Technische Universitit Miinchen (I7) Summer term 2019
Prof. J. Kfetinsky / Dr. M.Raskin 26.04.2019

Solution

Computational Complexity — Homework 1

Discussed on 26.04.2019.

Exercise 1.1

Recall the definition of the Landau notation for f,g : N — N:

fe0(g) = Ec € (0,00)3ng € NVn > ng : f(n) <c-g(n).
fey) = o(f)

feBlg = O(g) A f € Qg)

feolg) & Ve € (0,00)3ng € NVn > ng : f(n) <e-g(n)
fewlg) & geolf).

Remark: Some authors prefer to write f = O(g) instead of f € O(g). As O(g) is set of functions, while f is a function, the
latter is more precise than the former.

(a) Assume f,g are strictly positive functions, i.e., f(n),g(n) > 0 for all n € N. Show or disprove:

o f € O(g) if and only if there exist ¢1,ca € (0,00) such that ¢; < f(n)/g(n) < ¢ for almost all n € N. (“almost
all” is equivalent to “except for finitely many”).

o f € o(g) if and only if lim,,_,o f(n)/g(n) =0

(b) Let f and g be any two of the following functions. Describe their relation using the Landau notation.

(a)n? (b)n? (c)n?logn
(d)2" (e)n" (f)niE"
(9)22" (R)22""" (j)n? if n is odd, 2" otherwise.

(¢) Describe (and prove) the relations between 20 O(2") and 2" .

Solution:

fe6lg)

fe0(g)ng e O(f)

dep > 03ngVn > ny : f(n) < cpg(n) Adeg > 03ng¥n > ng @ g(n) < cqf(n)
def,cg > 03ngVn > ng : f(n) < crg(n) Ag(n) < cqf(n)

deg,eqg > 0dngVn > ng : Ci < ﬁ <cy

< <c

SR A

der, co > 03ngVn > ng @ cq
*1 (=) set ng := max(nyf,ng). (<) set ny :=ny := ng.

iep =g, 1 =1/cy.

f€o(g)
& VYe>03nn > ne : f(n) <cg(n)
& VC>OEInCVn2nC:%§c
& Ve > 0InVn > ne 583 <e€
; f(n) _
& limy, oo 5 = 0.

*: Note that (i) f(n),g(n) > 0 and (ii) (=) set ¢ :=0.9¢, (<) € :=c.

e Without any guarantee! Lower half defined by symmetry.

n? n? n?logn VAL n" nlogn 22" 22" f(n) = (n odd? n? : 2")
n? [O(n?) o(n®) o(nflogn) o(2") o(n") o(ns") o(2¥") o(22"") O(f(n))
n? O(n3) w(n®logn) o(2") o(n™) o(nen) o(22") o(22") ——
n?logn O(n?logn) o(2") o(n™) o(n'&™) 0(22") 0(22n+1) ——
2" 0(2") o(n") wnEm)* o2*) o(22"") Q(f(n))
n" O(n") w(mlEn) o(22") o2*"") w(f(n))
nlosn O(nlosm) o(22") o(22") —
2" e(2%") o2*"") w(f(n))
22" o) w(f(n))
f(n) O(f(n))
n logn logn n : log _ : (logn)®—n _ ; 2 . (logn)? _
2" cw(n'*®") & n'®" € o(2)@nlirrgo o 70@7}1};02 S 70@,}320(10‘%”) n = m@nlbrgoin =0.

Using "Hospital:

1 2 2(logn)t 1 1
i 3087 o gy 2008 g tesm %:o.

n—00 n n—00 n—oo N n—0oo
Remark: Similarly, one shows that (logn)* € o(n) for any k € N.

e We have O(27) ¢ 2°(™ ¢ 2" Proof: Let f € O(2"), then there exists ¢ > 1 such that f(n) < ¢2" for all large
enough n. Hence f(n) < 2'98¢tm < 2¢" for all large enough n and thus f € 29" Similarly we have 2¢* < 2" for
c > 1 and large enoygh n which shows the second inclusion. Observe that the inclusions are strict, since for example
2" ¢ O(2") and 2" ¢ O(2°M)
Exercise 1.2

Consider the following language on {0,1}:
L = {u0v0w € {0,1}" | u,v,w € {1} A Jv] < Jw| < |u| AFk € {|v],...,|w|} : k divides |u|}.
Its characteristic function fr is then

* 1 ifzxel
fr: {0,1} —>{O,1}:x»—>{ 0 ifzdl

Construct a Turing machine which computes f7, in time O(n*) for some fixed k > 0.

Solution: We give an informal description of the behaviour of a TM deciding L:
e 1. Step: Check that the input z is of the form 1*01*01*.

If x is not of the required from, output 0 and halt.

2. Step: Copy u, v, and w parts of x to work tapes 1 to 3.

3. Step: Check that |v] < |w| < |ul.
If x does not satisfy the requirement on u, v, w, output 0 and halt.

4. Step: As long as work tape 4 contains less 1s than work tape 1 (u) append the content of work tape 2 (v) to the
content of work tape 4.

5. Step: Check whether work tapes 1 and 4 contain the same number of 1s.
If this is the case, output 1 and halt.

6. Step: Empty work tape 4.

7. Step: Append an 1 to the content of work tape 2.

8. Step: Check that work tape 2 contains at most as many 1s as work tape 3.

If this does not hold, output 0 and halt.
e Go to Step 4.

One easily checks that every “macro step” can be done by a TM using at most O(|z|) many steps.

Exercise 1.3

If f:{0,1}* — {0,1} is computable by a TM with a finite alphabet T' then it is also computable by a TM with alphabet
¥ ={0,1,0, >}, moreover, with only a polynomial overhead.

Prove the statement above. Does the same hold for infinite I'? Does the same hold for ¥ = {1,0,>}7

Solution: In the lecture, you have seen that a k-tape TM can be simulated by a single tape TM with only a polynomial
overhead. We will make use of this fact.

First, note that any element of T can be encoded using k = [log|T'|] letters of binary alphabet. We can thus simulate the
working tape with symbols of I' by &k tapes with symbols of 3.

Exercise 1.4

Call a Turing machine M oblivious if the positions of its heads at the i*" step of its computation on input 2 depend only on
i and |x|, but not z itself.

Let L € DTIME(T) with T : N — N time-constructible. Show that there is an oblivious Turing machine which decides L
in time O(7T?).

Solution: Let M be a Turing machine deciding L in time T'(n). Further, let M7 be a Turing machine calculating T'. As
T is required to be time-constructible, we find such a M.

We sketch how to construct from M and Mz an oblivious Turing machine O which decides L in time O(T(n)?). For
simplicity, we assume that M is a one-tape TM; for this, we allow M to also write to the input tape. O is not required to
have only a single tape, still we allow O to write to its input tape, too.

The behaviour of O is as follows:

(a) First, O reads the input once from left to right, copies for every symbol read an 1 to the input tape of My, and, finally,
moves all heads back to the left-most position.

(b) It then starts Mz on input 1%/, For every step done by My, O also writes an 1 to two tapes, called space and time
in the following. After My has terminated, the content of both space and time is >17(])

(¢) Then, O simulates exactly T'(|z|) steps of M, i.e., after simulating a single step of M, O moves the head of time one
place to the left, the simulation terminates when the head of time hits .

A single step of M is simulated as follows:

O remembers the position of the head of M on the input tape by some apropriate symbol, e.g., if I is the tape alphabet
used by M, then O might use the symbols ' UT where I' = {4 | v € T'}.

In order for O to be able to simulate a step of M, O needs to remember the control state of M and (at most three)
symbols pAv within the 1-step vicinity of the head of the M. (This is finite information and therefore can be stored
in the control of O. Check this by yourself!)

As M is time-bounded by T', O knows that the head of M can never move more than T'(|z|) steps to the right. Hence,
O can scan the whole tape content of M by moving its input head T'(|z|) steps to the right and then back again. The
space tape can be used for this.

Within this scan, O can remember the three symbols p4v, determine from the next step of M and change its tape
content accordingly.

E.g.: assume that a given point of time M is in the configuration (g, >abéd)) with dxr(q,c) = (¢', e, —), i.e., M makes
the following step: .
(q,>abéd) — (¢, >abed).

O simulates this step as follows: it remebers in its control state the control state ¢ of M plus the last three symbols
read. O scans its input tape from left to right until one step after ¢ is encountered. Then O remembers the necessary
symbols béd and the state ¢ so it can determine the next step of M. As M moves right, O can immediately replace d
to (i, then it moves on to the right until 7'(n) steps are made (reading space in lockstep). O then moves its input head

back to the left-most position. On its way back O waits on d so it can replace the symbol ¢ left of it by e. Similarly,
O can simulate a step where M moves its head to the left.

It is left to the reader to check that O is indeed oblivious.

