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On coNP

coNP

reminder: L € {0,1}* € coNP iff {0,1}*\ L € NP

example: SAT contains

e not well-formed formulas
e unsatisfiable formulas

does SAT have polynomial certificates?
not known: open problem whether NP is closed under complement

note that P is closed under complement, compare with NFA vs DFA
closure
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For all certificates

¢ like for NP there is a characterization in terms of certificates
e for coNP it is dual: for all certificates

e 3SAT: to prove unsatifiability one must check all assignments, for
satisfiability only one

Theorem (coNP certificates)
A language L C {0,1}* is in coNP iff there exists a polynomial p and a TM
M such that

Vx €{0,1} x € L & Yu e {0, 1)P™) M(x,u) =1
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¢ is Boolean formula that is true for every assignment}

example: x V x € Tautology
proof?
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Completeness

like for NP one can define coNP-hardness and completeness

L is coNP-complete iff L € coNP and all problems in coNP are
polynomial-time Karp-reducible to L

classical example: Tautology = {¢ |
¢ is Boolean formula that is true for every assignment}

example: x V x € Tautology
proof?
e note that L is coNP-complete, if L is NP-complete

= SAT is coNP complete L
= Tautology is coNP-complete (reduction from SAT by negating formula)
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Remember yesterday’s teaser! A regular expression over {0, 1} is defined
by
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The language defined by r is written £L(r).
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On coNP

Regular Expression Equivalence

Remember yesterday’s teaser! A regular expression over {0, 1} is defined
by
r=0|1|rrrirnr|r

The language defined by r is written £L(r).

e letp = Cy A... A Cpbe a Boolean formula in 3CNF over variables
X{y..05Xn

e compute from ¢ a regular expression: f(¢)=(a1laz|...|am)
® @ =Yi1---Yin

0 Xj € C,‘
o yj=1 1 X € Gi

(0[1) otherwise

e example: (x Vy Vv Z)A(yV zV w)transformed to (001(0[1)) |
(0]1)100)

e observe: ¢ is unsatisfiable iff f(¢) = {0, 1}"
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On coNP

Regular expressions and computational complexity

e previous slide establishes: 3SAT<,RegExpEqp
o thatis: regular expression equivalence is coNP-hard
e itis coNP-complete for expressions without *, N

e because one needs to check for all expressions of length n whether
they are included (test polynomial by NFA transformation)

¢ the problem becomes PSPACE-complete when = is added
o the problem becomes EXP-complete when =, N is added
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P vs NP vs coNP

Open and known problems

OPEN

e P=NP?

e NP = coNP?
KNOWN

if an NP-complete problem is in P, then P = NP
P € coNP N NP

if L € coNP and L NP-complete then NP = coNP
if P = NP then P = NP = coNP

if NP # coNP then P # NP

if EXP = NEXP then P # NP (equalities scale up, inequalities scale
down)



P vs NP vs coNP

What if P = NP?

e one of the most important open problems

e computational utopia

e SAT has polynomial algorithm

¢ 1000s of other problems, too (due to reductions, completeness)
e finding solutions is as easy as verifying them

e guessing can be done deterministically

e decryption as easy as encryption

e randomization can be de-randomized
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What if NP = coNP

Problems have short certificates that don’t seem to have any!
e like tautology, unsatisfiability
¢ like unsatisfiable ILPs
e like regular expression equivalence



P vs NP vs coNP

How to cope with NP-complete problems?

e ignore (see SAT), it may still work
o modify your problem (2SAT, 2Coloring)
o NP-completeness talks about worst cases and exact solutions

— try average cases
— try approximations

e randomize
o explore special cases (TSP)



P vs NP vs coNP

In praise of reductions

reductions help, when lower bounds are hard to come by

reductions helped to prove NP-completeness for 1000s of natural
problems

in fact, most natural problems (exceptions are Factoring and Iso) are
either in P or NP-complete

but, unless P = NP, there exist such problems
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Ladner’s theorem

Ladner’s Theorem

P/NP intermediate languages exist!

Theorem (Ladner)
If P # NP then there exists a language L € NP \ P that is not NP-complete.
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define SATE to be
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Ladner’s theorem

Proof — essential steps

let F : N — N be a function
define SATE to be

(01" | ¢ € SAT, n = |gl)

now define a function H and fix SATy

H(n) is

the smallest i < loglog n such that

Vx € {0, 1}* with |x| < logn

M; outputs SATy(x)

within i|x| steps

M; is the i-th TM (in enumeration of TM descriptions)
if no such i exists then H(n) = loglog n
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Ladner’s theorem

Proof — essential steps

Using the definition of SAT, one can show
1. SATy e P © H(n) e O(1)
2. SATy ¢ P implies limp_,. H(n) =

If SATy € P, then H(n) < C for some constant. This implies that SAT is
also in P, which implies P = NP (padding). Contradiction!

If SATy is NP-complete, then there is a reduction from SAT to SATy in
time O(n') for some constant. For large n it maps SAT instances of size n
to SATy, instances of size smaller than n"("). This implies SAT € P.
Contradiction!
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Wrap-up

What you should know by now

deterministic TMs capture the inuitive notion of algorithms and
computability

universal TM ~ general-purpose computer or an interpreter

some problems are uncomputable aka. undecidable, like the halting
problem

this is proved by diagonalization
complexity class P captures tractable problems

P is robust under TM definition tweaks (tapes, alphabet size,
obliviousness, universal simulation)

non-deterministic TMs can be simulated by TM in exponential time
NP ~ non-det. poly. time ~ polynomially checkable certificates



Wrap-up

What you should know by now

NP ~ non-det. poly. time ~ polynomially checkable certificates
reductions allow to define hardness and completeness of problems

complete problems are the hardest within a class, if they can be
solved efficiently the whole class can

NP complete problems: 3SAT (by Cook-Levin); Indset, 3—Coloring,
ILP (by reduction from 3SAT)

SAT is practically useful and feasible

coNP complete problems: Tautology, star-free regular expression
equivalence

probably there are problems neither in P nor NP-complete (Ladner)



Wrap-up

What’s next?

space classes

space and time hierarchy theorems

generalization of NP and coNP: polynomial hierarchy
probabilistic TMs, randomization

complexity and proofs
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