Complexity Theory

Jan Kfetinsky

Chair for Foundations of Software Reliability and Theoretical Computer
Science
Technical University of Munich

Summer 2016

Based on slides by Jérg Kreiker

Lecture 8
PSPACE

Intro

Agenda

Wrap-up Ladner proof and time vs. space
succinctness

QBF and GG

PSPACE completeness

QBF is PSPACE-complete

Savitch’s theorem

Intro

Comments about previous lecture

Enumeration of languages in P:
e enumerate pairs (M;, pj)
e jenumerates all TMs, j all polynomials
e run M; for p; steps

Intro

Comments about previous lecture

Enumeration of languages in P:
e enumerate pairs (M;, pj)
e jenumerates all TMs, j all polynomials
e run M; for p; steps

Time vs Space

e based on configuration graphs one can also show
DTIME(s(n)) € NTIME(s(n)) € SPACE(s(n))

e if configurations include a counter over all possible choices

Succinctness

Succinctness vs Expressiveness

Some intuition:
e 5.5is more succinctthan5+5+5+5+5

= multiplication allows for more succinct representation of
arithmetic expressions

e but it is not more expressive

Succinctness

Succinctness vs Expressiveness

Some intuition:
e 5.5is more succinctthan5+5+5+5+5

= multiplication allows for more succinct representation of
arithmetic expressions

e but it is not more expressive

regular expressions
e regular expressions with squaring are more succinct than
without
e example: strings over {1} with length divisible by 16
* ((((00)?)?)?)" versus
» (0000000000000000)*
e but obviously squaring does not add expressiveness

Succinctness

More succinct means more difficult to handle

Non-deterministic finite automata
e NFAs can be exponentially more succinct than DFAs
e but equally expressive
e example: k-last symbol is 1

e complementation, equivalence are polynomial for DFAs and
exponential for NFAs

Succinctness

Succinct Boolean formulas

Consider the following formula where y = xVy Vv z

Succinctness

Succinct Boolean formulas

Consider the following formula where y = xVy Vv z

Formula is satisfiable iff 4z Vx Vy.y is true, where variables range
over {0, 1}.

Succinctness

Succinct Boolean formulas

Consider the following formula where y = xVy Vv z

Formula is satisfiable iff 4z Vx Vy.y is true, where variables range
over {0, 1}.

= Quantified Boolean Formulas

Problems in PSPACE QBF

Quantified Boolean Formulas

Definition (QBF)
A quantified Boolean formula is a formula of the form

Qi1x1Qox2 ... QnXne(X1, ..., Xn)

» where each Q; € {V, 3}
e each x; ranges over {0, 1}
e ¢ is quantifier-free

Problems in PSPACE QBF

Quantified Boolean Formulas

Definition (QBF)
A quantified Boolean formula is a formula of the form

Qi1x1Qox2 ... QnXne(X1, ..., Xn)

e where each Q; € {V, 3}
e each x; ranges over {0, 1}
e ¢ is quantifier-free

¢ wlog we can assume prenex form

o formulas are closed, ie. each QBF is true or false
e QBF = {¢ | ¢ is a true QBF}

o if all @Q; = 3, we obtain SAT as a special case

o ifall Q; =V, we obtain Tautology as a special case

Problems in PSPACE QBF

QBF is in PSPACE

Polynomial space algorithm to decide QBF

gbfsolve(y)
if ¥ is quantifier-free
return evaluation of y
if y = Qx.y’
ifQ=13
if gbfsolve(y’[x — 0]) return true
if gbfsolve(y’[x +— 1]) return true
ifQ=Vv
by = gbfsolve(y’[x — 0])
by = gbfsolve(y’[x + 1])
return by A by
return false

Problems in PSPACE QBF

QBF is in PSPACE

Polynomial space algorithm to decide QBF

gbfsolve(y)
if ¥ is quantifier-free
return evaluation of y
if y = Qx.y’
ifQ=13
if gbfsolve(y’[x +— 0]) return true
if gbfsolve(y’[x +— 1]) return true
ifQ=Vv
by = gbfsolve(y’[x — 0])
by = gbfsolve(y’[x + 1])
return by A by
return false

e each recursive call can re-use same space!
e gbsolve uses at most O(|y/|?) space

Problems in PSPACE GG

Generalized Geography

children’s game, where people take turn naming cities

next city must start with previous city’s final letter

as in Minchen — Nirnberg

no repetitions

lost if no more choices left

10

Problems in PSPACE GG

Generalized Geography

children’s game, where people take turn naming cities

next city must start with previous city’s final letter

as in Minchen — Nirnberg

no repetitions
lost if no more choices left

Formalization
Given a graph and a node, players take turns choosing an unvisited
adjacent node until no longer possible.

GG = {(G, u) | player 1 has winning strategy from node u in G}

10

Problems in PSPACE GG

GG € PSPACE

and here is the algorithm to prove it:

ggsolve(G, u)
if u has no outgoing edge return false
remove u and its adjacent edges from G to obtain G’
for each u; adjacent to u
b; = ggsolve(G’, u;)
return A; b;

Problems in PSPACE GG

GG € PSPACE

and here is the algorithm to prove it:

ggsolve(G, u)
if u has no outgoing edge return false
remove u and its adjacent edges from G to obtain G’
for each u; adjacent to u
b; = ggsolve(G’, u;)
return A; b;

o stack depth 1 for recursion implies polynomial space
e QBF <, GG

Problems in PSPACE GG

Agenda

Wrap-up Ladner proof and time vs. space v
succinctness v/

QBF and GG v/

PSPACE completeness

QBF is PSPACE-complete

Savitch’s theorem

192

PSPACE completeness

PSPACE-completness

Definition (PSPACE-completeness)

Language L is PSPACE-hard if for every L’ € PSPACE L" <, L. L
is PSPACE-complete if L € PSPACE and L is PSPACE-hard.

13

PSPACE completeness

QBF is PSPACE-complete

Theorem
QBF is PSPACE-complete.

PSPACE completeness

QBF is PSPACE-complete

Theorem
QBF is PSPACE-complete.

¢ have already shown that QBF € PSPACE

¢ need to show that every problem L € PSPACE is
polynomial-time reducible to QBF

PSPACE completeness

e let L € PSPACE arbitrary

Proof

15

PSPACE completeness

Proof

e let L € PSPACE arbitrary
e L € SPACE(s(n)) for polynomial s

15

PSPACE completeness

Proof

e let L € PSPACE arbitrary
e L € SPACE(s(n)) for polynomial s
e m e O(s(n)): bits needed to encode configuration C

15

PSPACE completeness

Proof

let L € PSPACE arbitrary
L € SPACE(s(n)) for polynomial s
m € O(s(n)): bits needed to encode configuration C

exists Boolean formula ¢y x with size O(m) such that
emx(C,C’") = 1iff C,C’ € {0,1}™ encode adjacent
configurations; see Cook-Levin

15

PSPACE completeness

Proof

let L € PSPACE arbitrary
L € SPACE(s(n)) for polynomial s
m € O(s(n)): bits needed to encode configuration C

exists Boolean formula ¢y x with size O(m) such that
emx(C,C’") = 1iff C,C’ € {0,1}™ encode adjacent
configurations; see Cook-Levin

define QBF ¢ such that ¢(C, C’) is true iff there is a path in
G(M, x) from C to C’

15

PSPACE completeness

Proof

let L € PSPACE arbitrary
L € SPACE(s(n)) for polynomial s
m € O(s(n)): bits needed to encode configuration C

exists Boolean formula ¢y x with size O(m) such that
emx(C,C’") = 1iff C,C’ € {0,1}™ encode adjacent
configurations; see Cook-Levin

define QBF ¢ such that ¢(C, C’) is true iff there is a path in
G(M, x) from C to C’

W(Cstart, Caccept) is true iff M accepts x

15

PSPACE completeness

Proof — cont'd

Define y inductively!

 i(C, C'): there is a path of length at most 2/ from C to C’

16

PSPACE completeness

Proof — cont'd

Define y inductively!
 i(C, C'): there is a path of length at most 2/ from C to C’
* Y =ymandyo = pmx

16

PSPACE completeness

Proof — cont'd

Define y inductively!
 i(C, C'): there is a path of length at most 2/ from C to C’
* Y =ymandyo = pmx

i(C,C’) = 3AC" wi_1(C,C") Ayi_1(C",C")

16

PSPACE completeness

Proof — cont'd

Define y inductively!
 i(C, C'): there is a path of length at most 2/ from C to C’
* Y =ymandyo = pmx

i(C,C’) = 3AC" wi_1(C,C") Ayi_1(C",C")

might be exponential size, therefore use equivalent

wi(C,C’) = 3AC".VDy.VDs..
(D1 =CADy=C")V(Di =C" AD,=C"))
= ¥i_1(Dy, D2)

16

PSPACE completeness

Size of y

wi(C,C") = 3C”.NDy.¥Ds..
(Dy =CADy=C")V(D; =C" ADy = C"))
= Yi_1(D1, D2)

e (C’ stands for m variables
= |yil = i1l + O(m)
= |yl € O(m?)

PSPACE completeness

Observations and consequences

e GG is PSPACE-complete

e if PSPACE # NP then QBF and GG have no short certificates
e note: proof does not make use of outdegree of G(M, x)

QBF is NPSPACE-complete

NPSPACE = PSPACE!

e in fact, the same reasoning can be used to prove a stronger
result

18

Savitch’s Theorem

Savitch’s Theorem

Theorem (Savitch)

For every space-constructible s : N — N with s(n) > log n
NSPACE(s(n)) c SPACE(s(n)?).

19

Savitch’s Theorem

Proof

Let M be a NDTM accepting L. Let G(M, x) be its configuration
graph of size mO(25(")) such that each node is represented using
log m space.

20

Savitch’s Theorem

Proof

Let M be a NDTM accepting L. Let G(M, x) be its configuration
graph of size mO(25(")) such that each node is represented using
log m space.

M accepts x iff there is a path of length at most m from Cgtart t0
Caccept-

20

Savitch’s Theorem

Proof

Let M be a NDTM accepting L. Let G(M, x) be its configuration
graph of size mO(25(")) such that each node is represented using
log m space.

M accepts x iff there is a path of length at most m from Cgtart t0
Caccept-

Consider the following algorithm reach(u,v,i) to determine whether
there is a path from u to v of length at most 2"
e for each node z of M
e by =reach(u,z,i—1)
e by =reach(z,v,i—1)
e return by A by

20

Savitch’s Theorem

Proof

Let M be a NDTM accepting L. Let G(M, x) be its configuration
graph of size mO(25(")) such that each node is represented using
log m space.

M accepts x iff there is a path of length at most m from Cgtart t0
Caccept-

Consider the following algorithm reach(u,v,i) to determine whether
there is a path from u to v of length at most 2"
e for each node z of M
e by =reach(u,z,i—1)
e by =reach(z,v,i—1)
e return by A by

= reach(Cstart, Caccept> M) takes space O((log m)?) = O(s(n)?)!

20

Conclusion

Further Reading

L. J. Stockmeyer and A. R. Meyer. Word problems requiring
exponential time. Proceedings of the 5th Symposium on
Theory of Computing, pages 1-9, 1973

e contains the original proof of PSPACE completeness of QBF

o PSPACE-completeness of NFA equivalence
regular expression equivalence with squaring is
EXPSPACE-complete:
http://people.csail.mit.edu/meyer/rsq.pdf
Gilbert, Lengauer, Tarjan The Pebbling Problem is Complete in
Polynomial Space. SIAM Journal on Computing, Volume 9,
Issue 3, 1980, pages 513-524.
http://www.qbflib.org/

e tools (solvers)

e many QBF models from verification, games, planning

e competitions
PSPACE-completeness of Hex, Atomix, Gobang, Chess
W.J.Savitch Relationship between nondeterministic and

21

Conclusion

What have we learnt

succinctness leads to more difficult problems

PSPACE: computable in polynomial space (deterministically)
PSPACE-completeness defined in terms of polynomial Karp
reductions

canonical PSPACE-complete problem: QBF generalizes SAT
other complete problems: generalized geography, chess, Hex,
Sokoban, Reversi, NFA equivalence, regular expressions
equivalence

PSPACE ~ winning strategies in games rather than short
certificates

PSPACE = NPSPACE

Savitch: non-deterministic space can be simulated by
deterministic space with quadratic overhead (by path
enumeration in configuration graph)

Up next: NL

29

	Intro
	Succinctness
	Problems in PSPACE
	QBF
	GG

	PSPACE completeness
	Savitch's Theorem
	Conclusion

