
Technische Universität München (I7) Summer term 2019
Prof. J. Křet́ınský / Dr. M.Raskin 29.04.2019

Computational Complexity – Homework 3

Discussed on 03.05.2019.

Exercise 3.1

Is NP closed under intersection, resp. union?

Exercise 3.2

Prove that DOUBLE-SAT = {〈Φ〉 | Φ is a Boolean formula with at least two satisfying assignments } is NP-complete.

Exercise 3.3

(a) Let M be a Turing machine which decides sat, and let φ be a CNF formula with n variables.

Design a recursive algorithm which computes a satisfying assignment for φ (if φ is satisfiable) using at most 2n + 1
calls to M plus some additional polynomial-time computation.

(b) Assume that L ⊆ {1}∗ is a unary language which is also NP-complete.

Show that then sat ∈ P.

Hints :

• Again write a recursive program but limit the number of recursive calls by using a hash map. Use as hash function
a polynomial-time reduction f of sat to L.

• Consider then the call tree of your program for a given input. Show that two nodes v, v′ which do not lie on a
common path from the root to a leaf correspond to formulae φv, φv′ with f(φv) 6= f(φv′).

Exercise 3.4

In the lecture, you have seen the definition of “polynomial-time reducible” ≤p:

For two languages A,B ⊆ {0, 1}∗ we write A ≤p B if there is a function f : {0, 1}∗ → {0, 1}∗ computable in
polynomial time such that x ∈ A⇔ f(x) ∈ B for all x ∈ {0, 1}∗.

Similarly, the notion of “log-space reducible” ≤log is defined but this time the function f has to be computable by a Turing
machine using at most O(log n) space.

(a) Show that A ≤log B implies A ≤p B.

(b) Show that for any two languages A,B in P with B 6= ∅, {0, 1}∗ we have A ≤p B.

Remark : Using ≤log one can also define P-complete problems in a meaningful way.

(c) Argue that ≤log is also transitive, i.e., if A ≤log B ≤log C, then also A ≤log C.

Hint : This is not as straightforward as for polynomial-time reductions. Why?

Exercise 3.5

(a) Show that NP=coNP if and only if 3sat and tautology are polynomial-time reducible to each other.

(b) A strong nondeterministic Turing machine (sNDTM) is a NDTM which has three possible outputs: “1”, “0”, “?”. An
sNDTM M decides a language L if: (i) for x ∈ L every computation of M on x yields “1” or “?” and there is at least
one computation of M on x which yields “1”. (ii) for x 6∈ L every computation of M on x yields “0” or “?” and there
is at least one computation of M on x which yields “0”.

Show that L is decided by an sNDTM in polynomaial time iff L ∈ NP ∩ coNP.



Exercise 3.6

Notation : For n a natural number let [n] be the set {1, 2, . . . , n}.

The knapsack problem is defined as follows:

We are given n items where item i has both a weight wi ∈ and a value vi. We are also given a maximal weight W the
knapsack can hold and a target value V . (All numbers are assumed to be positive integers.) A selection S ⊆ [n] then has
total weight w(S) :=

∑
i∈S wi and total value v(S) :=

∑
i∈S vi. A selection S is a solution if w(S) ≤W and v(S) ≥ S hold.

(a) Give a reasonable encoding of knapsack and show that knapsack is in NP.

(b) Assume you are given an algorithm for deciding knapsack running in polynomial time.

Construct from it a polynomial-time algorithm which computes the maximal Vmax for which a given instance of
knapsack has a solution.

(c) Give an algorithm for deciding knapsack in time O(nW ).

Hint : Use dynamic programming to produce a table V (w, i) where

V (w, i) := max {v(J) | J ⊆ [i] and w(J) = w} .

Remark : Note that W is exponential in the size of the representation of W .

(d) We define multi-knapsack to be the problem where for every item i ∈ [n] we are given M values vpi (p ∈ [M ]) and
N weights wq

i (q ∈ [N ]) with corresponding target values V p and total weights W q. (All numbers are assumed to be
positive integers.) A selection S ⊆ [n] is then a solution of the multi-knapsack instance if

∀p ∈ [M ] :
∑
i∈S

vpi ≥ V
p and ∀q ∈ [N ] :

∑
i∈S

wq
i ≤W

q.

Show that multi-knapsack is also in NP and give a reduction 3sat ≤p multi-knapsack .

Hint : The reduction is quite similar to 3sat ≤p 0/1-iprog: Given a 3CNF formula φ with M clauses and N variables,
generate a multi-knapsack instance with n = 2N items, i.e., one for every literal, and vpi , w

q
i ∈ {0, 1} for i ∈ [n], p ∈

[M +N ], q ∈ [N ]. An truth assignment of φ should correspond to the selection of those literals which evaluate to true.

(e) Give a reduction 3sat ≤p knapsack .

Hint : Start from your reduction of 3sat to multi-knapsack and set wi := vi := v1i . . . v
M+N
i for i ∈ [2N ] and

W := V := 1N3M with all strings interpreted as numbers in decimal representation. A satisfying assignment should
then yield a selection of total weight/value in [1N1M , 1N3M ]. Introduce 2M additional items which allow to extend
every selection induced by a satisfying assignment to a solution of the knapsack instance.

Exercise 3.7

We define sudoku to be the following problem: You are given a n2 × n2 grid where every entry is either blank or contains
a numbers from {1, 2, . . . , n2}. The goal is to decided whether the remaining blank entries of the grid can be labeled by
numbers from {1, 2, . . . , n2} in such a way that every number of {1, 2, . . . , n2} appears exactly once in (i) every row, (ii)
every column, and (iii) in each of the n2 subgrids.

• Give a reduction sudoku ≤p sat.

In particular, apply your reduction to the following sudoku instance:

1 2
4

3
1

Remark : One can show that sudoku is also NP-complete. The adventurous might like to attempt this!


