Technische Universitit Miinchen (I7) Summer term 2019
Prof. J. Kfetinsky / Dr. M.Raskin 6 May 2019

Solution

Computational Complexity — Homework 4

Discussed on 8 May 2016.

Exercise 4.1

Let us denote DP = {L | IM,N € NP : L = M \ N} the class of languages that are diferences of two NP
languages.

(a)

(b)
()

Show that C' = {(G1,k1,G2,k2) | G1 has a k;j-clique and G2 does not have any ko-clique} is DP-
complete.

Show that MAX — CLIQUE = {{G, k) | the largest clique of G is of size exactly k} is DP-complete.

It is unknown whether MAX — CLIQUE is in NP. Show that if P = NP then MAX — CLIQUE
is in NP and a largest clique can be found in polynomial time.

Solution:

(a)

Let us define
Cy :={{(G1, k1,G2,ks) | G1 has a ki-clique and G5 is any graph and ke > 0}

and

Cy := {{(G1, k1, G2, k2) | G2 has a ko-clique and Gy is any graph and k; > 0}

Both these languages are NP-complete as we have already seen (they are both just the clique problem
with unconstrained extra data attached to each)

Then C = Cy Cy and so C € DP.

Now we show that C' is D P-hard. Suppose that L € DP. It must be the case that L = Ly Ly where
Li,Ly € NP (by definition). By the NP-completeness of the clique problem, we must thus have
polynomial-time reductions f; and f; from L; and Lo to respectively to the clique problem.

Thus we can define a polynomial-time reduction f from L to C by:

fw) == (fi(w), f2(w))

This is clearly computable in polynomial time (since both f(w) and f(w) are), and moreover we have
w € Liff f(w) € C since w € L, iff w e Ly and w ¢ Lo, iff f1(w) € CLIQUE and fs(w) ¢ CLIQUE
(since f1 and fo are reductions to CLIQUE), iff f(w) € C.

To see that MAX-CLIQUE is in DP, observe that the problem CLIQUE+ := {(G,k) |G has a k +
lclique} is in NP. It is then the case that MAX-CLIQUE is equal to CLIQUE CLIQUE+.

To show that MAX-CLIQUE is DP-hard, we show that there is a polynomial time reduction from C
(in the previous part) to MAX-CLIQUE.

Consider a tuple (G1, k1, Ga, ko). We define a pair (G, k) that can be computed from the tuple in
polynomial time such that (G1, k1, Ga, ko) € C iff (G, k) € MAX — CLIQUE.

Let N1, Ny be respectively the node sets of G; and G5 and F1, Es their respective edge relations. Let
K} be the clique of size k'.

Consider first the graph G} := (Ny, E{), where N{ := [1,k1] x Ny and E{ := {((i,u), (i + 1,v)|i €
[1,k1) and (u,v) € E1}. By construction, no clique of G} can be bigger than ki, and it will have a
clique of size ky iff G also has a clique of size k;.

For r € N, we extend G to a graph G} by adding an instance of K, and then an edge from each node
in this instance of K, to each node in the original G). The graph G will now have a clique of size
k1 + r iff G; has a clique of size k;, and moreover no clique of G| can be bigger than k; + r. That is,
G4 has a clique of size kq, iff the maximum-sized clique in G7 has size k; + r.

We now define the graph G% (i) first in a similar way to G7, replacing ky with ko, N7 with Ny and F;
with Fs, and then in addition (ii) adding a fresh disjoint instance Ky, ,—1.

It will then be the case that G2 has a (kg + r)-clique iff G5 has a ko-clique. Moreover, it is certain
that g5 has a ko + r — 1 sized clique and that it has no clique larger than ke + r. Thus the maximal
clique of G? has size ko + 1 iff G5 has a ks-clique.

If ky > ko we can thus take G’ := G x G5* 7" and otherwise G’ := G¥>~" x GY.

Exercise 4.2

(a)

*(b)

Assume that P=NP. Show that then EXP=NEXP.

Remark: Assume that L is decided by some TM running in time 7'(n) with T'(n) time-constructible
and T'(n) € O(2™) for some ¢ > 1. Show that then

Lpaa == {z1070#D1 | 2 € L} € NP.

Show that also EXP=NEXP if only every unary NP-language is also in P.

Remark: For x € {0,1}* let (x) be the natural number represented by = assuming Isbf. Given a
language L which is decided in time T'(n) (with T(n) time-constructable) show that

Lupaa = {11070 | e [} e NP
with |T'(n)| (= [log T'(n)]) the length of the lsbf representation of T'(n).

Solution: Let L € NEXP be decided the NTM by N in time T'(n) € O(2"") for some ¢ > 1. Further, let
Mt be the TM that computes x — Isbf(T'(|z|)) in time T'(|z|).

We claim L,q € NP: (If a “check” fails, we reject the input.)

On input y = 1™ first compute w = lsbf(m).
Then check that w = 210*1 for some z € {0,1}* and k € N.

Next, simulate My on input z for exactly 2¢t1 steps and check that the halting configuration is
reached.

Note that

m = (w) = (210°1) > (0F1) = 2~ 1.
As My terminates, its output is 1sbf(7'(|z])). Check that k = |T'(|z])|.
Now simulate N on z for exactly 28! steps. As

okl — ol T(WI+1 > ()

the simulation reaches the halting configuration and therefore decides whether z € L or not.

As we assume that every unary language in NP is also in P, we also find a TM M which decides Lpaq in
polynomial time. From M we obtain a TM M’ which decides L in EXP:

For input = (n = |z|) first compute Isbf(7T'(n)) in time T'(n).
Then generate w = 21071 in time n + 2 + |T(n)| = n + 2 + [log T(n)].

Finally, generate y = 1{*). Note that

|y| — <w> — <x10|T(n)‘1> S <0‘w‘1> — 2|’w|+1 — 22+7l+|T(TL)‘+1 S 271"1‘4 . T(n)

Now use M’ to decide whether y € Lpaq or not.

Exercise 4.3

O(n)
Is there a language in DSPACE(222) that is not in EXPSPACE and not NP-hard (assuming P #
NP)?

O(n)
Solution: The idea of the solution is to note that the hardest language in DSPACE(222) stays hard
even after unary encoding.

Then language of unary encodings of such numbers n that the n-th Turing machine stops on empty input
using no more than 22°" cells cannot be in EXPSPACE because the diagonal construction applies here.

But if a unary language is NP-hard, then P = NP.

Exercise 4.4
e Is the following problem in DTIME(2°(™)?

A function f: {1,...,n} x{1,...,n} — {1,...,n} is given as a table of values. Is there a sequence of
n values x1,...,x, € {1,...,n} such that f(z1, f(za,... f(xp_1,2,)...)) =n?

e Is the following problem in DTIME(2°(™))?

Multiplying an n x m matrix by an m x [matrix yields an n x [matrix and is implemented with time
complexity C' x m x n x [(the constant C' is known).

Given the number of steps T and the number of matrices k (both written in unary), determine whether
there are k£ matrices that can be multiplied in 7 steps but not 0.97 steps.

Solution:

Exercise 4.5

Say that A is linear-time reducible to B if there is function f computable in time O(n) such that x € A &
f(z) € B.

e Show that there is no P-complete problem w.r.t. linear-time reductions.

Hint: Use the time hierarchy theorem for DTIME.

Exercise 4.6

A two-person game consists of a directed graph G = (V, V1, E) (called the game graph) whose nodes
V =V, UV; are partitioned into two sets and a winning condition. We assume that every node v € V has
a successor. The two players are called for simplicity player 0 and player 1. A play of the two is any finite
or infinite path vyvs ... in G where v is the starting node. If the play is currently in node v; and v; € Vj,
then we assume that it is the turn of player 0 to choose v;11 from the successors of v;; if v; € Vi, player 1
determines the next move. The winning condition defines when a play is won by player 0. E.g.:

e In a reachability game the winning condition is simply defined by a subset T' C V U Vi (targets) of
the nodes of G, and a play is won by player 0 if it visits T within n — 1 moves (where n is the total
number of nodes of G). Hence, player 1 wins a play if he can avoid visiting T for at least n — 1 moves.

e In a revisiting game player 0 wins a play vjvs ... if the first node v; which is visited a second time
belongs to player 0, i.e., v; € Vj; otherwise player 1 wins the play.

We say that player i wins node s if he can choose his moves in such a way that he wins any play starting
in s.

Ezample: Consider the following game graph where nodes of V (V1) are of circular (rectangular) shape:

0]

O—B—6

In the reachability game with 7' = {5} player 0 can win node 4: if player 1 moves from 4 to 5, player 0
immediately wins; if player 1 moves from 4 to 2, then player 0 can win again by moving from 2 to 5. On
the other hand, player 1 can win node 0 by choosing to always play from 0 to 1 and from 3 to 1.

In the revisiting game played on the same game graph, player 0 can win node 2: he moves from 2 to 5 and
then on to 4; no matter how player 1 then chooses to move, the play will end in an already visited node
which belongs to player 0. Player 1 can e.g. win node 3 by simply moving to node 1.

(a) Consider a reachability game:
Show that one can decide in time polynomial in (G, s,T) if player 0 can win node s.

Hint: Starting in T' compute the set of nodes from which player 0 can always reach 7" no matter how
player 1 chooses his moves.

(b) Consider a revisiting game and the decision problem: for a given game graph G and node s determine
whether player 0 can win s.

Show that this decision problem is in PSPACE.
(¢) Show that this decision problem is PSPACE-complete.
Remarks:
e A game is called determined if every node if won by one of the two players.
Are reachability, resp. revisiting games determined?

e Assume that we change the definition of reachability game by dropping the restriction on the number
of moves, i.e., player 0 wins a play if the play eventually reaches a state in 7.

Does this change the nodes player 0 can win for a given game graph?

Solution:
(a) Let
Ag(X) ={veV|vENX £Pu{ve Vi |vE C X}.
and
Wo = | A§(T).
k>0

Note that Ag(X) can be computed in time |V||E| and Wy in time |V|?|E| as we can include at most
|V| many nodes.

Induction on k shows that player 0 can win any node in Af(7T) by simply playing to some node in
AE=Y(T). Any such play has trivially length at most n — 1 (assuming 7T is not empty).

Consider any node v ¢ Wy and consider any play from v which reaches T'. There is some smallest
i such that v; € Wy and v;41 € Wy. As player 0 can win anny node in Wy, we can assume that
the remaining play stays in Wy. If v; was in Vp, then by definition of Ayg(W) we also would have
v; € Ag(Wy) = Wy. So, v; € V1 NW,y. Hence, player 1 can find a successor of v; which is not contained
in Wy, i.e., player 1 can always evade entering Wy D T.

W is therefore the set of nodes which player 0 can win and V \ Wy is the set of nodes which player 1
can win. In particular, reachability games are determined. Note that we didn’t really use the restriction

v is won by player 0 iff we do not find a play which is won by player 1. Any play has length at most n.
So, for a given node v, we can enumerate all possible plays in polynomial space and, hence, decided
whether v is won by player 0.

One can also show that the revisiting game is determined: Consider the enlarged game graph, where
nodes correspond to plays of length at most n. We have an edge from v1vy ... v to vivs ... vgvgyq iff
(vk,vp+1) € E. Set now as target set the sequences which revisit a node of Vj for the first time. Then
player O wins v in the revisiting game on the original game graph iff he wins v in the reachability game
on the enlarged game graph with target set 7. As the reachability game is determined, the revisiting
game is determined too.

