Solution

Computational Complexity – Homework 3

Discussed on 03.05.2019.

Exercise 3.1

Is NP closed under intersection, resp. union?

Exercise 3.2

Prove that DOUBLE-SAT = { $\langle \Phi \rangle | \Phi$ is a Boolean formula with at least two satisfying assignments } is **NP**-complete.

Exercise 3.3

(a) Let M be a Turing machine which decides SAT, and let ϕ be a CNF formula with n variables.

Design a recursive algorithm which computes a satisfying assignment for ϕ (if ϕ is satisfiable) using at most 2n + 1 calls to M plus some additional polynomial-time computation.

(b) Assume that $L \subseteq \{1\}^*$ is a *unary* language which is also **NP**-complete.

Show that then $SAT \in \mathbf{P}$.

 Hints :

- Again write a recursive program but limit the number of recursive calls by using a hash map. Use as hash function a polynomial-time reduction f of SAT to L.
- Consider then the call tree of your program for a given input. Show that two nodes v, v' which do not lie on a common path from the root to a leaf correspond to formulae $\phi_v, \phi_{v'}$ with $f(\phi_v) \neq f(\phi_{v'})$.

Solution:

- (a) Let x_1, \ldots, x_n be the variables of ϕ . We recursively calculate a satisfying assignment as follows:
- (b) Let L be the unary **NP**-complete language. Then SAT is reducible in polynomial time to L, i.e., there is a function f such that for every CNF ϕ we have

$$\phi \in \text{SAT} \Leftrightarrow 1^{f(\phi)} \in L.$$

We use this f as a hash function in order to limit the number of recursive calls. For this, note that we further have a polynomial p such that $p(|\phi|)$ is the time needed to compute $1^{f(\phi)}$. Hence, $f(\phi) \leq p(|\phi|)$.

Consider the call tree T = (V, E) of satisfiable for an input formula, i.e., every node $v \in V$ corresponds to an instance of satisfiable, every edge corresponds to a recursive call of one instance by another. For $v \in V$ let ϕ_v be the formula the instance v has as argument.

Consider now two nodes v, v' such that neither one is an ancestor of the other, i.e., there is no path from the root to a leaf which visits both nodes. Then wlog, the computation of v has already terminated when the computation of v'starts. So, at the time of the call of v' it is already known whether ϕ_v is satisfiable and, thus, the hashmap is defined for $f(\phi_v)$. Hence, $f(\phi_v) \neq f(\phi_{v'})$.

In contraposition, $f(\phi_v) = f(\phi_{v'})$ implies that v and v' are located on a common path from the root to some leaf. Every such path has length at most n, i.e., there are at most n nodes whose formula maps to the same hash value.

As $f(\phi_v) \leq p(|\phi|)$ for all $v \in V$, there are at most $n \cdot p(|\phi|) \leq |\phi| \cdot p(|\phi|)$ nodes.

Exercise 3.4

In the lecture, you have seen the definition of "polynomial-time reducible" \leq_p :

For two languages $A, B \subseteq \{0, 1\}^*$ we write $A \leq_p B$ if there is a function $f : \{0, 1\}^* \to \{0, 1\}^*$ computable in polynomial time such that $x \in A \Leftrightarrow f(x) \in B$ for all $x \in \{0, 1\}^*$.

Similarly, the notion of "log-space reducible" \leq_{\log} is defined but this time the function f has to be computable by a Turing machine using at most $\mathcal{O}(\log n)$ space.

- (a) Show that $A \leq_{\log} B$ implies $A \leq_p B$.
- (b) Show that for any two languages A, B in **P** with $B \neq \emptyset, \{0, 1\}^*$ we have $A \leq_p B$.

Remark: Using \leq_{\log} one can also define **P**-complete problems in a meaningful way.

(c) Argue that \leq_{\log} is also transitive, i.e., if $A \leq_{\log} B \leq_{\log} C$, then also $A \leq_{\log} C$.

Hint: This is not as straightforward as for polynomial-time reductions. Why?

Solution:

(a) As **L** is contained in **P**, every function computable by a log-space TM is also computable by a poly-time TM.

More precisely: If M is a TM running in space $\mathcal{O}(\log n)$, then the number of possible configurations is at most exponential in the space used by the computation, i.e., $\mathcal{O}(2^{c \log n}) = \mathcal{O}(n^c)$ for some c > 0. As every computation visits any possible configuration at most once, the running time is polynomial in the input size.

(b) We assume $B \neq \emptyset, \{0,1\}^*$, otherwise the result does not hold in general.

The reduction is as follows:

Choose any $y \in B$ and any $z \notin B$. We then check in polynomial time if a given input $x \in A$. If $x \in A$, the reduction outputs y, otherwise z. Note that writing y or z takes constant time!

(c) We construct a TM M which basically behaves just like M_g , but everytime M_g needs to read the *i*-th bit of its input, i.e., the *i*-th bit of the output of M_f , M simply simulates M_f on input x (without storing its output!) until M_f writes the *i*-th bit (see Ex. 2.2(c)). As M_f only needs $\mathcal{O}(\log |x|)$ space, M can always simulate M_f .

Exercise 3.5

- (a) Show that **NP**=co**NP** if and only if 3SAT and TAUTOLOGY are polynomial-time reducible to each other.
- (b) A strong nondeterministic Turing machine (sNDTM) is a NDTM which has three possible outputs: "1", "0", "?". An sNDTM M decides a language L if: (i) for $x \in L$ every computation of M on x yields "1" or "?" and there is at least one computation of M on x which yields "1". (ii) for $x \notin L$ every computation of M on x yields "0" or "?" and there is at least one computation of M on x which yields "1". (ii) for $x \notin L$ every computation of M on x yields "0" or "?" and there is at least one computation of M on x which yields "0".

Show that L is decided by an sNDTM in polynomial time iff $L \in \mathbf{NP} \cap \operatorname{coNP}$.

Exercise 3.6

Notation: For n a natural number let [n] be the set $\{1, 2, \ldots, n\}$.

The KNAPSACK problem is defined as follows:

We are given n items where item i has both a weight $w_i \in$ and a value v_i . We are also given a maximal weight W the knapsack can hold and a target value V. (All numbers are assumed to be positive integers.) A selection $S \subseteq [n]$ then has total weight $w(S) := \sum_{i \in S} w_i$ and total value $v(S) := \sum_{i \in S} v_i$. A selection S is a solution if $w(S) \leq W$ and $v(S) \geq S$ hold.

- (a) Give a reasonable encoding of KNAPSACK and show that KNAPSACK is in NP.
- (b) Assume you are given an algorithm for deciding KNAPSACK running in polynomial time.

Construct from it a polynomial-time algorithm which computes the maximal V_{max} for which a given instance of KNAPSACK has a solution.

(c) Give an algorithm for deciding KNAPSACK in time $\mathcal{O}(nW)$.

Hint: Use dynamic programming to produce a table V(w, i) where

 $V(w, i) := \max \{ v(J) \mid J \subseteq [i] \text{ and } w(J) = w \}.$

Remark: Note that W is exponential in the size of the representation of W.

(d) We define MULTI-KNAPSACK to be the problem where for every item $i \in [n]$ we are given M values v_i^p $(p \in [M])$ and N weights w_i^q $(q \in [N])$ with corresponding target values V^p and total weights W^q . (All numbers are assumed to be positive integers.) A selection $S \subseteq [n]$ is then a solution of the MULTI-KNAPSACK instance if

$$\forall p \in [M] \, : \, \sum_{i \in S} v_i^p \geq V^p \text{ and } \forall q \in [N] \, : \, \sum_{i \in S} w_i^q \leq W^q$$

Show that MULTI-KNAPSACK is also in NP and give a reduction $3\text{SAT} \leq_p \text{MULTI-KNAPSACK}$.

Hint: The reduction is quite similar to 3SAT $\leq_p 0/1$ -IPROG: Given a 3CNF formula ϕ with M clauses and N variables, generate a MULTI-KNAPSACK instance with n = 2N items, i.e., one for every literal, and $v_i^p, w_i^q \in \{0, 1\}$ for $i \in [n], p \in [M + N], q \in [N]$. An truth assignment of ϕ should correspond to the selection of those literals which evaluate to true.

(e) Give a reduction 3SAT \leq_p KNAPSACK .

Hint: Start from your reduction of 3SAT to MULTI-KNAPSACK and set $w_i := v_i := v_i^1 \dots v_i^{M+N}$ for $i \in [2N]$ and $W := V := 1^N 3^M$ with all strings interpreted as numbers in *decimal* representation. A satisfying assignment should then yield a selection of total weight/value in $[1^N 1^M, 1^N 3^M]$. Introduce 2M additional items which allow to extend every selection induced by a satisfying assignment to a solution of the KNAPSACK instance.

Solution:

(a) We may assume that an instance of KNAPSACK is given as a list of pairs v_i, w_i plus V, W, e.g.,

$$v_1, w_1, v_2, w_2, \ldots, v_n, w_n \# V, W$$

(We use an input alphabet different from $\{0, 1\}$ here.)

Then an NTM can simply scan the input once and decide nondeterministically for every $i \leq n$ whether *i* to include *i* in *S* or not. If $S := S \cup \{i\}$, then the NTM simply adds v_i , resp. w_i to the current total value, resp. total weight of *S* (stored on two separate work tapes). Finally it compares the total value, resp. weight to *V*, resp. *W*. All these steps can be done in time polynomial in the length of the input.

(b) Set $V_{\max} = \sum_{i=1}^{n} v_i$. Then use binary search on the intervall $[0, V_{\max}]$, i.e., first decide whether the given instance of KNAPSACK is solvable for $V := V_{\max}/2$. If it is, test if it solvable for $3/4V_{\max}$; otherwise test if it is solvable for $V := V_{\max}/4$ and so forth.

Note that the binary representation of V_{max} is polynomial in the size of the input, so the number of considered KNAPSACK instances (at most $\log_2 V_{\text{max}}$) is also polynomial in the size of the input.

- (c) Obviously, V(w,0) = 0 for all $w \leq W$. $(\sum_{i \in \emptyset} v_i = 0.)$ Assume that V(w, i 1) is known and corresponds to some selection $S \subseteq \{1, 2, \dots, i 1\}$. We then may consider including *i* into *S*, leading to the total weight $w + w_i$ and total value $V(w, i 1) + v_i$. Hence, $V(w + w_i, i) \geq v_i + V(w, i 1)$. This gives us the following algorithm:
- (d) Multi-Knapsack \in **NP**:

The NTM nondeterministically chooses a selection S and stores the corresponding weights and values on a work tape. Then it checks the N + M inequalities within N + M iterations.

3SAT \leq_p MULTI-KNAPSACK :

Consider a 3CNF formula ϕ with M clauses and N variables x_1, \ldots, x_n .

We associate the items $1, \ldots, N$ with the literals x_1, \ldots, x_n , the items $N+1, \ldots, 2N$ with the literals $\neg x_1, \neg x_2, \ldots, \neg x_n$. A truth assignment of ϕ will correspond to the selection which contains exactly those literals which evaluate to true under the given assignment.

We define the weights and values for every literal:

For $p \in [N]$ set $v_i^p = w_i^p = 1$ if the corresponding literal is associated with variables x_p , otherwise $v_i^p = w_i^p = 0$.

For $p \in [M]$ set $v_i^{N+p} = 1$ if the literal corresponding to *i* appears in clause *p*; otherwise $v_i^{N+p} = 0$.

Every solution of the MULTI-KNAPSACK instance should also correspond to a satisfying assignment of ϕ . Hence, a solution S should never select both literals of a given variable x_i . We therefore set $W^i := 1$. Then $\sum_{k \in S} w_k^i = w_i^i + w_{i+N}^i \leq 1$ guarantees that S contains at most one of two literals.

Similarly, every solution S should contain at least one of the two literals of the variable x_i . So, we also set $V^i := 1$ for $i \in [N]$. Then $\sum_{k \in S} v_k^i = v_i^i + v_{i+N}^i \ge 1$ guarantees that S contains at least one literals of every variables.

As $v_k^i = w_k^i$ for $i \in [N]$ every solution S selects exactly one literal for every variable and defines, thus, an assignment for ϕ .

Finally, for every clause a solution S should contain at least one literal. So we set $V^{N+i} := 1$ for $i \in [M]$. Then

$$\sum_{k \in S} v_k^{N+i} = \sum_{\text{Literal } k \text{ appears in clause } i} v_k^{N+i} \geq 1$$

guarantees that S defines a satisfying assignment of ϕ .

(e) For $i \in \{1, ..., 2n\}$ the value v_i is a string of $\{0, 1\}^{M+N}$ which is interpreted as a decimal number. The first N digits encode the variable corresponding to the literal associated with *i*: there is exactly one 1 at position *i*. The last M digits of v_i encode the clauses which contain the literal associated with *i*: we write an 1 at position $N + k \in \{1, 2, ..., M\}$ if and only if the k-th clause contains the literal.

W.r.t. to $\phi = (x_1 \lor \neg x_1 \lor x_2) \land (x_1 \lor \neg x_2 \lor x_3)$ we have:

$$v_1 = 100\,11$$
 $v_2 = 010\,11$ $v_3 = 001\,01$
 $v_4 = 100\,10$ $v_5 = 010\,00$ $v_6 = 001\,00$

Consider the satisfying assignment $x_1 = 1, x_2 = 0, x_3 = 1$. The obvious way to produce from it a selection S is to set $S = \{1, 5, 3\} - S$ simply contains those literals which evaluate to true under the assignment. We then have

$$\sum_{i \in S} v_i = 100\,11 + 010\,00 + 001\,01 = 111\,12 \le 111\,33 = V = W.$$

Obviously, S is not yet a solution of the KNAPSACK instance. In particular, we cannot use any item $i \in \{1, 2, ..., 2n\}$ to extend S to a solution as every such v_i also increases one of the last n digits of the sum by one.

Here, the additional items $2n + 1, \ldots, 2n + 2m$ come into play: for every clause $k = \{1, \ldots, m\}$ we define the values v_{2n+k} and v_{2n+m+k} : the N+k-th digit of v_{2N+k} is 1, all other digits are 0; similarly, the only nonzero digit of v_{2N+M+k} is digit N + k which is 2.

In our example this leads to:

Using these additional items, we can extend our selection S to a solution S' of the KNAPSACK instance. In fact, as we can select a given item at most once, this extension is unique $S' = S \cup \{9, 8\}$.

$$\sum_{i \in S'} v_i = 111\,12 + 000\,20 + 000\,01 = 111\,33 = V.$$

Exercise 3.7

We define SUDOKU to be the following problem: You are given a $n^2 \times n^2$ grid where every entry is either blank or contains a numbers from $\{1, 2, ..., n^2\}$. The goal is to decided whether the remaining blank entries of the grid can be labeled by numbers from $\{1, 2, ..., n^2\}$ in such a way that every number of $\{1, 2, ..., n^2\}$ appears exactly once in (i) every row, (ii) every column, and (iii) in each of the n^2 subgrids.

• Give a reduction SUDOKU \leq_p SAT.

In particular, apply your reduction to the following SUDOKU instance:

1		2	
			4
	3		

Remark: One can show that SUDOKU is also NP-complete. The adventurous might like to attempt this!