equivalence problem?

Exercise 5.6

Under the assumption that 3Sat ≤p 3Sat show that NP = PH.

Solution: If 3Sat ≤p 3Sat, then NP = coNP, i.e., Σp
1 = Πp

1. Consider now any L ∈ Σp
2. We have

x ∈ L iff ∃u ∈ {0, 1}p(|x|)∀u ∈ {0, 1}q(|x|) : M(x, u, v) = 1.

The language
L1{(x, u) | ∀v : M(x, u, v) = 1}

is then in coNP and, thus, in NP, i.e., we find a TM M ′ and a polynomial r, s.t.,

(x, u) ∈ L1 iff ∃v ∈ {0, 1}r(|x|+|u|) : M ′(x, u, v) = 1.

As |u| = p(|x|), we may assume that |v| = r(|x|) by adjusting r.

Hence,
x ∈ L iff ∃uv ∈ {0, 1}p(|x|)+r(|x|) : M ′(x, uv) = 1,

i.e., L ∈ NP.

So, Σp
2 ⊆ NP = coNP. Similarly, Πp

2 ⊆ NP = coNP.

Using induction, one now shows that NP = PH.

Exercise 5.7

Apart from the certificate definition and the alternative bounded alternating Turing machine characte-
rization, there is one more standard characterization of the polynomial hierarchy via oracles.

For a language L, an oracle machine ML is a Turing machine which can moreover do the following kind
of computation steps. It can write down a word w on a special tape and ask whether w ∈ L and it
immediately receives the correct answer. One can also talk about this machine even when the oracle is
not specified, then we write M?.

Example: In Exercise 3.4 (a), you have constructed an example of MSAT where M? is a polynomial
time TM.

• Prove or disprove: for every M?, if A ⊆ B then L(MA) ⊆ L(MB).

• Prove or disprove: if A ⊆ B then PA ⊆ PB (as classes).

The polynomial hierarchy can be defined inductively setting Σp
0 = Πp

0 = P and

Σp
i+1 = NPΣp

i

Πp
i+1 = co-NPΣp

i

where AB is the set of decision problems solvable by a Turing machine in class A with an oracle for
some complete problem in class B.

• Show this yields the same hierarchy as the original definition.

One can also define ∆p
i+1 = PΣp

i and show that ∆p
i+1 ⊆ Σp

i+1 ∩ Πp
i+1 and it contains all languages

expressible as Boolean combinations (unions, intersections, complements) of languages of Σp
i and Πp

i .

• What is the relationship of these classes to DP = {L | ∃M,N ∈ NP : L = M \N}?

