
Technische Universität München (I7) Summer term 2011
Prof. J. Esparza / J. Křet́ınský 23. April 2019, 15:39

Computational Complexity – Homework 2

Discussed on 18.5.2011.

Exercise 2.1

Let DNF-SAT be the set of all satisfiable boolean formulae in disjunctive normal form.

• Show that DNF-SAT is in P.

Let 2SAT be the set of all satisfiable boolean formulae in conjective normal form where every
clause consists of at most two literals.

• Show that 2SAT is in P.

Remark : In fact, 2SAT can be decided in SPACE((log n)2), resp. in NL.

Exercise 2.2

A clique in a graph is a set of vertices that are all connected to each other with the graph edges.
Let CLIQUE = {〈G, k〉 | graph G has a clique of k vertices}. Show the following:

(a) INDSET ≤p CLIQUE

(b) CLIQUE ≤p INDSET

(c) 3− SAT ≤p CLIQUE

(d) CLIQUE is NP-complete.

Exercise 2.3

Argue that the following theorem on the linear speedup of Turing machine holds:

Let L ⊆ {0, 1}∗ be a language decided by a Turing machine M in time T (n). Then, for
any c > 0 there is Turing machine M ′ which decides L in time T ′(n) := cT (n)+n+C
(with C some constant independent of L or c, e.g., C ≤ 10 should work).

Remark : Fix any constant m ∈ N. Then M ′ first compresses the input from size n to size d nme
on some auxiliary work tape. Then M ′ simulates m steps of M within at most 10 steps. (In fact,
6 steps should be sufficient.) Finally, choose the constant m in such a way that M ′ simulates M
in time T ′(n).

Technische Universität München (I7) Summer term 2019
Prof. J. Kret́ınský / Dr. M. Raskin

Exercise 2.4

(a) Show that EXPTIME-hard problems exist. Use the idea of the universal Turing machine.

(b) Show that EXPTIME-complete problems exist. Use a modification of the previous result.

(c) Show that the same holds for DTIME(f), NTIME(f), DSPACE(f), NSPACE(f) for
any constructible f .

Exercise 2.5

Let M be a Turing machine which computes a function f : {0, 1}∗ → {0, 1}∗. As mentioned in the
lecture, we are basically interested in two resources, time and space, needed by M for computing
f(x) from the input x. Measuring time is straight-forward, we simply count the number of steps
M does on input x. In the case of space, one is usually not interested in the space required for
storing the input or the output, but only in the space required for computing the output from
the input. One therefore defines:

A function f : {0, 1}∗ → {0, 1}∗ is computable in space S(n) if there is a Turing
machine Mf such that

(i) Mf computes f .

(ii) Mf does not write any blanks (�).

(iii) Mf never moves the head of the output tape to the left.

(iv) For every input x of length n = |x| the total number of non-blank symbols on
all work tapes is bounded from above by S(n) in every step of the computation.

Similar to the definition of DTIME, we write f ∈ DSPACE(S) if there is a Turing machine
which computes f in space S′(n) for some S′ ∈ O(S). Finally, a language L ⊆ {0, 1}∗ is decided
in SPACE(S) if its characteristic function fL is computable in SPACE(S) (with fL(x) := 1 if
x ∈ L, and fL(x) := 0 if x 6∈ L).

(a) Show that the function inc : {0, 1}∗ → {0, 1}∗ which increases x by one (interpreting x as
a natural number via the lsbf-encoding) is computable in constant space O(1).

(b) How much space is needed to decide the language of palindromes?

(c) Show or disprove that we may strengthen condition (iii) to “Mf never moves the head of
the output tape to the left and never overwrites a non-blank symbol on the output tape”.

(d) Argue that if a function f is computable in space S(n), then it is also computable in space
cS(n) + C for any c ∈ (0,∞) (with C some constant independent of f or c, e.g., C ≤ 10
should work).

*(e) For those who know two-way finite automata:

Argue that every Turing machine using bounded space is basically a finite automaton with
output.

