
Technische Universität München (I7) Summer term 2019
Prof. J. Křet́ınský / Dr. M.Raskin 26.04.2019

Solution

Computational Complexity – Homework 1

Discussed on 26.04.2019.

Exercise 1.1

Recall the definition of the Landau notation for f, g : N→ N:

f ∈ O(g) :⇔ ∃c ∈ (0,∞)∃n0 ∈ N∀n > n0 : f(n) ≤ c · g(n).
f ∈ Ω(g) :⇔ g ∈ O(f)
f ∈ Θ(g) :⇔ f ∈ O(g) ∧ f ∈ Ω(g)
f ∈ o(g) :⇔ ∀ε ∈ (0,∞)∃n0 ∈ N∀n > n0 : f(n) ≤ ε · g(n)
f ∈ ω(g) :⇔ g ∈ o(f).

Remark : Some authors prefer to write f = O(g) instead of f ∈ O(g). As O(g) is set of functions, while f is a function, the
latter is more precise than the former.

(a) Assume f, g are strictly positive functions, i.e., f(n), g(n) > 0 for all n ∈ N. Show or disprove:

• f ∈ Θ(g) if and only if there exist c1, c2 ∈ (0,∞) such that c1 ≤ f(n)/g(n) ≤ c2 for almost all n ∈ N. (“almost
all” is equivalent to “except for finitely many”).

• f ∈ o(g) if and only if limn→∞ f(n)/g(n) = 0.

(b) Let f and g be any two of the following functions. Describe their relation using the Landau notation.

(a)n2 (b)n3 (c)n2 log n
(d) 2n (e)nn (f)nlogn

(g) 22
n

(h) 22
n+1

(j)n2 if n is odd, 2n otherwise.

(c) Describe (and prove) the relations between 2O(n), O(2n) and 2n
O(1)

.

Solution:

•
f ∈ Θ(g)

⇔ f ∈ O(g) ∧ g ∈ O(f)
⇔ ∃cf > 0∃nf∀n ≥ nf : f(n) ≤ cfg(n) ∧ ∃cg > 0∃ng∀n ≥ ng : g(n) ≤ cgf(n)
∗⇔ ∃cf , cg > 0∃n0∀n ≥ n0 : f(n) ≤ cfg(n) ∧ g(n) ≤ cgf(n)

⇔ ∃cf , cg > 0∃n0∀n ≥ n0 : 1
cg
≤ f(n)

g(n) ≤ cf
∗∗⇔ ∃c1, c2 > 0∃n0∀n ≥ n0 : c1 ≤ f(n)

g(n) ≤ c2

*: (⇒) set n0 := max(nf , ng). (⇐) set nf := ng := n0.

**: cf = c2, c1 = 1/cf .

•
f ∈ o(g)

⇔ ∀c > 0∃nc∀n ≥ nc : f(n) ≤ cg(n)

⇔ ∀c > 0∃nc∀n ≥ nc : f(n)g(n) ≤ c
∗⇔ ∀ε > 0∃nε∀n ≥ nε :

∣∣∣ f(n)g(n)

∣∣∣ < ε

⇔ limn→∞
f(n)
g(n) = 0.

*: Note that (i) f(n), g(n) > 0 and (ii) (⇒) set c := 0.9ε, (⇐) ε := c.

• Without any guarantee! Lower half defined by symmetry.

n2 n3 n2 log n 2n nn nlogn 22
n

22
n+1

f(n) := (n odd? n2 : 2n)

n2 Θ(n2) o(n3) o(n2 log n) o(2n) o(nn) o(nlogn) o(22
n

) o(22
n+1

) O(f(n))

n3 Θ(n3) ω(n2 log n) o(2n) o(nn) o(nlogn) o(22
n

) o(22
n+1

) −−
n2 log n Θ(n2 log n) o(2n) o(nn) o(nlogn) o(22

n

) o(22
n+1

) −−
2n Θ(2n) o(nn) ω(nlogn)∗ o(22

n

) o(22
n+1

) Ω(f(n))

nn Θ(nn) ω(nlogn) o(22
n

) o(22
n+1

) ω(f(n))

nlogn Θ(nlogn) o(22
n

) o(22
n+1

) −−
22

n

Θ(22
n

) o(22
n+1

) ω(f(n))

22
n+1

Θ(22
n+1

) ω(f(n))
f(n) Θ(f(n))

*:

2n ∈ ω(nlogn)⇔ nlogn ∈ o(2n)⇔ lim
n→∞

nlogn

2n
= 0⇔ lim

n→∞
2(logn)

2−n = 0⇔ lim
n→∞

(log n)2−n = −∞⇔ lim
n→∞

(log n)2

n
= 0.

Using l’Hospital:

lim
n→∞

(log n)2

n
= 0⇔ lim

n→∞

2(log n) 1
n

1
= 0⇔ lim

n→∞

log n

n
= 0⇔ lim

n→∞

1/n

1
= 0.

Remark : Similarly, one shows that (log n)k ∈ o(n) for any k ∈ N.

• We have O(2n) 2O(n) 2n
O(1)

. Proof: Let f ∈ O(2n), then there exists c ≥ 1 such that f(n) ≤ c2n for all large
enough n. Hence f(n) ≤ 2log c+n ≤ 2cn for all large enough n and thus f ∈ 2O(n). Similarly we have 2cn ≤ 2n

c

for
c ≥ 1 and large enough n which shows the second inclusion. Observe that the inclusions are strict, since for example
23n /∈ O(2n) and 2n

5

/∈ O(2O(n))

Exercise 1.2

Consider the following language on {0, 1}:

L = {u0v0w ∈ {0, 1}∗ | u, v, w ∈ {1}∗ ∧ |v| ≤ |w| ≤ |u| ∧ ∃k ∈ {|v| , . . . , |w|} : k divides |u|}.

Its characteristic function fL is then

fL : {0, 1}∗ → {0, 1} : x 7→
{

1 if x ∈ L
0 if x 6∈ L

Construct a Turing machine which computes fL in time O(nk) for some fixed k > 0.

Solution: We give an informal description of the behaviour of a TM deciding L:

• 1. Step: Check that the input x is of the form 1∗01∗01∗.

If x is not of the required from, output 0 and halt.

• 2. Step: Copy u, v, and w parts of x to work tapes 1 to 3.

• 3. Step: Check that |v| ≤ |w| ≤ |u|.

If x does not satisfy the requirement on u, v, w, output 0 and halt.

• 4. Step: As long as work tape 4 contains less 1s than work tape 1 (u) append the content of work tape 2 (v) to the
content of work tape 4.

• 5. Step: Check whether work tapes 1 and 4 contain the same number of 1s.

If this is the case, output 1 and halt.

• 6. Step: Empty work tape 4.

• 7. Step: Append an 1 to the content of work tape 2.

• 8. Step: Check that work tape 2 contains at most as many 1s as work tape 3.

If this does not hold, output 0 and halt.

• Go to Step 4.

One easily checks that every “macro step” can be done by a TM using at most O(|x|) many steps.

Exercise 1.3

If f : {0, 1}∗ → {0, 1} is computable by a TM with a finite alphabet Γ then it is also computable by a TM with alphabet
Σ = {0, 1,�,B}, moreover, with only a polynomial overhead.

Prove the statement above. Does the same hold for infinite Γ? Does the same hold for Σ = {1,�,B}?

Solution: In the lecture, you have seen that a k-tape TM can be simulated by a single tape TM with only a polynomial
overhead. We will make use of this fact.

First, note that any element of Γ can be encoded using k = dlog |Γ|e letters of binary alphabet. We can thus simulate the
working tape with symbols of Γ by k tapes with symbols of Σ.

Exercise 1.4

Call a Turing machine M oblivious if the positions of its heads at the ith step of its computation on input x depend only on
i and |x|, but not x itself.

Let L ∈ DTIME(T) with T : N → N time-constructible. Show that there is an oblivious Turing machine which decides L
in time O(T 2).

Solution: Let M be a Turing machine deciding L in time T (n). Further, let MT be a Turing machine calculating T . As
T is required to be time-constructible, we find such a MT .

We sketch how to construct from M and MT an oblivious Turing machine O which decides L in time O(T (n)2). For
simplicity, we assume that M is a one-tape TM; for this, we allow M to also write to the input tape. O is not required to
have only a single tape, still we allow O to write to its input tape, too.

The behaviour of O is as follows:

(a) First, O reads the input once from left to right, copies for every symbol read an 1 to the input tape of MT , and, finally,
moves all heads back to the left-most position.

(b) It then starts MT on input 1|x|. For every step done by MT , O also writes an 1 to two tapes, called space and time
in the following. After MT has terminated, the content of both space and time is B1T (|x|).

(c) Then, O simulates exactly T (|x|) steps of M , i.e., after simulating a single step of M , O moves the head of time one
place to the left, the simulation terminates when the head of time hits B.

A single step of M is simulated as follows:

O remembers the position of the head of M on the input tape by some apropriate symbol, e.g., if Γ is the tape alphabet
used by M , then O might use the symbols Γ ∪ Γ̂ where Γ̂ = {γ̂ | γ ∈ Γ}.

In order for O to be able to simulate a step of M , O needs to remember the control state of M and (at most three)
symbols µγ̂ν within the 1-step vicinity of the head of the M . (This is finite information and therefore can be stored
in the control of O. Check this by yourself!)

As M is time-bounded by T , O knows that the head of M can never move more than T (|x|) steps to the right. Hence,
O can scan the whole tape content of M by moving its input head T (|x|) steps to the right and then back again. The
space tape can be used for this.

Within this scan, O can remember the three symbols µγ̂ν, determine from the next step of M and change its tape
content accordingly.

E.g.: assume that a given point of time M is in the configuration (q,Babĉd)) with δM (q, c) = (q′, e,→), i.e., M makes
the following step:

(q,Babĉd)→ (q′,Babed̂).

O simulates this step as follows: it remebers in its control state the control state q of M plus the last three symbols
read. O scans its input tape from left to right until one step after ĉ is encountered. Then O remembers the necessary
symbols bĉd and the state q so it can determine the next step of M . As M moves right, O can immediately replace d
to d̂, then it moves on to the right until T (n) steps are made (reading space in lockstep). O then moves its input head

back to the left-most position. On its way back O waits on d̂ so it can replace the symbol ĉ left of it by e. Similarly,
O can simulate a step where M moves its head to the left.

It is left to the reader to check that O is indeed oblivious.

