Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science
Technical University of Munich
Summer 2016

Based on slides by Jörg Kreiker

Lecture 9

NL

Agenda

- about logarithmic space
- paths ...
- ... and the absence thereof
- Immerman-Szelepcsényi and others

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of

- pointers into the input
- for instance node identities (graph problems)
- head positions
- counters up to input length

What can one do with logarithmic space?

In essence an algorithm can maintain a constant number of

- pointers into the input
- for instance node identities (graph problems)
- head positions
- counters up to input length

Examples:

- L: basic arithmetic
- NL: paths in graphs

Technical issues

- space usage refers to work tapes only
- read-only input and write-once output is allowed to use more than $\log n$ cells
- write-once: output head must not move to the left
- logspace reductions (because polynomial time-reductions too powerful)

Logspace reductions

Recall Exercise 2.3!

Definition (logspace reduction)
Let $L, L^{\prime} \subseteq\{0,1\}^{*}$ be languages. We say that L is logspace-reducible to L^{\prime}, written $L \leq \log L^{\prime}$ if there is a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ computed by a deterministic TM using logarithmic space such that $x \in L \Leftrightarrow f(x) \in L^{\prime}$ for every $x \in\{0,1\}^{*}$.

- $\leq_{\log }$ is transitive
- $C \in L$ and $B \leq \log C$ implies $B \in L$
- NL-hardness and NL-completeness defined in terms of logspace reductions

Read-once Certificates

Similar to NP, also NL has a characterization using certificates
Theorem (read-once certificates)
$L \subseteq\{0,1\}^{*}$ is in NL iff there exists a det. logspace TM M (verifier) and a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \text { iff } \exists u \in\{0,1\}^{p(|x|)} \cdot M(x, u)=1
$$

Certificate u is written on an additional read-once input tape of M.

Read-once Certificates

Similar to NP, also NL has a characterization using certificates
Theorem (read-once certificates)
$L \subseteq\{0,1\}^{*}$ is in NL iff there exists a det. logspace TM M (verifier) and a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in\{0,1\}^{*}$

$$
x \in L \text { iff } \exists u \in\{0,1\}^{p(|x|)} \cdot M(x, u)=1
$$

Certificate u is written on an additional read-once input tape of M.

- example: path in a graph is a read-once certificate
\Rightarrow certificate is sequence of choices
\Leftarrow certificate is guessed bit-wise (it cannot be stored)
- exercise: if read-once is relaxed, one arrives at NP

Agenda

- about logarithmic space \checkmark
- paths ...
- ... and the absence thereof
- Immerman-Szelepcsényi and others

NL is all about paths

Recall the language Path in directed graphs defined as
$\{\langle G, s, t\rangle \mid \exists$ a path from s to t in directed graph $G\}$

NL is all about paths

Recall the language Path in directed graphs defined as

$$
\{\langle G, s, t\rangle \mid \exists \text { a path from } s \text { to } t \text { in directed graph } G\}
$$

We have seen in Lecture 3 that Path \in NL by guessing a path:

- non-deterministic walks on graphs of n nodes
- if there is a path, it has length $\leq n$
- maintain one pointer to current node
- one counter counting up to n

NL is all about paths

Recall the language Path in directed graphs defined as

$$
\{\langle G, s, t\rangle \mid \exists \text { a path from } s \text { to } t \text { in directed graph } G\}
$$

We have seen in Lecture 3 that Path $\in \mathbb{N L}$ by guessing a path:

- non-deterministic walks on graphs of n nodes
- if there is a path, it has length $\leq n$
- maintain one pointer to current node
- one counter counting up to n

In fact we even have:

Theorem (Path)

Path is NL-complete.

Proof

- let $L \in$ NL be arbitrary, decided by NDTM M

Proof

- let $L \in$ NL be arbitrary, decided by NDTM M
- on input $x \in\{0,1\}^{n}$ reduction f outputs configuration graph $G(M, x)$ of size $2^{O(\log n)}$ by counting to n

Proof

- let $L \in$ NL be arbitrary, decided by NDTM M
- on input $x \in\{0,1\}^{n}$ reduction f outputs configuration graph $G(M, x)$ of size $2^{O(\log n)}$ by counting to n
- there exists a path from $C_{\text {start }}$ to $C_{\text {accept }}$ in $G(M, x)$ iff M accepts x
- path itself can be used as read-once certificate

More path problems

- many natural problems correspond to path (reachability) problems
- the word problem for NFAs: $\{\langle A, w\rangle \mid w$ is accepted by NFA $A\}$
- cycle detection/connected components in directed graphs
- $\overline{2 S A T} \in$ NL

More path problems

- many natural problems correspond to path (reachability) problems
- the word problem for NFAs: $\{\langle A, w\rangle \mid w$ is accepted by NFA $A\}$
- cycle detection/connected components in directed graphs
- $\overline{2 S A T} \in \operatorname{NL}$
- $x \vee y$ equivalent to $\neg x \Longrightarrow y$ equivalent to $\neg y \Longrightarrow x$
- yields an implication graph (computable in logspace)
- unsatisfiable iff there exists a path $x \rightarrow \bar{x} \rightarrow x$ in implication graph for variable x

Certificates for absence of paths?

- recall the open problem NP = coNP?
- equivalent to asking whether unsatisfiability has short certificates
- possibly not

Certificates for absence of paths?

- recall the open problem NP = coNP?
- equivalent to asking whether unsatisfiability has short certificates
- possibly not

What about absence of paths from s to t in graph G with n nodes named $1, \ldots, n$?

Absence of path has read-once cert.!

- let C_{i} be the set of nodes reachable from s in at most i steps (bounded reachability)

Absence of path has read-once cert.!

- let C_{i} be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_{i} has read-once certificates (paths)

Absence of path has read-once cert.!

- let C_{i} be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_{i} has read-once certificates (paths)
- non-membership of v in C_{i} also has read-once certificates if $\left|C_{i}\right|$ is known

Absence of path has read-once cert.!

- let C_{i} be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_{i} has read-once certificates (paths)
- non-membership of v in C_{i} also has read-once certificates if $\left|C_{i}\right|$ is known

1. list all membership certificates for all $u \in C_{i}$ sorted in ascending order
2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length $\left|C_{i}\right|$

Absence of path has read-once cert.!

- let C_{i} be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_{i} has read-once certificates (paths)
- non-membership of v in C_{i} also has read-once certificates if $\left|C_{i}\right|$ is known

1. list all membership certificates for all $u \in C_{i}$ sorted in ascending order
2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length $\left|C_{i}\right|$

- non-membership in C_{i} is known given $\left|C_{i-1}\right|$ (checking neighbors in (3) as well)

Absence of path has read-once cert.!

- let C_{i} be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_{i} has read-once certificates (paths)
- non-membership of v in C_{i} also has read-once certificates if $\left|C_{i}\right|$ is known

1. list all membership certificates for all $u \in C_{i}$ sorted in ascending order
2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length $\left|C_{i}\right|$

- non-membership in C_{i} is known given $\left|C_{i-1}\right|$ (checking neighbors in (3) as well)
- $\left|C_{i}\right|=c$ can be certified given $\left|C_{i-1}\right|$ using $C_{0}=\{s\}$ as base case

Absence of path has read-once cert.!

- let C_{i} be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_{i} has read-once certificates (paths)
- non-membership of v in C_{i} also has read-once certificates if $\left|C_{i}\right|$ is known

1. list all membership certificates for all $u \in C_{i}$ sorted in ascending order
2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length $\left|C_{i}\right|$

- non-membership in C_{i} is known given $\left|C_{i-1}\right|$ (checking neighbors in (3) as well)
- $\left|C_{i}\right|=c$ can be certified given $\left|C_{i-1}\right|$ using $C_{0}=\{s\}$ as base case
Certificate is certificate for non-membership in C_{n} !

Absence of path has read-once cert.!

- let C_{i} be the set of nodes reachable from s in at most i steps (bounded reachability)
- membership in C_{i} has read-once certificates (paths)
- non-membership of v in C_{i} also has read-once certificates if $\left|C_{i}\right|$ is known

1. list all membership certificates for all $u \in C_{i}$ sorted in ascending order
2. check validity and sortedness
3. check that v is not in the list
4. check that the list has length $\left|C_{i}\right|$

- non-membership in C_{i} is known given $\left|C_{i-1}\right|$ (checking neighbors in (3) as well)
- $\left|C_{i}\right|=c$ can be certified given $\left|C_{i-1}\right|$ using $C_{0}=\{s\}$ as base case

Certificate is certificate for non-membership in C_{n} ! Its size is polynomial in number of nodes and read-once!

$\mathrm{NL}=\mathrm{coNL}$

We have just argued the existence of polynomial read-once certificates for absence of paths.

Theorem (Immerman-Szelepcsényi)

$\mathrm{NL}=\mathrm{coNL}$.

What have we learnt?

- space classes closed under complement
- so are context-sensitive language (see exercises)
- analogous results for time complexity unlikely
- space classes beyond logarithmic closed under non-determinism
- NL is all about reachability
- $\overline{\text { 2SAT }}$ is in NL and thus 2SAT (in fact, hard for NL)
- NL has polynomial read-once certificates
- logarithmic space ~ constant number of pointers and counters

Up next: the polynomial hierarchy PH

Further Reading

- paths in undirected graphs is in L
- Omer Reingold Undirected ST-Connectivity in Log-Space, STOC 2005
- available from http://www.wisdom.weizmann.ac.il/~reingold/publications/
- an alternative characterization of NL by reachability is at the heart of descriptive complexity (later this course)
- NL is first-order logic plus transitive closure
- Neil Immerman, Descriptive Complexity, Springer 1999.

