Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science Technical University of Munich Summer 2016

Based on slides by Jörg Kreiker

Lecture 9

NL

Agenda

- about logarithmic space
- paths ...
- ... and the absence thereof
- Immerman-Szelepcsényi and others

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of

- pointers into the input
 - for instance node identities (graph problems)
 - head positions
- counters up to input length

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of

- pointers into the input
 - for instance node identities (graph problems)
 - head positions
- counters up to input length

Examples:

- L: basic arithmetic
- NL: paths in graphs

Technical issues

- space usage refers to work tapes only
- read-only input and write-once output is allowed to use more than log n cells
- write-once: output head must not move to the left
- logspace reductions (because polynomial time-reductions too powerful)

Logspace reductions

Recall Exercise 2.3!

Definition (logspace reduction)

Let $L, L' \subseteq \{0, 1\}^*$ be languages. We say that L is logspace-reducible to L', written $L \leq_{log} L'$ if there is a function $f: \{0, 1\}^* \to \{0, 1\}^*$ computed by a deterministic TM using logarithmic space such that $x \in L \Leftrightarrow f(x) \in L'$ for every $x \in \{0, 1\}^*$.

- \leq_{log} is transitive
- $C \in L$ and $B \leq_{log} C$ implies $B \in L$
- NL-hardness and NL-completeness defined in terms of logspace reductions

Read-once Certificates

Similar to NP, also NL has a characterization using certificates

Theorem (read-once certificates)

 $L \subseteq \{0,1\}^*$ is in NL iff there exists a det. logspace TM M (verifier) and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0,1\}^*$

$$x \in L \text{ iff } \exists u \in \{0, 1\}^{p(|x|)}.M(x, u) = 1$$

Certificate u is written on an additional read-once input tape of M.

Read-once Certificates

Similar to NP, also NL has a characterization using certificates

Theorem (read-once certificates)

 $L \subseteq \{0,1\}^*$ is in NL iff there exists a det. logspace TM M (verifier) and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0,1\}^*$

$$x \in L \text{ iff } \exists u \in \{0,1\}^{p(|x|)}.M(x,u) = 1$$

Certificate u is written on an additional read-once input tape of M.

- example: path in a graph is a read-once certificate
- ⇒ certificate is sequence of choices
- certificate is guessed bit-wise (it cannot be stored)
 - exercise: if read-once is relaxed, one arrives at NP

Agenda

- about logarithmic space √
- paths ...
- ... and the absence thereof
- Immerman-Szelepcsényi and others

NL is all about paths

Recall the language Path in directed graphs defined as

 $\{\langle G, s, t \rangle \mid \exists a \text{ path from } s \text{ to } t \text{ in directed graph } G\}$

NL is all about paths

Recall the language Path in directed graphs defined as

 $\{\langle G, s, t \rangle \mid \exists a \text{ path from } s \text{ to } t \text{ in directed graph } G\}$

We have seen in Lecture 3 that Path \in NL by guessing a path:

- non-deterministic walks on graphs of n nodes
- if there is a path, it has length ≤ n
- maintain one pointer to current node
- one counter counting up to n

NL is all about paths

Recall the language Path in directed graphs defined as

 $\{\langle G, s, t \rangle \mid \exists a \text{ path from } s \text{ to } t \text{ in directed graph } G\}$

We have seen in Lecture 3 that Path \in NL by guessing a path:

- non-deterministic walks on graphs of n nodes
- if there is a path, it has length ≤ n
- maintain one pointer to current node
- one counter counting up to n

In fact we even have:

Theorem (Path)

Path is NL-complete.

Proof

• let *L* ∈ NL be arbitrary, decided by NDTM *M*

Proof

- let L ∈ NL be arbitrary, decided by NDTM M
- on input $x \in \{0, 1\}^n$ reduction f outputs configuration graph G(M, x) of size $2^{O(\log n)}$ by counting to n

Proof

- let L ∈ NL be arbitrary, decided by NDTM M
- on input $x \in \{0, 1\}^n$ reduction f outputs configuration graph G(M, x) of size $2^{O(\log n)}$ by counting to n
- there exists a path from C_{start} to C_{accept} in G(M, x) iff M accepts x
- path itself can be used as read-once certificate

- many natural problems correspond to path (reachability) problems
- the word problem for NFAs: {\langle A, w \rangle | w is accepted by NFA A}
- cycle detection/connected components in directed graphs
- 2SAT ∈ NL

- many natural problems correspond to path (reachability) problems
- the word problem for NFAs: {\langle A, w \rangle | w is accepted by NFA A}
- cycle detection/connected components in directed graphs
- 2SAT ∈ NL
 - $x \lor y$ equivalent to $\neg x \implies y$ equivalent to $\neg y \implies x$
 - yields an implication graph (computable in logspace)
 - unsatisfiable iff there exists a path $x \to \overline{x} \to x$ in implication graph for variable x

- recall the open problem NP = coNP?
- equivalent to asking whether unsatisfiability has short certificates
- · possibly not

Certificates for absence of paths?

- recall the open problem NP = coNP?
- equivalent to asking whether unsatisfiability has short certificates
- possibly not

What about absence of paths from s to t in graph G with n nodes named $1, \dots, n$?

Absence of path has read-once cert.!

 let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)

Absence of path has read-once cert.!

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if
 |C_i| is known
 - list all membership certificates for all u ∈ C_i sorted in ascending order
 - check validity and sortedness
 - 3. check that v is not in the list
 - **4.** check that the list has length $|C_i|$

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - list all membership certificates for all u ∈ C_i sorted in ascending order
 - check validity and sortedness
 - 3. check that v is not in the list
 - **4.** check that the list has length $|C_i|$
- non-membership in C_i is known given |C_{i-1}| (checking neighbors in (3) as well)

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - list all membership certificates for all u ∈ C_i sorted in ascending order
 - check validity and sortedness
 - 3. check that v is not in the list
 - **4.** check that the list has length $|C_i|$
- non-membership in C_i is known given |C_{i-1}| (checking neighbors in (3) as well)
- $|C_i| = c$ can be certified given $|C_{i-1}|$ using $C_0 = \{s\}$ as base case

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - list all membership certificates for all u ∈ C_i sorted in ascending order
 - check validity and sortedness
 - 3. check that v is not in the list
 - **4.** check that the list has length $|C_i|$
- non-membership in C_i is known given |C_{i-1}| (checking neighbors in (3) as well)
- $|C_i| = c$ can be certified given $|C_{i-1}|$ using $C_0 = \{s\}$ as base case

Certificate is certificate for non-membership in C_n !

Absence of path has read-once cert.!

- let C_i be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_i has read-once certificates (paths)
- non-membership of v in C_i also has read-once certificates if |C_i| is known
 - 1. list all membership certificates for all $u \in C_i$ sorted in ascending order
 - check validity and sortedness
 - 3. check that v is not in the list
 - 4. check that the list has length |C_i|
- non-membership in C_i is known given |C_{i-1}| (checking neighbors in (3) as well)
- $|C_i| = c$ can be certified given $|C_{i-1}|$ using $|C_0| = |C_0|$ as base case

Certificate is certificate for non-membership in C_n ! Its size is polynomial in number of nodes and read-once! We have just argued the existence of polynomial read-once certificates for absence of paths.

Theorem (Immerman-Szelepcsényi)

NL = coNL.

What have we learnt?

- space classes closed under complement
 - so are context-sensitive language (see exercises)
- analogous results for time complexity unlikely
- space classes beyond logarithmic closed under non-determinism
- NL is all about reachability
- 2SAT is in NL and thus 2SAT (in fact, hard for NL)
- NL has polynomial read-once certificates
- logarithmic space ~ constant number of pointers and counters

Up next: the polynomial hierarchy PH

Further Reading

- paths in undirected graphs is in L
 - Omer Reingold Undirected ST-Connectivity in Log-Space, STOC 2005
 available from
 - http://www.wisdom.weizmann.ac.il/~reingold/publications/
- an alternative characterization of NL by reachability is at the heart of descriptive complexity (later this course)
 - NL is first-order logic plus transitive closure
 - Neil Immerman, Descriptive Complexity, Springer 1999.