Computational Complexity – Homework 3

Discussed on 03.05.2019.

Exercise 3.1

Is ${\bf NP}$ closed under intersection, resp. union?

Exercise 3.2

Prove that DOUBLE-SAT = { $\langle \Phi \rangle \mid \Phi$ is a Boolean formula with at least two satisfying assignments } is **NP**-complete.

Exercise 3.3

(a) Let M be a Turing machine which decides SAT, and let ϕ be a CNF formula with n variables.

Design a recursive algorithm which computes a satisfying assignment for ϕ (if ϕ is satisfiable) using at most 2n + 1 calls to M plus some additional polynomial-time computation.

(b) Assume that $L \subseteq \{1\}^*$ is a *unary* language which is also **NP**-complete.

Show that then $SAT \in \mathbf{P}$.

Hints:

- Again write a recursive program but limit the number of recursive calls by using a hash map. Use as hash function a polynomial-time reduction f of SAT to L.
- Consider then the call tree of your program for a given input. Show that two nodes v, v' which do not lie on a common path from the root to a leaf correspond to formulae $\phi_v, \phi_{v'}$ with $f(\phi_v) \neq f(\phi_{v'})$.

Exercise 3.4

In the lecture, you have seen the definition of "polynomial-time reducible" \leq_p :

For two languages $A, B \subseteq \{0,1\}^*$ we write $A \leq_p B$ if there is a function $f : \{0,1\}^* \to \{0,1\}^*$ computable in polynomial time such that $x \in A \Leftrightarrow f(x) \in B$ for all $x \in \{0,1\}^*$.

Similarly, the notion of "log-space reducible" \leq_{\log} is defined but this time the function f has to be computable by a Turing machine using at most $\mathcal{O}(\log n)$ space.

- (a) Show that $A \leq_{\log} B$ implies $A \leq_p B$.
- (b) Show that for any two languages A, B in **P** with $B \neq \emptyset, \{0, 1\}^*$ we have $A \leq_p B$.

Remark: Using \leq_{\log} one can also define **P**-complete problems in a meaningful way.

(c) Argue that \leq_{\log} is also transitive, i.e., if $A \leq_{\log} B \leq_{\log} C$, then also $A \leq_{\log} C$.

Hint: This is not as straightforward as for polynomial-time reductions. Why?

Exercise 3.5

- (a) Show that **NP**=co**NP** if and only if 3SAT and TAUTOLOGY are polynomial-time reducible to each other.
- (b) A strong nondeterministic Turing machine (sNDTM) is a NDTM which has three possible outputs: "1", "0", "?". An sNDTM M decides a language L if: (i) for $x \in L$ every computation of M on x yields "1" or "?" and there is at least one computation of M on x which yields "1". (ii) for $x \notin L$ every computation of M on x yields "0" or "?" and there is at least one computation of M on x which yields "1". (ii) for $x \notin L$ every computation of M on x yields "0" or "?" and there is at least one computation of M on x which yields "0".

Show that L is decided by an sNDTM in polynomial time iff $L \in \mathbf{NP} \cap \operatorname{coNP}$.

Exercise 3.6

Notation: For n a natural number let [n] be the set $\{1, 2, \ldots, n\}$.

The KNAPSACK problem is defined as follows:

We are given n items where item i has both a weight $w_i \in$ and a value v_i . We are also given a maximal weight W the knapsack can hold and a target value V. (All numbers are assumed to be positive integers.) A selection $S \subseteq [n]$ then has total weight $w(S) := \sum_{i \in S} w_i$ and total value $v(S) := \sum_{i \in S} v_i$. A selection S is a solution if $w(S) \leq W$ and $v(S) \geq S$ hold.

- (a) Give a reasonable encoding of KNAPSACK and show that KNAPSACK is in NP.
- (b) Assume you are given an algorithm for deciding KNAPSACK running in polynomial time.

Construct from it a polynomial-time algorithm which computes the maximal V_{max} for which a given instance of KNAPSACK has a solution.

(c) Give an algorithm for deciding KNAPSACK in time $\mathcal{O}(nW)$.

Hint: Use dynamic programming to produce a table V(w, i) where

 $V(w, i) := \max \{ v(J) \mid J \subseteq [i] \text{ and } w(J) = w \}.$

Remark: Note that W is exponential in the size of the representation of W.

(d) We define MULTI-KNAPSACK to be the problem where for every item $i \in [n]$ we are given M values v_i^p $(p \in [M])$ and N weights w_i^q $(q \in [N])$ with corresponding target values V^p and total weights W^q . (All numbers are assumed to be positive integers.) A selection $S \subseteq [n]$ is then a solution of the MULTI-KNAPSACK instance if

$$\forall p \in [M] \, : \, \sum_{i \in S} v_i^p \ge V^p \text{ and } \forall q \in [N] \, : \, \sum_{i \in S} w_i^q \le W^q.$$

Show that MULTI-KNAPSACK is also in NP and give a reduction $3\text{SAT} \leq_p \text{MULTI-KNAPSACK}$.

Hint: The reduction is quite similar to 3SAT $\leq_p 0/1$ -IPROG: Given a 3CNF formula ϕ with M clauses and N variables, generate a MULTI-KNAPSACK instance with n = 2N items, i.e., one for every literal, and $v_i^p, w_i^q \in \{0, 1\}$ for $i \in [n], p \in [M + N], q \in [N]$. An truth assignment of ϕ should correspond to the selection of those literals which evaluate to true.

(e) Give a reduction 3sat \leq_p knapsack .

Hint: Start from your reduction of 3SAT to MULTI-KNAPSACK and set $w_i := v_i := v_i^1 \dots v_i^{M+N}$ for $i \in [2N]$ and $W := V := 1^N 3^M$ with all strings interpreted as numbers in *decimal* representation. A satisfying assignment should then yield a selection of total weight/value in $[1^N 1^M, 1^N 3^M]$. Introduce 2M additional items which allow to extend every selection induced by a satisfying assignment to a solution of the KNAPSACK instance.

Exercise 3.7

We define SUDOKU to be the following problem: You are given a $n^2 \times n^2$ grid where every entry is either blank or contains a numbers from $\{1, 2, \ldots, n^2\}$. The goal is to decided whether the remaining blank entries of the grid can be labeled by numbers from $\{1, 2, \ldots, n^2\}$ in such a way that every number of $\{1, 2, \ldots, n^2\}$ appears exactly once in (i) every row, (ii) every column, and (iii) in each of the n^2 subgrids.

• Give a reduction SUDOKU \leq_p SAT.

In particular, apply your reduction to the following SUDOKU instance:

1		2	
			4
	3		

Remark: One can show that SUDOKU is also NP-complete. The adventurous might like to attempt this!