Computational Complexity – Homework 4

Discussed on 8 May 2016.

Exercise 4.1

Let us denote $\mathbf{DP} = \{L \mid \exists M, N \in \mathbf{NP} : L = M \setminus N\}$ the class of languages that are differences of two NP languages.

- (a) Show that $C = \{\langle G_1, k_1, G_2, k_2 \rangle \mid G_1 \text{ has a } k_1\text{-clique and } G_2 \text{ does not have any } k_2\text{-clique}\}$ is DP-complete.
- (b) Show that $MAX CLIQUE = \{\langle G, k \rangle \mid \text{the largest clique of } G \text{ is of size exactly } k\}$ is DP-complete.
- (c) It is unknown whether MAX CLIQUE is in **NP**. Show that if **P** = **NP** then MAX CLIQUE is in **NP** and a largest clique can be found in polynomial time.

Exercise 4.2

(a) Assume that P=NP. Show that then EXP=NEXP.

Remark: Assume that L is decided by some TM running in time T(n) with T(n) time-constructible and $T(n) \in \mathcal{O}(2^{n^c})$ for some $c \geq 1$. Show that then

$$L_{\text{pad}} := \{x10^{T(|x|)}1 \mid x \in L\} \in \mathbf{NP}.$$

*(b) Show that also **EXP=NEXP** if only every unary **NP**-language is also in **P**.

Remark: For $x \in \{0,1\}^*$ let $\langle x \rangle$ be the natural number represented by x assuming lsbf. Given a language L which is decided in time T(n) (with T(n) time-constructable) show that

$$L_{\text{upad}} = \{1^{\langle x10^{|T(n)|}1\rangle} \mid x \in L\} \in \mathbf{NP}$$

with $|T(n)| (\approx \lceil \log T(n) \rceil)$ the length of the lsbf representation of T(n).

Exercise 4.3

Is there a language in **DSPACE**($2^{2^{2^{\mathcal{O}(n)}}}$) that is not in **EXPSPACE** and not **NP**-hard (assuming **P** \neq **NP**)?

Exercise 4.4

- Is the following problem in $\mathbf{DTIME}(2^{\mathcal{O}(n)})$?
 - A function $f: \{1, \ldots, n\} \times \{1, \ldots, n\} \to \{1, \ldots, n\}$ is given as a table of values. Is there a sequence of n values $x_1, \ldots, x_n \in \{1, \ldots, n\}$ such that $f(x_1, f(x_2, \ldots, f(x_{n-1}, x_n), \ldots)) = n$?
- Is the following problem in $\mathbf{DTIME}(2^{\mathcal{O}(n)})$?

Multiplying an $n \times m$ matrix by an $m \times l$ matrix yields an $n \times l$ matrix and is implemented with time complexity $C \times m \times n \times l$ (the constant C is known).

Given the number of steps T and the number of matrices k (both written in unary), determine whether there are k matrices that can be multiplied in T steps but not 0.9T steps.

Exercise 4.5

Say that A is linear-time reducible to B if there is function f computable in time $\mathcal{O}(n)$ such that $x \in A \Leftrightarrow f(x) \in B$.

• Show that there is no P-complete problem w.r.t. linear-time reductions.

Hint: Use the time hierarchy theorem for **DTIME**.

PSPACE-related questions

Note that these topics were not yet discussed during the lectures. The exercises 4c and 5 are included but will not be discussed in class on the 8th May.

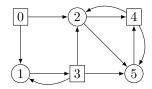
Exercise 4.6

A two-person game consists of a directed graph $G = (V_0, V_1, E)$ (called the game graph) whose nodes $V := V_0 \cup V_1$ are partitioned into two sets and a winning condition. We assume that every node $v \in V$ has a successor. The two players are called for simplicity player 0 and player 1. A play of the two is any finite or infinite path $v_1v_2...$ in G where v_1 is the starting node. If the play is currently in node v_i and $v_i \in V_0$, then we assume that it is the turn of player 0 to choose v_{i+1} from the successors of v_i ; if $v_i \in V_1$, player 1 determines the next move. The winning condition defines when a play is won by player 0. E.g.:

- In a reachability game the winning condition is simply defined by a subset $T \subseteq V_0 \cup V_1$ (targets) of the nodes of G, and a play is won by player 0 if it visits T within n-1 moves (where n is the total number of nodes of G). Hence, player 1 wins a play if he can avoid visiting T for at least n-1 moves.
- In a revisiting game player 0 wins a play $v_1v_2...$ if the first node v_i which is visited a second time belongs to player 0, i.e., $v_i \in V_0$; otherwise player 1 wins the play.

We say that player i wins node s if he can choose his moves in such a way that he wins any play starting in s.

Example: Consider the following game graph where nodes of V_0 (V_1) are of circular (rectangular) shape:



In the reachability game with $T = \{5\}$ player 0 can win node 4: if player 1 moves from 4 to 5, player 0 immediately wins; if player 1 moves from 4 to 2, then player 0 can win again by moving from 2 to 5. On the other hand, player 1 can win node 0 by choosing to always play from 0 to 1 and from 3 to 1.

In the revisiting game played on the same game graph, player 0 can win node 2: he moves from 2 to 5 and then on to 4; no matter how player 1 then chooses to move, the play will end in an already visited node which belongs to player 0. Player 1 can e.g. win node 3 by simply moving to node 1.

(a) Consider a reachability game:

Show that one can decide in time polynomial in $\langle G, s, T \rangle$ if player 0 can win node s.

Hint: Starting in T compute the set of nodes from which player 0 can always reach T no matter how player 1 chooses his moves.

(b) Consider a revisiting game and the decision problem: for a given game graph G and node s determine whether player 0 can win s.

Show that this decision problem is in **PSPACE**.

(c) Show that this decision problem is **PSPACE**-complete.

Remarks:

- A game is called *determined* if every node if won by one of the two players.
 - Are reachability, resp. revisiting games determined?
- Assume that we change the definition of reachability game by dropping the restriction on the number of moves, i.e., player 0 wins a play if the play eventually reaches a state in T.

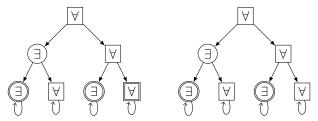
Does this change the nodes player 0 can win for a given game graph?

Exercise 4.7

An alternating Turing machine (ATM) $M = (\Gamma, Q_{\forall}, Q_{\exists}, \delta_0, \delta_1)$ is an NDTM $(\Gamma, Q_{\forall} \cup Q_{\exists}, \delta_0, \delta_1)$ except that (i) the control states are partitioned into sets Q_{\forall} and Q_{\exists} and (ii) the acceptance condition is defined as follows:

Consider the configuration graph G(M,x). We extend the partition of the control states to the configurations (nodes) of $G_{M;x}$: a configuration is in V_0 if its control state is in Q_{\exists} ; otherwise it is in V_1 . We then can consider the reachability game played on G(M,x) by the players 0 and 1 where the target set is the set of accepting configurations. M accepts x iff player 0 wins the initial configuration in this reachability game. (For the sake of completeness, assume that every halting/accepting configuration is its unique successor.)

Example: Consider the following configuration graphs where accepting configurations have a second circle/rectangle drawn around them. In the left graph the corresponding ATM accepts the input while it rejects the input in the right example:



A language is decided by an ATM M if M accepts every $x \in L$ and rejects any $x \notin L$. The time and space required by an ATM is the time and space required by the underlying NDTM.

The class **AP** consists of all languages L which are decided by an ATM M running in time $T(n) \in \mathcal{O}(n^k)$ for some $k \geq 1$.

- (a) An existential (universal) ATM is an ATM with $Q_{\forall} = \emptyset$ ($Q_{\exists} = \emptyset$). Show that any language $L \in \mathbf{AP}$ which is decided by an existential (universal) ATM is in \mathbf{NP} (co \mathbf{NP}).
- (b) Define co**AP** as usual: $L \in \text{co}\mathbf{AP}$ iff $\overline{L} \in \mathbf{AP}$. Show or disprove that $\mathbf{AP} = \text{co}\mathbf{AP}$.
- (c) Show that QBF is in **AP**.
- (d) Show that any $L \in \mathbf{AP}$ is in **PSPACE**.

Remark: Adapt the recursive decision procedure for $QBF \in \mathbf{PSPACE}$ you have seen in the lecture.

Remark: Similarly as AP=PSPACE, one can show APSPACE=EXPTIME.