Solution

Computational Complexity - Homework 4

Discussed on 8 May 2016.

Exercise 4.1

Let us denote $\mathbf{D P}=\{L \mid \exists M, N \in \mathbf{N P}: L=M \backslash N\}$ the class of languages that are diferences of two NP languages.
(a) Show that $C=\left\{\left\langle G_{1}, k_{1}, G_{2}, k_{2}\right\rangle \mid G_{1}\right.$ has a k_{1}-clique and G_{2} does not have any k_{2}-clique $\}$ is DPcomplete.
(b) Show that $M A X-C L I Q U E=\{\langle G, k\rangle \mid$ the largest clique of G is of size exactly $k\}$ is DP-complete.
(c) It is unknown whether $M A X-C L I Q U E$ is in NP. Show that if $\mathbf{P}=\mathbf{N P}$ then $M A X-C L I Q U E$ is in NP and a largest clique can be found in polynomial time.

Solution:

(a) Let us define

$$
C_{1}:=\left\{\left\langle G_{1}, k_{1}, G_{2}, k_{2}\right\rangle \mid G_{1} \text { has a } k_{1} \text {-clique and } G_{2} \text { is any graph and } k_{2} \geq 0\right\}
$$

and

$$
C_{2}:=\left\{\left\langle G_{1}, k_{1}, G_{2}, k_{2}\right\rangle \mid G_{2} \text { has a } k_{2} \text {-clique and } G_{1} \text { is any graph and } k_{1} \geq 0\right\}
$$

Both these languages are NP-complete as we have already seen (they are both just the clique problem with unconstrained extra data attached to each)

Then $C=C_{1} C_{2}$ and so $C \in D P$.
Now we show that C is $D P$-hard. Suppose that $L \in D P$. It must be the case that $L=L_{1} L_{2}$ where $L_{1}, L_{2} \in N P$ (by definition). By the NP-completeness of the clique problem, we must thus have polynomial-time reductions f_{1} and f_{2} from L_{1} and L_{2} to respectively to the clique problem.

Thus we can define a polynomial-time reduction f from L to C by:

$$
f(w):=\left\langle f_{1}(w), f_{2}(w)\right\rangle
$$

This is clearly computable in polynomial time (since both $f_{1}(w)$ and $f_{2}(w)$ are), and moreover we have $w \in L$ iff $f(w) \in C$ since $w \in L$, iff $w \in L_{1}$ and $w \notin L_{2}$, iff $f_{1}(w) \in C L I Q U E$ and $f_{2}(w) \notin$ CLIQUE (since f_{1} and f_{2} are reductions to CLIQUE), iff $f(w) \in C$.
(b) To see that MAX-CLIQUE is in $D P$, observe that the problem CLIQUE $+:=\{\langle G, k\rangle \mid G$ has a $k+$ 1clique\} is in NP. It is then the case that MAX-CLIQUE is equal to CLIQUE CLIQUE+.
To show that MAX-CLIQUE is DP-hard, we show that there is a polynomial time reduction from C (in the previous part) to MAX-CLIQUE.

Consider a tuple $\left\langle G_{1}, k_{1}, G_{2}, k_{2}\right\rangle$. We define a pair $\langle G, k\rangle$ that can be computed from the tuple in polynomial time such that $\left\langle G_{1}, k_{1}, G_{2}, k_{2}\right\rangle \in C$ iff $\langle G, k\rangle \in M A X-C L I Q U E$.

Let N_{1}, N_{2} be respectively the node sets of G_{1} and G_{2} and E_{1}, E_{2} their respective edge relations. Let $K_{k^{\prime}}$ be the clique of size k^{\prime}.
Consider first the graph $G_{1}^{\prime}:=\left(N_{1}^{\prime}, E_{1}^{\prime}\right)$, where $N_{1}^{\prime}:=\left[1, k_{1}\right] \times N_{1}$ and $E_{1}^{\prime}:=\{((i, u),(i+1, v) \mid i \in$ $\left[1, k_{1}\right)$ and $\left.(u, v) \in E_{1}\right\}$. By construction, no clique of G_{1}^{\prime} can be bigger than k_{1}, and it will have a clique of size k_{1} iff G_{1} also has a clique of size k_{1}.

For $r \in \mathbb{N}$, we extend G_{1}^{\prime} to a graph G_{1}^{r} by adding an instance of K_{r} and then an edge from each node in this instance of K_{r} to each node in the original G_{1}^{\prime}. The graph G_{1}^{r} will now have a clique of size $k_{1}+r$ iff G_{1} has a clique of size k_{1}, and moreover no clique of G_{1}^{r} can be bigger than $k_{1}+r$. That is, G_{1} has a clique of size k_{1}, iff the maximum-sized clique in G_{1}^{r} has size $k_{1}+r$.

We now define the graph G_{2}^{r} (i) first in a similar way to G_{1}^{r}, replacing k_{1} with k_{2}, N_{1} with N_{2} and E_{1} with E_{2}, and then in addition (ii) adding a fresh disjoint instance $K_{k_{2}+r-1}$.
It will then be the case that G_{r}^{2} has a $\left(k_{2}+r\right)$-clique iff G_{2} has a k_{2}-clique. Moreover, it is certain that g_{2}^{r} has a $k_{2}+r-1$ sized clique and that it has no clique larger than $k_{2}+r$. Thus the maximal clique of G_{r}^{2} has size $k_{2}+r$ iff G_{2} has a k_{2}-clique.
If $k_{1}>k_{2}$ we can thus take $G^{\prime}:=G_{1}^{0} \times G_{2}^{k_{1}-k_{2}}$, and otherwise $G^{\prime}:=G_{1}^{k_{2}-k_{1}} \times G_{2}^{0}$.

Exercise 4.2

(a) Assume that $\mathbf{P}=\mathbf{N P}$. Show that then $\mathbf{E X P}=\mathbf{N E X P}$.

Remark: Assume that L is decided by some TM running in time $T(n)$ with $T(n)$ time-constructible and $T(n) \in \mathcal{O}\left(2^{n^{c}}\right)$ for some $c \geq 1$. Show that then

$$
L_{\mathrm{pad}}:=\left\{x 10^{T(|x|)} 1 \mid x \in L\right\} \in \mathbf{N P} .
$$

*(b) Show that also EXP=NEXP if only every unary NP-language is also in \mathbf{P}.
Remark: For $x \in\{0,1\}^{*}$ let $\langle x\rangle$ be the natural number represented by x assuming lsbf. Given a language L which is decided in time $T(n)$ (with $T(n)$ time-constructable) show that

$$
L_{\mathrm{upad}}=\left\{1^{\left\langle x 10^{|T(n)|} \mid\right\rangle} \mid x \in L\right\} \in \mathbf{N P}
$$

with $|T(n)|(\approx\lceil\log T(n)\rceil)$ the length of the lsbf representation of $T(n)$.
Solution: Let $L \in$ NEXP be decided the NTM by N in time $T(n) \in \mathcal{O}\left(2^{n^{c}}\right)$ for some $c \geq 1$. Further, let M_{T} be the TM that computes $x \mapsto \operatorname{lsbf}(T(|x|))$ in time $T(|x|)$.
We claim $L_{\text {pad }} \in$ NP: (If a "check" fails, we reject the input.)

- On input $y=1^{m}$ first compute $w=\operatorname{lsbf}(m)$.
- Then check that $w=z 10^{k} 1$ for some $z \in\{0,1\}^{*}$ and $k \in \mathbb{N}$.
- Next, simulate M_{T} on input z for exactly 2^{k+1} steps and check that the halting configuration is reached.

Note that

$$
m=\langle w\rangle=\left\langle z 10^{k} 1\right\rangle \geq\left\langle 0^{k} 1\right\rangle=2^{k+1}
$$

- As M_{T} terminates, its output is $\operatorname{lsbf}(T(|z|))$. Check that $k=|T(|z|)|$.
- Now simulate N on z for exactly 2^{k+1} steps. As

$$
2^{k+1}=2^{|T(n)|+1} \geq T(n)
$$

the simulation reaches the halting configuration and therefore decides whether $z \in L$ or not.

As we assume that every unary language in NP is also in \mathbf{P}, we also find a TM M which decides $L_{\text {pad }}$ in polynomial time. From M we obtain a TM M^{\prime} which decides L in EXP:

- For input $x(n=|x|)$ first compute $\operatorname{lsbf}(T(n))$ in time $T(n)$.
- Then generate $w=x 10^{|T(n)|} 1$ in time $n+2+|T(n)|=n+2+\lceil\log T(n)\rceil$.
- Finally, generate $y=1^{\langle w\rangle}$. Note that

$$
|y|=\langle w\rangle=\left\langle x 10^{|T(n)|} 1\right\rangle \leq\left\langle 0^{|w|} 1\right\rangle=2^{|w|+1}=2^{2+n+|T(n)|+1} \leq 2^{n+4} \cdot T(n)
$$

- Now use M^{\prime} to decide whether $y \in L_{\mathrm{pad}}$ or not.

Exercise 4.3

Is there a language in $\operatorname{DSPACE}\left(2^{2^{2^{\mathcal{O}(n)}}}\right)$ that is not in EXPSPACE and not NP-hard (assuming $\mathbf{P} \neq$ NP)?

Solution: The idea of the solution is to note that the hardest language in $\operatorname{DSPACE}\left(2^{2^{2^{\mathcal{O}(n)}}}\right)$ stays hard even after unary encoding.

Then language of unary encodings of such numbers n that the n-th Turing machine stops on empty input using no more than $2^{2^{2^{n}}}$ cells cannot be in EXPSPACE because the diagonal construction applies here.

But if a unary language is NP-hard, then $\mathbf{P}=\mathbf{N P}$.

Exercise 4.4

- Is the following problem in DTIME $\left(2^{\mathcal{O}(n)}\right)$?

A function $f:\{1, \ldots, n\} \times\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is given as a table of values. Is there a sequence of n values $x_{1}, \ldots, x_{n} \in\{1, \ldots, n\}$ such that $f\left(x_{1}, f\left(x_{2}, \ldots f\left(x_{n-1}, x_{n}\right) \ldots\right)\right)=n$?

- Is the following problem in DTIME $\left(2^{\mathcal{O}(n)}\right)$?

Multiplying an $n \times m$ matrix by an $m \times l$ matrix yields an $n \times l$ matrix and is implemented with time complexity $C \times m \times n \times l$ (the constant C is known).

Given the number of steps T and the number of matrices k (both written in unary), determine whether there are k matrices that can be multiplied in T steps but not $0.9 T$ steps.

Solution:

Exercise 4.5

Say that A is linear-time reducible to B if there is function f computable in time $\mathcal{O}(n)$ such that $x \in A \Leftrightarrow$ $f(x) \in B$.

- Show that there is no P-complete problem w.r.t. linear-time reductions.

Hint: Use the time hierarchy theorem for DTIME.

Exercise 4.6

A two-person game consists of a directed graph $G=\left(V_{0}, V_{1}, E\right)$ (called the game graph) whose nodes $V:=V_{0} \cup V_{1}$ are partitioned into two sets and a winning condition. We assume that every node $v \in V$ has a successor. The two players are called for simplicity player 0 and player 1. A play of the two is any finite or infinite path $v_{1} v_{2} \ldots$ in G where v_{1} is the starting node. If the play is currently in node v_{i} and $v_{i} \in V_{0}$, then we assume that it is the turn of player 0 to choose v_{i+1} from the successors of v_{i}; if $v_{i} \in V_{1}$, player 1 determines the next move. The winning condition defines when a play is won by player 0 . E.g.:

- In a reachability game the winning condition is simply defined by a subset $T \subseteq V_{0} \cup V_{1}$ (targets) of the nodes of G, and a play is won by player 0 if it visits T within $n-1$ moves (where n is the total number of nodes of G). Hence, player 1 wins a play if he can avoid visiting T for at least $n-1$ moves.
- In a revisiting game player 0 wins a play $v_{1} v_{2} \ldots$ if the first node v_{i} which is visited a second time belongs to player 0 , i.e., $v_{i} \in V_{0}$; otherwise player 1 wins the play.
We say that player i wins node s if he can choose his moves in such a way that he wins any play starting in s.

Example: Consider the following game graph where nodes of $V_{0}\left(V_{1}\right)$ are of circular (rectangular) shape:

In the reachability game with $T=\{5\}$ player 0 can win node 4 : if player 1 moves from 4 to 5 , player 0 immediately wins; if player 1 moves from 4 to 2 , then player 0 can win again by moving from 2 to 5 . On the other hand, player 1 can win node 0 by choosing to always play from 0 to 1 and from 3 to 1 .

In the revisiting game played on the same game graph, player 0 can win node 2 : he moves from 2 to 5 and then on to 4 ; no matter how player 1 then chooses to move, the play will end in an already visited node which belongs to player 0 . Player 1 can e.g. win node 3 by simply moving to node 1 .
(a) Consider a reachability game:

Show that one can decide in time polynomial in $\langle G, s, T\rangle$ if player 0 can win node s.
Hint: Starting in T compute the set of nodes from which player 0 can always reach T no matter how player 1 chooses his moves.
(b) Consider a revisiting game and the decision problem: for a given game graph G and node s determine whether player 0 can win s.

Show that this decision problem is in PSPACE.
(c) Show that this decision problem is PSPACE-complete.

Remarks:

- A game is called determined if every node if won by one of the two players.

Are reachability, resp. revisiting games determined?

- Assume that we change the definition of reachability game by dropping the restriction on the number of moves, i.e., player 0 wins a play if the play eventually reaches a state in T.

Does this change the nodes player 0 can win for a given game graph?

Solution:

(a) Let

$$
A_{0}(X):=\left\{v \in V_{0} \mid v E \cap X \neq \emptyset\right\} \cup\left\{v \in V_{1} \mid v E \subseteq X\right\} .
$$

and

$$
W_{0}:=\bigcup_{k \geq 0} A_{0}^{k}(T) .
$$

Note that $A_{0}(X)$ can be computed in time $|V||E|$ and W_{0} in time $|V|^{2}|E|$ as we can include at most $|V|$ many nodes.

Induction on k shows that player 0 can win any node in $A_{0}^{k}(T)$ by simply playing to some node in $A_{0}^{k-1}(T)$. Any such play has trivially length at most $n-1$ (assuming T is not empty).

Consider any node $v \notin W_{0}$ and consider any play from v which reaches T. There is some smallest i such that $v_{i} \notin W_{0}$ and $v_{i+1} \in W_{0}$. As player 0 can win anny node in W_{0}, we can assume that the remaining play stays in W_{0}. If v_{i} was in V_{0}, then by definition of $A_{0}(W)$ we also would have $v_{i} \in A_{0}\left(W_{0}\right)=W_{0}$. So, $v_{i} \in V_{1} \cap W_{0}$. Hence, player 1 can find a successor of v_{i} which is not contained in W_{0}, i.e., player 1 can always evade entering $W_{0} \supset T$.
W_{0} is therefore the set of nodes which player 0 can win and $V \backslash W_{0}$ is the set of nodes which player 1 can win. In particular, reachability games are determined. Note that we didn't really use the restriction
(b) v is won by player 0 iff we do not find a play which is won by player 1 . Any play has length at most n. So, for a given node v, we can enumerate all possible plays in polynomial space and, hence, decided whether v is won by player 0 .

One can also show that the revisiting game is determined: Consider the enlarged game graph, where nodes correspond to plays of length at most n. We have an edge from $v_{1} v_{2} \ldots v_{k}$ to $v_{1} v_{2} \ldots v_{k} v_{k+1}$ iff $\left(v_{k}, v_{k+1}\right) \in E$. Set now as target set the sequences which revisit a node of V_{0} for the first time. Then player 0 wins v in the revisiting game on the original game graph iff he wins v in the reachability game on the enlarged game graph with target set T. As the reachability game is determined, the revisiting game is determined too.

