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Lecture 8

PSPACE
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Intro

Agenda

• Wrap-up Ladner proof and time vs. space

• succinctness

• QBF and GG

• PSPACE completeness

• QBF is PSPACE-complete

• Savitch’s theorem
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Intro

Comments about previous lecture

Enumeration of languages in P:

• enumerate pairs 〈Mi , pj〉

• i enumerates all TMs, j all polynomials

• run Mi for pj steps

Time vs Space

• based on configuration graphs one can also show
DTIME(s(n)) ⊆ NTIME(s(n)) ⊆ SPACE(s(n))

• if configurations include a counter over all possible choices
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Succinctness

Succinctness vs Expressiveness

Some intuition:

• 5 · 5 is more succinct than 5 + 5 + 5 + 5 + 5

⇒ multiplication allows for more succinct representation of
arithmetic expressions

• but it is not more expressive

regular expressions

• regular expressions with squaring are more succinct than
without

• example: strings over {1} with length divisible by 16
• ((((00)2)2)2)∗ versus
• (0000000000000000)∗

• but obviously squaring does not add expressiveness
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Succinctness

More succinct means more difficult to handle

Non-deterministic finite automata

• NFAs can be exponentially more succinct than DFAs

• but equally expressive

• example: k -last symbol is 1

• complementation, equivalence are polynomial for DFAs and
exponential for NFAs
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Succinctness

Succinct Boolean formulas

Consider the following formula where ψ = x ∨ y ∨ z

(x ∧ y ∧ ψ)
∧ (x ∧ y ∧ ψ)
∧ (x ∧ y ∧ ψ)
∧ (x ∧ y ∧ ψ)

Formula is satisfiable iff ∃z ∀x ∀y.ψ is true, where variables range
over {0, 1}.

⇒ Quantified Boolean Formulas
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Problems in PSPACE QBF

Quantified Boolean Formulas

Definition (QBF)

A quantified Boolean formula is a formula of the form

Q1x1Q2x2 . . .Qnxnϕ(x1, . . . , xn)

• where each Qi ∈ {∀,∃}

• each xi ranges over {0, 1}

• ϕ is quantifier-free

• wlog we can assume prenex form
• formulas are closed, ie. each QBF is true or false
• QBF = {ϕ | ϕ is a true QBF}
• if all Qi = ∃, we obtain SAT as a special case
• if all Qi = ∀, we obtain Tautology as a special case
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Problems in PSPACE QBF

QBF is in PSPACE

Polynomial space algorithm to decide QBF

qbfsolve(ψ)
if ψ is quantifier-free

return evaluation of ψ
if ψ = Qx.ψ′

if Q = ∃
if qbfsolve(ψ′[x 7→ 0]) return true
if qbfsolve(ψ′[x 7→ 1]) return true

if Q = ∀
b1 = qbfsolve(ψ′[x 7→ 0])
b2 = qbfsolve(ψ′[x 7→ 1])
return b1 ∧ b2

return false

• each recursive call can re-use same space!
• qbsolve uses at most O(|ψ|2) space
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Problems in PSPACE GG

Generalized Geography

• children’s game, where people take turn naming cities

• next city must start with previous city’s final letter

• as in München→ Nürnberg

• no repetitions

• lost if no more choices left

Formalization
Given a graph and a node, players take turns choosing an unvisited
adjacent node until no longer possible.

GG = {〈G, u〉 | player 1 has winning strategy from node u in G}
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Problems in PSPACE GG

GG ∈ PSPACE

and here is the algorithm to prove it:

ggsolve(G, u)
if u has no outgoing edge return false
remove u and its adjacent edges from G to obtain G′

for each ui adjacent to u
bi = ggsolve(G′, ui)

return
∧

i bi

• stack depth 1 for recursion implies polynomial space

• QBF ≤p GG

11



Problems in PSPACE GG

GG ∈ PSPACE

and here is the algorithm to prove it:

ggsolve(G, u)
if u has no outgoing edge return false
remove u and its adjacent edges from G to obtain G′

for each ui adjacent to u
bi = ggsolve(G′, ui)

return
∧

i bi

• stack depth 1 for recursion implies polynomial space

• QBF ≤p GG

11



Problems in PSPACE GG

Agenda

• Wrap-up Ladner proof and time vs. space X

• succinctness X

• QBF and GG X

• PSPACE completeness

• QBF is PSPACE-complete

• Savitch’s theorem
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PSPACE completeness

PSPACE-completness

Definition (PSPACE-completeness)

Language L is PSPACE-hard if for every L ′ ∈ PSPACE L ′ ≤p L . L
is PSPACE-complete if L ∈ PSPACE and L is PSPACE-hard.
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PSPACE completeness

QBF is PSPACE-complete

Theorem
QBF is PSPACE-complete.

• have already shown that QBF ∈ PSPACE
• need to show that every problem L ∈ PSPACE is

polynomial-time reducible to QBF
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PSPACE completeness

Proof

• let L ∈ PSPACE arbitrary

• L ∈ SPACE(s(n)) for polynomial s

• m ∈ O(s(n)): bits needed to encode configuration C

• exists Boolean formula ϕM,x with size O(m) such that
ϕM,x(C ,C ′) = 1 iff C ,C ′ ∈ {0, 1}m encode adjacent
configurations; see Cook-Levin

• define QBF ψ such that ψ(C ,C ′) is true iff there is a path in
G(M, x) from C to C ′

• ψ(Cstart ,Caccept) is true iff M accepts x
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PSPACE completeness

Proof – cont’d

Define ψ inductively!

• ψi(C ,C ′): there is a path of length at most 2i from C to C ′

• ψ = ψm and ψ0 = ϕM,x

ψi(C ,C ′) = ∃C ′′.ψi−1(C ,C ′′) ∧ ψi−1(C ′′,C ′)

might be exponential size, therefore use equivalent

ψi(C ,C ′) = ∃C ′′.∀D1.∀D2.

((D1 = C ∧ D2 = C ′′) ∨ (D1 = C ′′ ∧ D2 = C ′))
⇒ ψi−1(D1,D2)
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PSPACE completeness

Size of ψ

ψi(C ,C ′) = ∃C ′′.∀D1.∀D2.

((D1 = C ∧ D2 = C ′′) ∨ (D1 = C ′′ ∧ D2 = C ′))
⇒ ψi−1(D1,D2)

• C ′′ stands for m variables

⇒ |ψi | = |ψi−1|+ O(m)

⇒ |ψ| ∈ O(m2)
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PSPACE completeness

Observations and consequences

• GG is PSPACE-complete

• if PSPACE , NP then QBF and GG have no short certificates

• note: proof does not make use of outdegree of G(M, x)

⇒ QBF is NPSPACE-complete

⇒ NPSPACE = PSPACE!

• in fact, the same reasoning can be used to prove a stronger
result
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Savitch’s Theorem

Savitch’s Theorem

Theorem (Savitch)

For every space-constructible s : N→ N with s(n) ≥ log n
NSPACE(s(n)) ⊆ SPACE(s(n)2).
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Savitch’s Theorem

Proof

Let M be a NDTM accepting L . Let G(M, x) be its configuration
graph of size mO(2s(n)) such that each node is represented using
log m space.

M accepts x iff there is a path of length at most m from Cstart to
Caccept .

Consider the following algorithm reach(u,v,i) to determine whether
there is a path from u to v of length at most 2i .
• for each node z of M

• b1 = reach(u, z, i − 1)
• b2 = reach(z, v , i − 1)
• return b1 ∧ b2

⇒ reach(Cstart ,Caccept ,m) takes space O((log m)2) = O(s(n)2)!
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Conclusion

Further Reading

• L. J. Stockmeyer and A. R. Meyer. Word problems requiring
exponential time. Proceedings of the 5th Symposium on
Theory of Computing, pages 1-9, 1973
• contains the original proof of PSPACE completeness of QBF
• PSPACE-completeness of NFA equivalence

• regular expression equivalence with squaring is
EXPSPACE-complete:
http://people.csail.mit.edu/meyer/rsq.pdf

• Gilbert, Lengauer, Tarjan The Pebbling Problem is Complete in
Polynomial Space. SIAM Journal on Computing, Volume 9,
Issue 3, 1980, pages 513-524.

• http://www.qbflib.org/
• tools (solvers)
• many QBF models from verification, games, planning
• competitions

• PSPACE-completeness of Hex, Atomix, Gobang, Chess
• W.J.Savitch Relationship between nondeterministic and

deterministic tape classes Journal of Computer and System
Sciences, 4, pp 177-192, 1970.
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Conclusion

What have we learnt

• succinctness leads to more difficult problems
• PSPACE: computable in polynomial space (deterministically)
• PSPACE-completeness defined in terms of polynomial Karp

reductions
• canonical PSPACE-complete problem: QBF generalizes SAT
• other complete problems: generalized geography, chess, Hex,

Sokoban, Reversi, NFA equivalence, regular expressions
equivalence

• PSPACE ∼ winning strategies in games rather than short
certificates

• PSPACE = NPSPACE
• Savitch: non-deterministic space can be simulated by

deterministic space with quadratic overhead (by path
enumeration in configuration graph)

Up next: NL
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