Solution

Computational Complexity – Homework 1

Discussed on 26.04.2019.

Exercise 1.1

Recall the definition of the Landau notation for $f, g: \mathbb{N} \to \mathbb{N}$:

 $\begin{array}{lll} f \in \mathcal{O}(g) & :\Leftrightarrow & \exists c \in (0,\infty) \exists n_0 \in \mathbb{N} \forall n > n_0 \, : \, f(n) \leq c \cdot g(n). \\ f \in \Omega(g) & :\Leftrightarrow & g \in \mathcal{O}(f) \\ f \in \Theta(g) & :\Leftrightarrow & f \in \mathcal{O}(g) \wedge f \in \Omega(g) \\ f \in o(g) & :\Leftrightarrow & \forall \epsilon \in (0,\infty) \exists n_0 \in \mathbb{N} \forall n > n_0 \, : \, f(n) \leq \epsilon \cdot g(n) \\ f \in \omega(g) & :\Leftrightarrow & g \in o(f). \end{array}$

Remark: Some authors prefer to write $f = \mathcal{O}(g)$ instead of $f \in \mathcal{O}(g)$. As $\mathcal{O}(g)$ is set of functions, while f is a function, the latter is more precise than the former.

- (a) Assume f, g are strictly positive functions, i.e., f(n), g(n) > 0 for all $n \in \mathbb{N}$. Show or disprove:
 - $f \in \Theta(g)$ if and only if there exist $c_1, c_2 \in (0, \infty)$ such that $c_1 \leq f(n)/g(n) \leq c_2$ for almost all $n \in \mathbb{N}$. ("almost all" is equivalent to "except for finitely many").
 - $f \in o(g)$ if and only if $\lim_{n \to \infty} f(n)/g(n) = 0$.
- (b) Let f and g be any two of the following functions. Describe their relation using the Landau notation.
 - $\begin{array}{ll} (a) \, n^2 & (b) \, n^3 & (c) \, n^2 \log n \\ (d) \, 2^n & (e) \, n^n & (f) \, n^{\log n} \\ (g) \, 2^{2^n} & (h) \, 2^{2^{n+1}} & (j) \, n^2 \ \text{if} \ n \ \text{is odd}, 2^n \ \text{otherwise.} \end{array}$

(c) Describe (and prove) the relations between $2^{\mathcal{O}(n)}$, $\mathcal{O}(2^n)$ and $2^{n^{\mathcal{O}(1)}}$.

Solution:

•

 $\begin{array}{l} f \in \Theta(g) \\ \Leftrightarrow & f \in \mathcal{O}(g) \land g \in \mathcal{O}(f) \\ \Leftrightarrow & \exists c_f > 0 \exists n_f \forall n \ge n_f : f(n) \le c_f g(n) \land \exists c_g > 0 \exists n_g \forall n \ge n_g : g(n) \le c_g f(n) \\ \Leftrightarrow & \exists c_f, c_g > 0 \exists n_0 \forall n \ge n_0 : f(n) \le c_f g(n) \land g(n) \le c_g f(n) \\ \Leftrightarrow & \exists c_f, c_g > 0 \exists n_0 \forall n \ge n_0 : \frac{1}{c_g} \le \frac{f(n)}{g(n)} \le c_f \\ \stackrel{**}{\Leftrightarrow} & \exists c_1, c_2 > 0 \exists n_0 \forall n \ge n_0 : c_1 \le \frac{f(n)}{g(n)} \le c_2 \end{array}$

*: (\Rightarrow) set $n_0 := \max(n_f, n_g)$. (\Leftarrow) set $n_f := n_g := n_0$. **: $c_f = c_2, c_1 = 1/c_f$.

$$\begin{split} f &\in o(g) \\ \Leftrightarrow \quad \forall c > 0 \exists n_c \forall n \ge n_c : f(n) \le cg(n) \\ \Leftrightarrow \quad \forall c > 0 \exists n_c \forall n \ge n_c : \frac{f(n)}{g(n)} \le c \\ \Leftrightarrow \quad \forall \epsilon > 0 \exists n_\epsilon \forall n \ge n_\epsilon : \left| \frac{f(n)}{g(n)} \right| < \epsilon \\ \Leftrightarrow \quad \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0. \end{split}$$

*: Note that (i) f(n), g(n) > 0 and (ii) (\Rightarrow) set $c := 0.9\epsilon$, (\Leftarrow) $\epsilon := c$.

• Without any guarantee! Lower half defined by symmetry.

	n^2	n^3	$n^2 \log n$	2^n	n^n	$n^{\log n}$	$2^{2^{n}}$	$2^{2^{n+1}}$	$f(n) := (n \text{ odd}? n^2 : 2^n)$
n^2	$\Theta(n^2)$	$o(n^3)$	$o(n^2 \log n)$	$o(2^n)$	$o(n^n)$	$o(n^{\log n})$	$o(2^{2^n})$	$o(2^{2^{n+1}})$	$\mathcal{O}(f(n))$
n^3		$\Theta(n^3)$	$\omega(n^2\log n)$	$o(2^n)$	$o(n^n)$	$o(n^{\log n})$	$o(2^{2^n})$	$o(2^{2^{n+1}})$	
$n^2\log n$			$\Theta(n^2\log n)$	$o(2^n)$	$o(n^n)$	$o(n^{\log n})$	$o(2^{2^n})$	$o(2^{2^{n+1}})$	
2^n				$\Theta(2^n)$	$o(n^n)$	$\omega(n^{\log n})^*$	$o(2^{2^n})$	$o(2^{2^{n+1}})$	$\Omega(f(n))$
n^n					$\Theta(n^n)$	$\omega(n^{\log n})$	$o(2^{2^n})$	$o(2^{2^{n+1}})$	$\omega(f(n))$
$n^{\log n}$						$\Theta(n^{\log n})$	$o(2^{2^n})$	$o(2^{2^{n+1}})$	
2^{2^n}							$\Theta(2^{2^n})$	$o(2^{2^{n+1}})$	$\omega(f(n))$
$2^{2^{n+1}}$								$\Theta(2^{2^{n+1}})$	$\omega(f(n))$
f(n)									$\Theta(f(n))$

 $2^{n} \in \omega(n^{\log n}) \Leftrightarrow n^{\log n} \in o(2^{n}) \Leftrightarrow \lim_{n \to \infty} \frac{n^{\log n}}{2^{n}} = 0 \Leftrightarrow \lim_{n \to \infty} 2^{(\log n)^{2} - n} = 0 \Leftrightarrow \lim_{n \to \infty} (\log n)^{2} - n = -\infty \Leftrightarrow \lim_{n \to \infty} \frac{(\log n)^{2}}{n} = 0.$

Using l'Hospital:

$$\lim_{n \to \infty} \frac{(\log n)^2}{n} = 0 \Leftrightarrow \lim_{n \to \infty} \frac{2(\log n)\frac{1}{n}}{1} = 0 \Leftrightarrow \lim_{n \to \infty} \frac{\log n}{n} = 0 \Leftrightarrow \lim_{n \to \infty} \frac{1/n}{1} = 0.$$

Remark: Similarly, one shows that $(\log n)^k \in o(n)$ for any $k \in \mathbb{N}$.

• We have $\mathcal{O}(2^n) \subsetneq 2^{\mathcal{O}(n)} \subsetneq 2^{n^{\mathcal{O}(1)}}$. Proof: Let $f \in \mathcal{O}(2^n)$, then there exists $c \ge 1$ such that $f(n) \le c2^n$ for all large enough n. Hence $f(n) \le 2^{\log c+n} \le 2^{cn}$ for all large enough n and thus $f \in 2^{\mathcal{O}(n)}$. Similarly we have $2^{cn} \le 2^{n^c}$ for $c \ge 1$ and large enough n which shows the second inclusion. Observe that the inclusions are strict, since for example $2^{3n} \notin \mathcal{O}(2^n)$ and $2^{n^5} \notin \mathcal{O}(2^{\mathcal{O}(n)})$

Exercise 1.2

Consider the following language on $\{0, 1\}$:

$$L = \{u0v0w \in \{0,1\}^* \mid u, v, w \in \{1\}^* \land |v| \le |w| \le |u| \land \exists k \in \{|v|, \dots, |w|\} : k \text{ divides } |u|\}$$

Its characteristic function f_L is then

$$f_L : \{0,1\}^* \to \{0,1\} : x \mapsto \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$$

Construct a Turing machine which computes f_L in time $\mathcal{O}(n^k)$ for some fixed k > 0.

Solution: We give an informal description of the behaviour of a TM deciding L:

• 1. Step: Check that the input x is of the form 1*01*01*.

If x is not of the required from, output 0 and halt.

- 2. Step: Copy u, v, and w parts of x to work tapes 1 to 3.
- 3. Step: Check that $|v| \le |w| \le |u|$.

If x does not satisfy the requirement on u, v, w, output 0 and halt.

- 4. Step: As long as work tape 4 contains less 1s than work tape 1 (u) append the content of work tape 2 (v) to the content of work tape 4.
- 5. Step: Check whether work tapes 1 and 4 contain the same number of 1s.

If this is the case, output 1 and halt.

- 6. Step: Empty work tape 4.
- 7. Step: Append an 1 to the content of work tape 2.
- 8. Step: Check that work tape 2 contains at most as many 1s as work tape 3.
- If this does not hold, output 0 and halt.
- Go to Step 4.

One easily checks that every "macro step" can be done by a TM using at most $\mathcal{O}(|x|)$ many steps.

Exercise 1.3

If $f : \{0,1\}^* \to \{0,1\}$ is computable by a TM with a finite alphabet Γ then it is also computable by a TM with alphabet $\Sigma = \{0,1,\Box, \rhd\}$, moreover, with only a polynomial overhead.

Prove the statement above. Does the same hold for infinite Γ ? Does the same hold for $\Sigma = \{1, \Box, \triangleright\}$?

Solution: In the lecture, you have seen that a *k*-tape TM can be simulated by a single tape TM with only a polynomial overhead. We will make use of this fact.

First, note that any element of Γ can be encoded using $k = \lceil \log |\Gamma| \rceil$ letters of binary alphabet. We can thus simulate the working tape with symbols of Γ by k tapes with symbols of Σ .

Exercise 1.4

Call a Turing machine M oblivious if the positions of its heads at the i^{th} step of its computation on input x depend only on i and |x|, but not x itself.

Let $L \in \mathbf{DTIME}(T)$ with $T : \mathbb{N} \to \mathbb{N}$ time-constructible. Show that there is an oblivious Turing machine which decides L in time $O(T^2)$.

Solution: Let M be a Turing machine deciding L in time T(n). Further, let M_T be a Turing machine calculating T. As T is required to be time-constructible, we find such a M_T .

We sketch how to construct from M and M_T an oblivious Turing machine O which decides L in time $\mathcal{O}(T(n)^2)$. For simplicity, we assume that M is a one-tape TM; for this, we allow M to also write to the input tape. O is not required to have only a single tape, still we allow O to write to its input tape, too.

The behaviour of O is as follows:

- (a) First, O reads the input once from left to right, copies for every symbol read an 1 to the input tape of M_T , and, finally, moves all heads back to the left-most position.
- (b) It then starts M_T on input $1^{|x|}$. For every step done by M_T , O also writes an 1 to two tapes, called **space** and **time** in the following. After M_T has terminated, the content of both **space** and **time** is $> 1^{T(|x|)}$.
- (c) Then, O simulates exactly T(|x|) steps of M, i.e., after simulating a single step of M, O moves the head of **time** one place to the left, the simulation terminates when the head of **time** hits \triangleright .

A single step of M is simulated as follows:

O remembers the position of the head of M on the input tape by some appropriate symbol, e.g., if Γ is the tape alphabet used by M, then O might use the symbols $\Gamma \cup \hat{\Gamma}$ where $\hat{\Gamma} = \{\hat{\gamma} \mid \gamma \in \Gamma\}$.

In order for O to be able to simulate a step of M, O needs to remember the control state of M and (at most three) symbols $\mu \hat{\gamma} \nu$ within the 1-step vicinity of the head of the M. (This is finite information and therefore can be stored in the control of O. Check this by yourself!)

As M is time-bounded by T, O knows that the head of M can never move more than T(|x|) steps to the right. Hence, O can scan the whole tape content of M by moving its input head T(|x|) steps to the right and then back again. The **space** tape can be used for this.

Within this scan, O can remember the three symbols $\mu \hat{\gamma} \nu$, determine from the next step of M and change its tape content accordingly.

E.g.: assume that a given point of time M is in the configuration $(q, \triangleright ab\hat{c}d))$ with $\delta_M(q, c) = (q', e, \rightarrow)$, i.e., M makes the following step:

$$(q, \triangleright ab\hat{c}d) \rightarrow (q', \triangleright abe\hat{d}).$$

O simulates this step as follows: it remebers in its control state the control state q of M plus the last three symbols read. O scans its input tape from left to right until one step after \hat{c} is encountered. Then O remembers the necessary symbols \hat{bcd} and the state q so it can determine the next step of M. As M moves right, O can immediately replace dto \hat{d} , then it moves on to the right until T(n) steps are made (reading **space** in lockstep). O then moves its input head back to the left-most position. On its way back O waits on \hat{d} so it can replace the symbol \hat{c} left of it by e. Similarly, O can simulate a step where M moves its head to the left.

It is left to the reader to check that O is indeed oblivious.