Technische Universitit Miinchen (I7) Summer term 2019
Prof. J. Kfetinsky / Dr. M.Raskin 29.04.2019

Solution

Computational Complexity — Homework 3

Discussed on 03.05.2019.

Exercise 3.1

Is NP closed under intersection, resp. union?

Exercise 3.2

Prove that DOUBLE-SAT = {(®) | ® is a Boolean formula with at least two satisfying assignments } is NP-complete.

Exercise 3.3
(a) Let M be a Turing machine which decides SAT, and let ¢ be a CNF formula with n variables.

Design a recursive algorithm which computes a satisfying assignment for ¢ (if ¢ is satisfiable) using at most 2n + 1
calls to M plus some additional polynomial-time computation.

(b) Assume that L C {1}* is a unary language which is also NP-complete.
Show that then saT € P.
Hints:

e Again write a recursive program but limit the number of recursive calls by using a hash map. Use as hash function
a polynomial-time reduction f of SAT to L.

e Consider then the call tree of your program for a given input. Show that two nodes v, v’ which do not lie on a
common path from the root to a leaf correspond to formulae ¢, ¢,y with f(d,) # f(¢y).

Solution:
(a) Let x1,...,x, be the variables of ¢. We recursively calculate a satisfying assignment as follows:

(b) Let L be the unary NP-complete language. Then SAT is reducible in polynomial time to L, i.e., there is a function f
such that for every CNF ¢ we have
¢ € saT < 17 e [,

We use this f as a hash function in order to limit the number of recursive calls. For this, note that we further have a
polynomial p such that p(|¢|) is the time needed to compute 1/(#). Hence, f(¢) < p(|¢]).

Consider the call tree T' = (V, E) of satisfiable for an input formula, i.e., every node v € V' corresponds to an instance
of satisfiable , every edge corresponds to a recursive call of one instance by another. For v € V let ¢, be the formula
the instance v has as argument.

Consider now two nodes v,v” such that neither one is an ancestor of the other, i.e., there is no path from the root to
a leaf which visits both nodes. Then wlog. the computation of v has already terminated when the computation of v’
starts. So, at the time of the call of v’ it is already known whether ¢, is satisfiable and, thus, the hashmap is defined

for f(¢v) Hence, f(¢v) 7é f(¢v’)

In contraposition, f(¢,) = f(¢) implies that v and v’ are located on a common path from the root to some leaf.
Every such path has length at most n, i.e., there are at most n nodes whose formula maps to the same hash value.

As f(év) < p(|@|) for all v € V, there are at most n - p(|¢|) < |¢| - p(|¢|) nodes.

Exercise 3.4

In the lecture, you have seen the definition of “polynomial-time reducible” <,:

For two languages A, B C {0,1}* we write A <, B if there is a function f : {0,1}* — {0,1}* computable in
polynomial time such that x € A < f(z) € B for all z € {0,1}*.

Similarly, the notion of “log-space reducible” <jo4 is defined but this time the function f has to be computable by a Turing
machine using at most O(logn) space.

(a)
(b)

()

Show that A <j,q B implies A <, B.

Show that for any two languages A, B in P with B # (),{0,1}* we have A <, B.
Remark: Using <o, one can also define P-complete problems in a meaningful way.
Argue that <y, is also transitive, i.e., if A <joq B <jop C, then also A <y C.

Hint: This is not as straightforward as for polynomial-time reductions. Why?

Solution:

(a)

As L is contained in P, every function computable by a log-space TM is also computable by a poly-time TM.

More precisely: If M is a TM running in space O(logn), then the number of possible configurations is at most
exponential in the space used by the computation, i.e., O(2¢1°8") = O(n¢) for some ¢ > 0. As every computation visits
any possible configuration at most once, the running time is polynomial in the input size.

We assume B # (§, {0, 1}*, otherwise the result does not hold in general.
The reduction is as follows:

Choose any y € B and any z ¢ B. We then check in polynomial time if a given input x € A. If x € A, the reduction
outputs y, otherwise z. Note that writing y or z takes constant time!

We construct a TM M which basically behaves just like M, but everytime M, needs to read the i-th bit of its input,
i.e., the i-th bit of the output of My, M simply simulates M on input = (without storing its output!) until M; writes
the i-th bit (see Ex. 2.2(c)). As My only needs O(log |x|) space, M can always simulate M.

Exercise 3.5

(a)
(b)

Show that NP=coNP if and only if 3SAT and TAUTOLOGY are polynomial-time reducible to each other.

A strong nondeterministic Turing machine (sSNDTM) is a NDTM which has three possible outputs: “17, “0”, “?”. An
sNDTM M decides a language L if: (i) for z € L every computation of M on x yields “1” or “?” and there is at least
one computation of M on x which yields “17. (ii) for x € L every computation of M on z yields “0” or “?” and there
is at least one computation of M on z which yields “0”.

Show that L is decided by an sSNDTM in polynomaial time iff L € NP N coNP.

Exercise 3.6

Notation: For n a natural number let [n] be the set {1,2,...,n}.

The KNAPSACK problem is defined as follows:

We are given n items where item ¢ has both a weight w; € and a value v;. We are also given a maximal weight W the
knapsack can hold and a target value V. (All numbers are assumed to be positive integers.) A selection S C [n] then has
total weight w(S) := >, g w; and total value v(S) :=), g v;. A selection S is a solution if w(S) < W and v(S) > S hold.

(a)
(b)

()

Give a reasonable encoding of KNAPSACK and show that KNAPSACK is in NP.
Assume you are given an algorithm for deciding KNAPSACK running in polynomial time.

Construct from it a polynomial-time algorithm which computes the maximal Vi, for which a given instance of
KNAPSACK has a solution.

Give an algorithm for deciding KNAPSACK in time O(nW).

Hint: Use dynamic programming to produce a table V(w,4) where
V(w,i) :==max{v(J) | J C [i] and w(J) = w}.

Remark: Note that W is exponential in the size of the representation of W.

(d)

We define MULTI-KNAPSACK to be the problem where for every item i € [n] we are given M values v! (p € [M]) and
N weights w! (¢ € [N]) with corresponding target values V? and total weights W49. (All numbers are assumed to be
positive integers.) A selection S C [n] is then a solution of the MULTI-KNAPSACK instance if

Vp € [M] : va > VP and Vg € [N] : wa < WA,
€S icS

Show that MULTI-KNAPSACK is also in NP and give a reduction 3SAT <, MULTI-KNAPSACK .

Hint: The reduction is quite similar to 3SAT <, 0/1-IPROG: Given a 3CNF formula ¢ with M clauses and N variables,
generate a MULTI-KNAPSACK instance with n = 2N items, i.e., one for every literal, and v?, w! € {0,1} for i € [n],p €
[M + N, q € [N]. An truth assignment of ¢ should correspond to the selection of those literals which evaluate to true.

Give a reduction 3SAT <, KNAPSACK .

Hint: Start from your reduction of 3SAT to MULTI-KNAPSACK and set w; := v; := v} ... v/ for i € [2N] and
W :=V := 1¥3M with all strings interpreted as numbers in decimal representation. A satisfying assignment should
then yield a selection of total weight/value in [1V1M 1V3M]. Introduce 2M additional items which allow to extend

every selection induced by a satisfying assignment to a solution of the KNAPSACK instance.

Solution:

(a)

We may assume that an instance of KNAPSACK is given as a list of pairs v;, w; plus V, W e.g.,
V1, Wy, Vg, W, . .., Upy, WnHV, W

(We use an input alphabet different from {0, 1} here.)

Then an NTM can simply scan the input once and decide nondeterministically for every i < n whether 4 to include 4
in S or not. If S := S U{i}, then the NTM simply adds v;, resp. w; to the current total value, resp. total weight of S
(stored on two separate work tapes). Finally it compares the total value, resp. weight to V, resp. W. All these steps
can be done in time polynomial in the length of the input.

Set Viax = Z?:l v;. Then use binary search on the intervall [0, Vipax], i.e., first decide whether the given instance
of KNAPSACK is solvable for V' := V., /2. If it is, test if it solvable for 3/4V,.x; otherwise test if it is solvable for
V := Vinax/4 and so forth.

Note that the binary representation of Vi,.x is polynomial in the size of the input, so the number of considered
KNAPSACK instances (at most logy Vinax) is also polynomial in the size of the input.

Obviously, V(w,0) = 0 for all w < W. (3 ,cpvi = 0.) Assume that V(w,i — 1) is known and corresponds to some
selection S C {1,2,...,i — 1}. We then may consider including i into S, leading to the total weight w + w; and total
value V(w,i — 1) 4+ v;. Hence, V(w 4 w;, i) > v; + V(w,i — 1). This gives us the following algorithm:

MULTI-KNAPSACK € NP:

The NTM nondeterministically chooses a selection S and stores the corresponding weights and values on a work tape.
Then it checks the N + M inequalities within N + M iterations.

3SAT <, MULTI-KNAPSACK :
Consider a 3CNF formula ¢ with M clauses and N variables x1, ..., x,.

We associate the items 1, ..., N with the literals z1, ..., z,, the items N+1, ..., 2N with the literals -z, —xo, ..., xz,.
A truth assigment of ¢ will correspond to the selection which contains exactly those literals which evaluate to true
under the given assignment.

We define the weights and values for every literal:

For p € [N] set v¥ = w? = 1 if the corresponding literal is associated with variables x,, otherwise v¥ = w? = 0.
[7 p % 7

For p € [M] set va P — 1 if the literal corresponding to 7 appears in clause p; otherwise UZ-N P —.

Every solution of the MULTI-KNAPSACK instance should also correspond to a satisfying assignment of ¢. Hence, a

solution S should never select both literals of a given variable z;. We therefore set W* := 1. Then), qwj =
w; +wj, xy < 1 guarantees that S contains at most one of two literals.

Similarly, every solution S should contain at least one of the two literals of the variable z;. So, we also set V' := 1 for
i € [N]. Then), g v}, = v; +vj, > 1 guarantees that S contains at least one literals of every variables.

As vl = wt for i € [N] every solution S selects exactly one literal for every variable and defines, thus, an assignment
for ¢.

Finally, for every clause a solution S should contain at least one literal. So we set VN*%:=1 for i € [M]. Then

ZU]](:V+i _ Z U]iV+i >1

kesS Literal k£ appears in clause i

guarantees that S defines a satisfying assignment of ¢.

For i € {1,...,2n} the value v; is a string of {0, 1} which is interpreted as a decimal number. The first N digits
encode the variable corresponding to the literal associated with i: there is exactly one 1 at position i. The last M digits
of v; encode the clauses which contain the literal associated with i: we write an 1 at position N + k € {1,2,..., M} if
and only if the k-th clause contains the literal.

W.rt. to ¢ = (21 V =y V a2) A (21 V —29 V 23) we have:

v; = 10011 w9 =01011 w3 = 00101
vy = 10010 wvs = 01000 v = 00100

Consider the satisfying assignment x; = 1,29 = 0,23 = 1. The obvious way to produce from it a selection S is to set
S =1{1,5,3} — S simply contains those literals which evaluate to true under the assignment. We then have

> v =10011+ 01000 4 00101 = 11112 < 11133 =V = W.

€S
Obviously, S is not yet a solution of the KNAPSACK instance. In particular, we cannot use any item i € {1,2,...,2n}
to extend S to a solution as every such v; also increases one of the last n digits of the sum by one.

Here, the additional items 2n + 1,...,2n + 2m come into play: for every clause k = {1,...,m} we define the values
Von4k and Von4m4k: the N +k-th digit of vany is 1, all other digits are 0; similarly, the only nonzero digit of vonar4k
is digit N + k which is 2.

In our example this leads to:
vy = 00010 wg = 00001
vg = 00020 w19 = 00002

Using these additional items, we can extend our selection S to a solution S’ of the KNAPSACK instance. In fact, as we
can select a given item at most once, this extension is unique S’ = S U {9, 8}.

Zvi = 11112+ 00020 + 00001 = 11133 = V.
€S’

Exercise 3.7

We define SUDOKU to be the following problem: You are given a n? x n? grid where every entry is either blank or contains
a numbers from {1,2,...,n%}. The goal is to decided whether the remaining blank entries of the grid can be labeled by
numbers from {1,2,...,n?} in such a way that every number of {1,2,...,n%} appears exactly once in (i) every row, (ii)
every column, and (iii) in each of the n? subgrids.

e Give a reduction SUDOKU <, SAT.

In particular, apply your reduction to the following SUDOKU instance:

1 2

Remark: One can show that SUDOKU is also NP-complete. The adventurous might like to attempt this!

