
Technische Universität München (I7) Summer term 2019
Prof. J. Křet́ınský / Dr. M.Raskin 26.04.2019

Solution

Computational Complexity – Homework 2

Discussed on 26.04.2019.

Exercise 2.1

Let DNF-SAT be the set of all satisfiable boolean formulae in disjunctive normal form.

• Show that DNF-SAT is in P.

Let 2SAT be the set of all satisfiable boolean formulae in conjective normal form where every
clause consists of at most two literals.

• Show that 2SAT is in P.

Remark : In fact, 2SAT can be decided in SPACE((log n)2), resp. in NL.

Solution: A formula in DNF is satisfiable iff some conjunctive clause does not contain con-
tradictory literals. This can easily be checked in polynomial time by checking each conjunctive
clause in turn.

Now consider a 2SAT formula of the form

φ := C1 ∨ C2 ∨ · · · ∨ Ck

where each of the Ci contains precisely two literals. (Note that even a constant-space machine
(i.e. a finite automaton) can parse such formulae and so we can certainly validate the form of
the input in logspace or polynomial time.)

The formula φ induces an implication graph Gφ that has literals together with the symbol ⊥ as
nodes and directed edges of the form:

l1 −→ l2

whenever there is a clause in φ of the form l1 ∨ l2 (i.e. whenever there is a clause equivalent to
l1 → l2).

Now consider the following two rules that define new edges in the graph based on previously
existing edges.

l1 −→ l2 l2 −→ l3
l1 −→ l3

l1 −→ l2 l1 −→ l2
l1 −→ ⊥

So in particular repeated applications of the first rule computes the transitive closure of the
graph. If one interprets ⊥ as ‘false’ or ‘contradiction’, then it is clear that these rules preserve

the interpretation of edges as implications: that is if there is an edge l1 −→ l2 (where l2 may be
⊥ as well as a literal), then φ � l1 → l2.

Let us call the graph that results from adding all possible edges to Gφ via the rules the graph

Ĝφ.

We claim that φ is satisfiable iff it is the case that for every variable x, either x or x has no edge
to ⊥ in Ĝφ.

First suppose that for some variable x both x −→ ⊥ and x −→ ⊥. Then by the preservation of
the interpretation of edges −→ it must be the case that setting x to true implies a contradiction
and setting x to false also does, and thus φ must be unsatisfiable.

Now suppose that for every variable xi there is a literal li ∈ {xi, xii} such that li has no edge to
⊥. We need to show that φ has a satisfying assignment.

In order to do this we construct a set S of literals that when set to true constitute a satisfying
assignment.

We construct this set inductively. We begin with S0 := {l1} (although we could start with any
li).

We then define

• Sj+1 := {l|l′ −→ l for some l ∈ Sj in Ĝφ} if this set contains an l not already in Sj+1,

• otherwise Sj+1 := Sj ∪ {li} for some li not already in Sj+1,

• otherwise we are done and set S := Sj .

Due to the second item, S contains either xi or xi for all variables xii. Note further that since
Ĝφ is transitive-closed and since by assumption none of the li have edges to ⊥, it follows that
no literal in S has an edge to ⊥ and also that at most one of xi and xi belongs to S for each
variable xi. Thus S is indeed valuation.

S must, moreover, be a satisfying valuation. For suppose not. Then there must be some clause
Cj = {l, l′} such that l, l′ ∈ S. But then there is an edge in Ĝφ from l to l′ (and also from l′ to
l). Thus we would have l′ ∈ S (and also l ∈ S) contradicting the fact that it does indeed define
a valuation.

We can now show that 2SAT is in P. It suffices to construct Ĝφ in polynomial time, since once

we have constructed Ĝφ (which is clearly polynomially big in the size of φ), it can be checked in
polynomial time whether or not there exists a variable xi such that both xi and xi have edges
to ⊥.

The machine maintains a worklist W of edges. Each edge in this worklist must be ‘fully processed’
before being added to the graph being constructed. This ensures that each edge is only processed
once. Let E denote the set of edges added so-far to the graph being constructed.

The machine proceeds as follows:

• Parse φ and add all edges belonging to Gφ to W . The set E begins as the empty set.

• Pick an edge e in W . By comparing it to each edge e′ in E, apply the two edge-construction
rules. If a new edge e′′ is so produced (that does not already belong to E or W), then add
it to W . The edge e is then removed from W and added to E.

• Repeat the previous step until there are no more edges to add.

If there are n literals, then at most O(n2) edges can be produced. Each edge-construction rule
is applied at most once for each pair of edges (since one edge must belong to the work-list and
is removed from the work-list as soon as this is completed) and so at most O(n4) applications of
the rules are made. When a rule is applied, any generated edge must be compared to all of the
other edges previously produced to avoid re-adding an edge to W . This brings the complexity
up to O(n5) in the number of literals.

Since the number of literals is bounded by the size of the formula, such a machine must indeed
run in polynomial time, as required.

To see that the problem is in NL, we avoid explicitly constructing Ĝφ and instead consider paths
in Gφ. (Gφ is effectively represented by the formula φ on the machines input tape). The formula
in unsatisfiable if there exists a variable x such that there is a path from x to a literal l and a
literal l and also a path from x to a literal l′ and a literal l′. A non-deterministic machine can
guess the variable x and the literals l and l′ and then non-deterministically check reachability in
Gφ (reachability in NL has been seen in the lectures. This shows that 2UNSAT is in NL. Since
NL is closed under complement, 2SAT must also belong to this class.

Exercise 2.2

A clique in a graph is a set of vertices that are all connected to each other with the graph edges.
Let CLIQUE = {〈G, k〉 | graph G has a clique of k vertices}. Show the following:

(a) INDSET ≤p CLIQUE

(b) CLIQUE ≤p INDSET

(c) 3− SAT ≤p CLIQUE

(d) CLIQUE is NP-complete.

Solution: Consider a 3-CNF with k clauses. Let’s consider the following graph.

For every clause of the original 3-CNF we have three vertices corresponding to the literals in the
clause. The vertices are connected unless they are either in the same triple (corresponding to a
clause) or correspond to a variable and its negation.

We claim that there is a clique of size k in the resulting graph if and only if there is a satisfying
assignment.

If there is a satisfing assignment, we can pick a true literal in each clause. This gives us k vertices;
no two of them are in the same triple, and no two of them can correspond to a variable and its
negation. Therefore we get a k-clique.

If there is a clique of size k, it has to select a single literal in each triple. These vertices correspond
to some literals. We can declare that all these literals are true, as two opposite literals would
correspond to vertices not connected with an edge, and therefore such vertices cannot be included
in a clique simultaneously. If there are any variables left, let’s consider them false. This way we
get a satisfying assignment.

Exercise 2.3

Argue that the following theorem on the linear speedup of Turing machine holds:

Let L ⊆ {0, 1}∗ be a language decided by a Turing machine M in time T (n). Then, for
any c > 0 there is Turing machine M ′ which decides L in time T ′(n) := cT (n)+n+C
(with C some constant independent of L or c, e.g., C ≤ 10 should work).

Remark : Fix any constant m ∈ N. Then M ′ first compresses the input from size n to size d nme
on some auxiliary work tape. Then M ′ simulates m steps of M within at most 10 steps. (In fact,
6 steps should be sufficient.) Finally, choose the constant m in such a way that M ′ simulates M
in time T ′(n).

Solution: M ′ behaves as follows:

(a) Compression phase:

M ′ compresses the input x using a vector alphabet, e.g., if M uses tape alphabet Γ, then
Γm is contained in the tape alphabet of M ′ For every word w ∈ Γ∗, let χ(w) ∈ Γm be its
compressed representation, i.e., first append as few as possible � such that w�k has lenght
divisible by m. Then let χ(w) be the word we obtain from w�k by reading it as word over
Γm.

In the compression phase, M ′ simply reads the input from left to right (excluding B which
we do not compress), counts in its head up to m, and remembers at the same time the last
m symbols read from the input. Every time the counter hits m, M ′ writes the last m input
symbols xixi+1 . . . xi+m−1 to a auxiliary tape using the symbol (xi, xi+1, . . . , xi+m−1). At
the end, the context of the auxiliary tape is χ(Bx).

This step needs time |x|+ 2 (= |Bx�|).

(b) Simulation phase:

Then M ′ starts to simulate M on x. For this, the auxiliary tape becomes the new input
tape. We forget the original input tape in the following.

M ′ first moves its (new) input head on the left-most position. This takes d nme.

All the time of the simulation the contents of the tapes of M and M ′ are in one-to-one
correspondence: if Bw ∈ Γ∗ is the content of the k-th tape of M , then χ(Bw) is the content
of the k-th tape of M ′. Further, if the head of the k-th tape of M is on position i (counting
from right), then the corresponding head of M ′ is on position b imc.

In order to obtain the linear speed up, M ′ simulates m steps of M within a single step.
Note that within m steps every single head of M can move at most m positions to the right
or left. Hence, it suffices for M ′ to remember for every tape the three symbols within one
step of the corresponding head. M ′ can store this information within its control state. Note
that for remembering these three symbols, every M ′ can move each of heads as follows:
(i) one step to the right, (ii) two to the left (i.e., one step left of the original position of
the head), (iii) finally one step to the right again (original position of the head). M ′ can
store this finite information in its head. M ′ then updates its tape contents according to the
transition relation of M within two steps (Why?!).

The total running time of M ′ is then at most |x|+ 2 + 6 · T (|x|)
m . So, taking m large enough, we

obtain the required speedup.

Exercise 2.4

(a) Show that EXPTIME-hard problems exist. Use the idea of the universal Turing machine.

(b) Show that EXPTIME-complete problems exist. Use a modification of the previous result.

(c) Show that the same holds for DTIME(f), NTIME(f), DSPACE(f), NSPACE(f) for
any constructible f .

Exercise 2.5

LetM be a Turing machine which computes a function f : {0, 1}∗ → {0, 1}∗. As mentioned in the
lecture, we are basically interested in two resources, time and space, needed by M for computing
f(x) from the input x. Measuring time is straight-forward, we simply count the number of steps
M does on input x. In the case of space, one is usually not interested in the space required for
storing the input or the output, but only in the space required for computing the output from
the input. One therefore defines:

A function f : {0, 1}∗ → {0, 1}∗ is computable in space S(n) if there is a Turing
machine Mf such that

(i) Mf computes f .

(ii) Mf does not write any blanks (�).

(iii) Mf never moves the head of the output tape to the left.

(iv) For every input x of length n = |x| the total number of non-blank symbols on
all work tapes is bounded from above by S(n) in every step of the computation.

Similar to the definition of DTIME, we write f ∈ DSPACE(S) if there is a Turing machine
which computes f in space S′(n) for some S′ ∈ O(S). Finally, a language L ⊆ {0, 1}∗ is decided
in SPACE(S) if its characteristic function fL is computable in SPACE(S) (with fL(x) := 1 if
x ∈ L, and fL(x) := 0 if x 6∈ L).

(a) Show that the function inc : {0, 1}∗ → {0, 1}∗ which increases x by one (interpreting x as
a natural number via the lsbf-encoding) is computable in constant space O(1).

(b) How much space is needed to decide the language of palindromes?

(c) Show or disprove that we may strengthen condition (iii) to “Mf never moves the head of
the output tape to the left and never overwrites a non-blank symbol on the output tape”.

(d) Argue that if a function f is computable in space S(n), then it is also computable in space
cS(n) + C for any c ∈ (0,∞) (with C some constant independent of f or c, e.g., C ≤ 10
should work).

*(e) For those who know two-way finite automata:

Argue that every Turing machine using bounded space is basically a finite automaton with
output.

Solution:

(a) The TM only needs to remember the carry bit in order to determine the i-th bit of the
ouput given the i-th bit of the input.

(b) The TM behaves as follows on input x with n := |x|:

Set i := 1. While i ≤ n do: Read symbol xi from the input. Store it in the control. Move
input head to the end of the input, then i positions back. Check that xi = xn+1−i. Set
i := i+ 1.

Note that for storing i, the TM only needs space log n. Further, counting up to i can also
be done in space log n.

(c) The TM simply writes to the output tape on position i only before moving the output head
to position i + 1. It can use its control to simulate any previous write to the output tape
position i.

(d) We compress the work tapes on-the-fly similar to the construction used in ex 2.1, i.e., the
new TM stores in its control state a block of m symbols plus the position of the head for
every work tape of the original machine.

Note that the construction of ex 2.1 cannot be applied directly as we cannot store a linear
compressed copy of the input on some work tape if S(n) is sublinear.

