Technische Universitit Miinchen (I7) Summer term 2019
Prof. J. Kfetinsky / Dr. M.Raskin 29.04.2019

Computational Complexity — Homework 3

Discussed on 03.05.2019.

Exercise 3.1

Is NP closed under intersection, resp. union?

Exercise 3.2

Prove that DOUBLE-SAT = {(®) | ® is a Boolean formula with at least two satisfying assignments } is NP-complete.

Exercise 3.3
(a) Let M be a Turing machine which decides SAT, and let ¢ be a CNF formula with n variables.

Design a recursive algorithm which computes a satisfying assignment for ¢ (if ¢ is satisfiable) using at most 2n + 1
calls to M plus some additional polynomial-time computation.

(b) Assume that L C {1}* is a unary language which is also NP-complete.
Show that then saT € P.
Hints:

e Again write a recursive program but limit the number of recursive calls by using a hash map. Use as hash function
a polynomial-time reduction f of SAT to L.

e Consider then the call tree of your program for a given input. Show that two nodes v, v’ which do not lie on a
common path from the root to a leaf correspond to formulae ¢, ¢,y with f(¢,) # f(dv).

Exercise 3.4
In the lecture, you have seen the definition of “polynomial-time reducible” <,:

For two languages A, B C {0,1}* we write A <, B if there is a function f : {0,1}* — {0,1}* computable in
polynomial time such that x € A < f(z) € B for all z € {0,1}*.

Similarly, the notion of “log-space reducible” <jo4 is defined but this time the function f has to be computable by a Turing
machine using at most O(logn) space.

(a) Show that A <j,; B implies A <, B.

(b) Show that for any two languages A, B in P with B # (), {0,1}* we have A <, B.
Remark: Using <o one can also define P-complete problems in a meaningful way.

(c) Argue that <joq is also transitive, i.e., if A <jog B <jog C, then also A <joq C.

Hint: This is not as straightforward as for polynomial-time reductions. Why?

Exercise 3.5
(a) Show that NP=coNP if and only if 3SAT and TAUTOLOGY are polynomial-time reducible to each other.

(b) A strong nondeterministic Turing machine (SNDTM) is a NDTM which has three possible outputs: “17, “0”, “?”. An
sNDTM M decides a language L if: (i) for z € L every computation of M on x yields “1” or “?” and there is at least
one computation of M on x which yields “17. (ii) for x € L every computation of M on z yields “0” or “?” and there
is at least one computation of M on z which yields “0”.

Show that L is decided by an sSNDTM in polynomaial time iff L € NP N coNP.



Exercise 3.6
Notation: For n a natural number let [n] be the set {1,2,...,n}.
The KNAPSACK problem is defined as follows:

We are given n items where item ¢ has both a weight w; € and a value v;. We are also given a maximal weight W the
knapsack can hold and a target value V. (All numbers are assumed to be positive integers.) A selection S C [n] then has
total weight w(S) := >, ¢ w; and total value v(S) := ), g v;. A selection S is a solution if w(S) < W and v(S) > S hold.

(a) Give a reasonable encoding of KNAPSACK and show that KNAPSACK is in NP.
(b) Assume you are given an algorithm for deciding KNAPSACK running in polynomial time.

Construct from it a polynomial-time algorithm which computes the maximal V., for which a given instance of
KNAPSACK has a solution.

(¢) Give an algorithm for deciding KNAPSACK in time O(nW).

Hint: Use dynamic programming to produce a table V(w,) where
V(w,) :==max{v(J) | J C [i] and w(J) = w}.

Remark: Note that W is exponential in the size of the representation of W.

e define MULTI-KNAPSACK to be the problem where for every item i € [n] we are given M values v? (p € an

d) We defi to be th bl here f it ) i M val P M d
N weights w! (¢ € [N]) with corresponding target values V? and total weights 9. (All numbers are assumed to be
positive integers.) A selection S C [n] is then a solution of the MULTI-KNAPSACK instance if

Vpe[M]: Y v? >VPandVge [N] : > wl < W
€S i€S

Show that MULTI-KNAPSACK is also in NP and give a reduction 3SAT <, MULTI-KNAPSACK .

Hint: The reduction is quite similar to 3sAT <, 0/1-1PROG: Given a 3CNF formula ¢ with M clauses and N variables,
generate a MULTI-KNAPSACK instance with n = 2N items, i.e., one for every literal, and v?, w] € {0,1} for i € [n],p €
[M + NJ,q € [N]. An truth assignment of ¢ should correspond to the selection of those literals which evaluate to true.

(e) Give a reduction 3SAT <, KNAPSACK .

Hint: Start from your reduction of 3SAT to MULTI-KNAPSACK and set w; := v; := v} ...0oM ™ for i € [2N] and
W :=V := 1¥3M with all strings interpreted as numbers in decimal representation. A satisfying assignment should
then yield a selection of total weight/value in [1V1* 1V3M]. Introduce 2M additional items which allow to extend

every selection induced by a satisfying assignment to a solution of the KNAPSACK instance.

Exercise 3.7

We define SUDOKU to be the following problem: You are given a n? x n? grid where every entry is either blank or contains
a numbers from {1,2,...,n%}. The goal is to decided whether the remaining blank entries of the grid can be labeled by
numbers from {1,2,...,n?} in such a way that every number of {1,2,...,n%} appears exactly once in (i) every row, (ii)
every column, and (iii) in each of the n? subgrids.

e Give a reduction SUDOKU <, SAT.

In particular, apply your reduction to the following SUDOKU instance:

1 2

Remark: One can show that SUDOKU is also NP-complete. The adventurous might like to attempt this!



