Computational Complexity - Homework 3

Discussed on 03.05.2019.

Exercise 3.1

Is NP closed under intersection, resp. union?

Exercise 3.2

Prove that DOUBLE-SAT $=\{\langle\Phi\rangle \mid \Phi$ is a Boolean formula with at least two satisfying assignments $\}$ is NP-complete.

Exercise 3.3

(a) Let M be a Turing machine which decides SAT, and let ϕ be a CNF formula with n variables.

Design a recursive algorithm which computes a satisfying assignment for ϕ (if ϕ is satisfiable) using at most $2 n+1$ calls to M plus some additional polynomial-time computation.
(b) Assume that $L \subseteq\{1\}^{*}$ is a unary language which is also NP-complete.

Show that then sat $\in \mathbf{P}$.
Hints:

- Again write a recursive program but limit the number of recursive calls by using a hash map. Use as hash function a polynomial-time reduction f of SAT to L.
- Consider then the call tree of your program for a given input. Show that two nodes v, v^{\prime} which do not lie on a common path from the root to a leaf correspond to formulae $\phi_{v}, \phi_{v^{\prime}}$ with $f\left(\phi_{v}\right) \neq f\left(\phi_{v^{\prime}}\right)$.

Exercise 3.4

In the lecture, you have seen the definition of "polynomial-time reducible" \leq_{p} :
For two languages $A, B \subseteq\{0,1\}^{*}$ we write $A \leq_{p} B$ if there is a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ computable in polynomial time such that $x \in A \Leftrightarrow f(x) \in B$ for all $x \in\{0,1\}^{*}$.
Similarly, the notion of "log-space reducible" $\leq_{\log }$ is defined but this time the function f has to be computable by a Turing machine using at most $\mathcal{O}(\log n)$ space.
(a) Show that $A \leq{ }_{\log } B$ implies $A \leq_{p} B$.
(b) Show that for any two languages A, B in \mathbf{P} with $B \neq \emptyset,\{0,1\}^{*}$ we have $A \leq_{p} B$.

Remark: Using $\leq_{\text {log }}$ one can also define \mathbf{P}-complete problems in a meaningful way.
(c) Argue that $\leq_{\log }$ is also transitive, i.e., if $A \leq_{\log } B \leq_{\log } C$, then also $A \leq_{\log } C$.

Hint: This is not as straightforward as for polynomial-time reductions. Why?

Exercise 3.5

(a) Show that $\mathbf{N P}=$ conP if and only if 3sat and TAUTOLOGY are polynomial-time reducible to each other.
(b) A strong nondeterministic Turing machine (sNDTM) is a NDTM which has three possible outputs: " 1 ", "0", "?". An sNDTM M decides a language L if: (i) for $x \in L$ every computation of M on x yields " 1 " or "?" and there is at least one computation of M on x which yields " 1 ". (ii) for $x \notin L$ every computation of M on x yields " 0 " or "?" and there is at least one computation of M on x which yields " 0 ".
Show that L is decided by an sNDTM in polynomaial time iff $L \in \mathbf{N P} \cap \operatorname{coNP}$.

Exercise 3.6

Notation: For n a natural number let $[n]$ be the set $\{1,2, \ldots, n\}$.
The Knapsack problem is defined as follows:
We are given n items where item i has both a weight $w_{i} \in$ and a value v_{i}. We are also given a maximal weight W the knapsack can hold and a target value V. (All numbers are assumed to be positive integers.) A selection $S \subseteq[n]$ then has total weight $w(S):=\sum_{i \in S} w_{i}$ and total value $v(S):=\sum_{i \in S} v_{i}$. A selection S is a solution if $w(S) \leq W$ and $v(S) \geq S$ hold.
(a) Give a reasonable encoding of KNAPSACK and show that KNAPSACK is in NP.
(b) Assume you are given an algorithm for deciding KNAPSACK running in polynomial time.

Construct from it a polynomial-time algorithm which computes the maximal $V_{\max }$ for which a given instance of KNAPSACK has a solution.
(c) Give an algorithm for deciding Knapsack in time $\mathcal{O}(n W)$.

Hint: Use dynamic programming to produce a table $V(w, i)$ where

$$
V(w, i):=\max \{v(J) \mid J \subseteq[i] \text { and } w(J)=w\}
$$

Remark: Note that W is exponential in the size of the representation of W.
(d) We define multi-KNAPSACK to be the problem where for every item $i \in[n]$ we are given M values $v_{i}^{p}(p \in[M])$ and N weights $w_{i}^{q}(q \in[N])$ with corresponding target values V^{p} and total weights W^{q}. (All numbers are assumed to be positive integers.) A selection $S \subseteq[n]$ is then a solution of the MULTI-KNAPSACK instance if

$$
\forall p \in[M]: \sum_{i \in S} v_{i}^{p} \geq V^{p} \text { and } \forall q \in[N]: \sum_{i \in S} w_{i}^{q} \leq W^{q} .
$$

Show that MULTI-KNAPSACK is also in NP and give a reduction 3 SAT \leq_{p} MULTI-KNAPSACK .
Hint: The reduction is quite similar to $3 \mathrm{SAT} \leq_{p} 0 / 1$-IPROG: Given a 3 CNF formula ϕ with M clauses and N variables, generate a MULTI-KNAPSACK instance with $n=2 N$ items, i.e., one for every literal, and $v_{i}^{p}, w_{i}^{q} \in\{0,1\}$ for $i \in[n], p \in$ $[M+N], q \in[N]$. An truth assignment of ϕ should correspond to the selection of those literals which evaluate to true.
(e) Give a reduction 3 SAT \leq_{p} KNAPSACK .

Hint: Start from your reduction of 3SAT to MULTI-KNAPSACK and set $w_{i}:=v_{i}:=v_{i}^{1} \ldots v_{i}^{M+N}$ for $i \in[2 N]$ and $W:=V:=1^{N} 3^{M}$ with all strings interpreted as numbers in decimal representation. A satisfying assignment should then yield a selection of total weight/value in $\left[1^{N} 1^{M}, 1^{N} 3^{M}\right]$. Introduce $2 M$ additional items which allow to extend every selection induced by a satisfying assignment to a solution of the KNAPSACK instance.

Exercise 3.7

We define sudoku to be the following problem: You are given a $n^{2} \times n^{2}$ grid where every entry is either blank or contains a numbers from $\left\{1,2, \ldots, n^{2}\right\}$. The goal is to decided whether the remaining blank entries of the grid can be labeled by numbers from $\left\{1,2, \ldots, n^{2}\right\}$ in such a way that every number of $\left\{1,2, \ldots, n^{2}\right\}$ appears exactly once in (i) every row, (ii) every column, and (iii) in each of the n^{2} subgrids.

- Give a reduction SUDOKU \leq_{p} SAT.

In particular, apply your reduction to the following SUDOKU instance:

1		2	
			4
	3		
		1	

Remark: One can show that SUDOKU is also NP-complete. The adventurous might like to attempt this!

