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NP-completeness (2)



Cook-Levin

Teaser

A regular expression over {0, 1} is defined by
re=0|1|r|rr|r

The language defined by r is written £L(r).

What is the computational complexity of

¢ deciding whether two regular expressions are equivalent, that is
L(r1) = L(r2)?

e deciding whether a regular expression is universal, that is
L(r) =1{0,1}?

e deciding the same for star-free regular expressions?
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e 0/1-ILP

e |ndset

e 3-Coloring

teaser update

Agenda
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Cook-Levin: 3SAT is NP-complete

e 3SAT e NP v
e 3SAT is NP-hard

e choose L € NP arbitrary, L {0, 1}*

e find reduction f from L to 3SAT
e Yxe{0,1}": x € L & f(x) € 3SAT iff ¢y is satisfiable
e fis polynomial time computable
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L € NP iff there exists a TM M that runs in time T and there is a
polynomial p such that

¥x el e (0,1)PM) M(x,u)=1exel
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TMs for L and f

L € NP iff there exists a TM M that runs in time T and there is a
polynomial p such that

¥x el e (0,1)PM) M(x,u)=1exel

Assumptions
e fix n € Nand x € {0,1}" arbitrary
m=n+p(n)
M= (T,Q,d)
M is oblivious
M has two tapes
define TM M that takes M, T, p, x and outputs ¢y
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o prev(i): previous step when work head was here (default 1)
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M; exploits obliviousness

1. simulate M on 0"+P(") for T(n + p(n)) steps
2. foreach 1 <i < T(n+ p(n)) store

e inputpos(i): position of input head after i steps
o prev(i): previous step when work head was here (default 1)

3. compute and output ¢y

It does all this in time polynomial in n!
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Variables of ¢,

® Vi, s ¥Yn Ynits - - Yntp(n)
¢ to encode the read-only input tape
® Vi,...,yn determined by x
® Yniits--- Yorp(n) Will be certificate

4 Zo oo 2o Zc
ZeH1 Zet2 ... Z2c-1 Z2c

°
Ze(T(m)=1)+1 ZcT(m)

e each row a snapshot
e needs ¢ — 2 bits to encode state g (independent of x)
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Snapshot s; = (g,0, 1)

o state of M at step i, input and work symbol currently read
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Snapshot s; = (g,0,1)

o state of M at step i, input and work symbol currently read

Accepting computation of M on (x, u) is a sequence of T(m) snapshots
such that

o first snapshot s; is (Qstart, >, O)
e last snapshot st(, has state gnar and ouputs 1
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Snapshot s; = (g,0,1)

o state of M at step i, input and work symbol currently read

Accepting computation of M on (x, u) is a sequence of T(m) snapshots
such that

o first snapshot sy is (Qstart, &>, O)

e last snapshot st(, has state gnar and ouputs 1
e si1 computed from

L3N0

® S

® Yinputpos(i+1)

® Sprev(i+1)
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— size 0(c2°) (CNF, independent of |x|)
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Ox = @1 N2 A3z A @q

. relate x and y1, ..., ¥n: Ai<i<n Xi = i, Where

x=ye (xVy)AKXVy)
— size 4n

. relate zy, ..., z; with (Qstart, >, 0)

— size 0(c2°) (CNF, independent of |x|)

. relate ze(t(my-1)+1» - - - » ZeT(m) With accepting snapshot
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Ox = @1 N2 A3z A @q

1. relate x and y1, ..., ¥n: A1i<i<n Xi = ¥i, Where
x=ye (xVy)ARXVY)

— size 4n

2. relate zy, ..., z; with (Qstart, >, 0)
— size 0(c2°) (CNF, independent of |x|)

3. relate zo(t(m)-1)+1 - - - » ZeT(m) With accepting snapshot
— analogous

4. relate zgi 11, ..., Z (it 1) (Snapshot si; 1) with

® Yinputpos(i+1)

® Zg(i1)+1,- - -» Zoi2 (State of snapshot s;)

* Zyeu(i) (NneXt work tape symbol, from snapshot Sprev(i))
o CNF formula over 2¢ variables, size O(c2%°)

Polynomial in n!
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Stop!

e |p«| polynomial in n
o if oy is satisfiable, the satisfying assignment yields certificate
Ynt1s .- Yntp(n)
« if a certificate exists in {0, 1}P("), we get a satisfying assignment
e M; can output ¢y in polynomial time
= reduction
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Stop!

e |p«| polynomial in n
o if oy is satisfiable, the satisfying assignment yields certificate
Ynt1s .- Yntp(n)
« if a certificate exists in {0, 1}P("), we get a satisfying assignment
e M; can output ¢y in polynomial time
= reduction
e but: not to 3SAT
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From CNF to 3CNF

As a last polynomial step, Mr applies the following transformation for each

clause

Uy VU V...V Uk

>

(U1 \Y
A ;i v
A (o Vv

A (Xk,g \Y

Each clause with k variables transformed into equivalent k — 2 3-clauses

with 2k — 2 variables. All x; fresh.

Uz
Us
Ug

Uk—1

\Y
\
\%

\%

X1)
Xg)
X3)

Uk)
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From CNF to 3CNF

As a last polynomial step, Mr applies the following transformation for each
clause

Uy VU V...V Uk
~>
(U1 \ Uo \Y X1)
A i v o uz VvV ox)
A (X Vo us vV Xs)

A (Xk2 V. Uker VoK)

Each clause with k variables transformed into equivalent k — 2 3-clauses
with 2k — 2 variables. All x; fresh.
Example. x VY VZV wbecomes xVyvagandqVvzVw.
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What you need to remember

for each L € NP take TM M deciding L in polynomial time
define TM M; computing a reduction to formula ¢ for each input
due to obliviousness M; pre-computes head positions and every
computation takes time T(n + p(n)) steps

and is a sequence of snapshots (q,0, 1)

¢ has four parts

e correct input x, u with u being the certificate
e correct starting snapshot

¢ correct halting snapshot

¢ how to go from s; to s; 4

finally: CNF transformed to 3CNF
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SAT

So 3SAT is intractable?

if P # NP, no polynomial time algorithm for SAT

contrapositive: if you find one, you prove P = NP

every problem in NP solvable by exhaustive search for certificates
which implies NP € PSPACE (try each possible re-using space)



SAT

SAT is easy!

well-researched problem
has its own conference
1000s of tools, academic and commercial

extremely useful for modelling

 verification

e planning and scheduling
o Al

e games (Sudoku!)

useful for reductions due to low combinatorial complexity
satlive.org: solvers, jobs, competitions
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Demo

www.sat4j.org

two termination problems from string/term-rewriting
10000s of variables, millions of clauses

solvable in a few seconds!



SAT

Cook-Levin v
SAT demo v
see old friends

e 0/1-ILP

e |ndset

e 3-Coloring

teaser update

Agenda



More NP-complete problems

More reductions from 3SAT

We will now describe reductions from 3SAT to

e 0/1-ILP: the set of satisfiable sets of integer linear programs with
boolean solutions

e Indset = {(G, k) | G has independent set of size at least k}
e 3—Coloring = {G | G is 3-colorable}

This establishes NP-hardness for all of the problems. Of course, they are
easily in NP as well, hence complete.
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3SAT <, 0/1-ILP

(XVYVZ)AXVYVZ)AKXVYVW)A(XVYyVW)

x+(1-y)+z
x+(1-y)+(1-2)
1=-x)+(1-y)+w
(1=-x)+y+(1-w)

IV IV IV IV

o f(x)=x
« 1) = (1-x)
o flurVv...vuk)="Fflu)+ ...+ f(u) > 1



More NP-complete problems

3SAT <, 0/1-ILP

(XVYVZ)AXVYVZ)AKXVYVW)A(XVYyVW)

x+(1-y)+z
x+(1-y)+(1-2)
A-x)+(1-y)+w
A-x)+y+(1-w)

IV IV IV IV

f(x)=x

fx) = (1-x)

flug v...viue) =flug) + ...+ flu) > 1
linear reduction

¢ satisfiable iff f(¢) has boolean solution
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More NP-complete problems

3SAT <, Indset

e o is satisfiable
= exists assignment a : X — {0, 1} that makes ¢ true
= a makes every clause true

= {C,awarS | 1 <i< mj}isanindependent set of size m



More NP-complete problems

L/

vl

3SAT <, Indset

¢ is satisfiable
exists assignment a : X — {0, 1} that makes ¢ true
a makes every clause true

{C,a“’arS | 1 < i< m}is anindependent set of size m

G has an independent set of size m

ind. set covers all clauses

ind. set yields composable, partial assignments per clause
¢ is satisfiable
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e given: formula ¢ with m clauses of form C; = uj; V ujp V Uj3
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e given: formula ¢ with m clauses of form C; = uj; V ujp V Uj3
e reduce to graph G = (V, E)
e Vs the union of

e X U X to capture assignments
e special nodes {u, v}
« one little house per clause with 5 nodes: {vj, a;, b; | i € [m], j € [3]}
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3SAT <, 3—Coloring

given: formula ¢ with m clauses of form C; = uj; V up V U
reduce to graph G = (V, E)
V is the union of
e X U X to capture assignments
e special nodes {u, v}
« one little house per clause with 5 nodes: {vj, a;, b; | i € [m], j € [3]}
E comprised of
e edge {u, v}
o for each literal in each clause, a connection to the assignment graph:
{{ug, vy} 1 i e [m],je[3]}
¢ house edges:
{{v. a}, (v, bi}, (vir, ai}, (Vit, bi), Ve, @i}, { Vi, Vi) {Vie, i) | i € [m])
G has 2n + 5m + 2 nodes and O(m?) edges and can be computed in
polynomial time

three colors: {red, true, false}



More NP-complete problems

3SAT <, 3—Coloring

e o is satisfiable,
= there is an assignment a : X — {0, 1} that makes every clause true

= coloring u red, v false, and x true iff a(x) = 1 leads to a correct
3-coloring
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L

3SAT <, 3—Coloring

p is satisfiable,
there is an assignment a : X — {0, 1} that makes every clause true

coloring u red, v false, and x true iff a(x) = 1 leads to a correct
3-coloring

G is 3-colorable

wlog. assume u is red and v is false

assume there is a clause j such that all literals are colored false
vjz and vj3 are colored true and red

a; and b; are colored true and red

vj1 colored false, which is a contradiction, because it is connected to a
false literal



Summary

What have you learnt?

SAT is NP-complete
SAT is practically feasible

SAT has lots of academic and industrial applications

SAT can be reduced to independent set, 3-coloring and boolean ILP,
which makes those NP-hard

up next: coNP, Ladner
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Can you guess now?

What is the computational complexity of

e deciding whether two regular expressions are equivalent, that is
L(r) = L(r)?

¢ deciding whether a regular expression is universal, that is
L(r) =1{0,1}?

e deciding the same for star-free regular expressions?



Summary

Can you guess now?

What is the computational complexity of

e deciding whether two regular expressions are equivalent, that is
L(r) = L(r)?

¢ deciding whether a regular expression is universal, that is
L(r) =1{0,1}?

e deciding the same for star-free regular expressions?

e what about the set of formulas, for which all assignments satisfy?
certificates?

solution tomorrow
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