
Complexity Theory

Jan Křetı́nský

Chair for Foundations of Software Reliability and Theoretical Computer Science
Technical University of Munich

Summer 2016

Based on slides by Jörg Kreiker

Lecture 3

Basic Complexity Classes

Agenda

• universal Turing machine
• decision vs. search
• computability, halting problem
• basic complexity classes

• time and space
• deterministic and non-deterministic

Universal Turing Machine

Universal TM

• TMs can be represented as strings (over {0, 1}) by encoding their
transition function (can you?)
• write Mα for TM represented by string α
• every string α represents some TM
• every TM has infinitely many representations

• if TM M computes f , universal TMU takes representation α of TM M
and input x and computes f(x)

• like general purpose computer loaded with software
• like interpreter for a language written in same language
• U has bounded alphabet, rules, tapes; simulates much larger

machines efficiently

Universal Turing Machine Simulation

Efficient simulation

Theorem (Universal TM)

There exists a TMU such that for every x, α ∈ {0, 1}∗,U(x, α) = Mα(x). If
Mα holds on x within T steps, thenU(x, α) holds within O(T log T) steps.

Universal Turing Machine Simulation

Construction ofU

work tape

input tape

output tape

α4α2 α3α0

q1q0

α1

B

B

M’s description

M’s state

B

B

B

used like M’s

used like M’s

used like M’s

Universal Turing Machine Simulation

Simulating another TM

How doesU execute TM M?

1. transform M into M′ with one input, one work, and one output tape
computing the same function quadratic overhead

2. write M′’s description α onto third tape |M′|

3. write encoding of M′ start state on fourth tape |Q ′|
4. for each step of M′

4.1 depending on state and tapes of M′ scan δ′ tape |δ′|

4.2 update constant

Simulation can be done with logarithmic slowdown using clever encoding
of k tapes in one.

Universal Turing Machine Simulation

Simulating another TM

How doesU execute TM M?

1. transform M into M′ with one input, one work, and one output tape
computing the same function quadratic overhead

2. write M′’s description α onto third tape |M′|

3. write encoding of M′ start state on fourth tape |Q ′|
4. for each step of M′

4.1 depending on state and tapes of M′ scan δ′ tape |δ′|

4.2 update constant

Simulation can be done with logarithmic slowdown using clever encoding
of k tapes in one.

Decision vs. Search

Decision vs. Search

• often one is interested in functions f : {0, 1}∗ → {0, 1}
• f can be identified with the language Lf = {x ∈ {0, 1}∗ | f(x) = 1}
• TM that computes f is said to decide Lf (and vice versa)

Example (Indset)

Consider the independent set problem.

Search What is the largest independent set of a graph?

Decision Indset = {〈G, k 〉 | G has independent set of size k }

Often decision plus binary search can solve search problems.

Computability

Halting Problem

There are languages that cannot be decided by any TM regardless time
and space.

Example

The halting problem is the set of pairs of TM representations and inputs,
such that the TMs eventually halt on the given input.

Halt = {〈α, x〉 | Mα halts on x}

Theorem
Halt is not decidable by any TM.

Proof: diagonalization and reduction

Computability

Agenda

• universal Turing machine X
• decision vs. search X
• computability, halting problem X
• basic complexity classes

• time and space
• deterministic and non-deterministic

Basic Complexity Classes Time

Time complexity

Definition (DTIME)

Let T : N→ N be a function. L ⊆ {0, 1}∗ is in DTIME(T) if there exists a
TM deciding L in time T ′ for T ′ ∈ O(T).

• D refers to deterministic
• constants are ignored since TM can be sped up by arbitrary constants

Basic Complexity Classes Space

Space complexity

Definition (SPACE)

Let S : N→ N and L ⊆ {0, 1}∗. Define L ∈ SPACE(S) iff
• there exists a TM M deciding L
• no more than S′(n) locations on M’s work tapes ever visited during

computations on every input of length n for S′ ∈ O(S)

Basic Complexity Classes Space

Remarks

• more detailed definition (cf. exercises): count non-� symbols, where
� must not be written

• constants do not matter
• as for time complexity, require space-constructible bounds

• S is space-constructible: there is TM M computing S(|x |) in O(S(|x |))
space on input x

• TM knows its bounds

• work tape restrictions: allows to store input
• space bounds < n make sense (as opposed to time)
• require space log n to remember positions in input

Basic Complexity Classes NDTM

Non-deterministic TMs

Definition (NDTM)

A non-deterministic TM (NDTM) is a triple (Γ,Q , δ) like a deterministic TM
except
• Q contains a distinguished state qaccept

• δ is a pair (δ0, δ1) of transition functions

• in each step, NDTM non-deterministically chooses to apply either δ0

or δ1

• NDTM M accepts x, M(x) = 1 if there exists a sequence of choices
s.t. M reaches qaccept

• M(x) = 0 if every sequence of choices makes M halt without
reaching qaccept

Basic Complexity Classes NDTM

On non-determinism

• not supposed to model realistic devices
• remember impact of non-determinism finite state machines,

pushdown automata
• NDTM compute the same functions as DTM (why?)
• non-determinism ∼ guessing

Non-deterministic complexity
Define NTIME(T) and NSPACE(S) such that T and S are bounds
regardless of non-deterministic choices.

Basic Complexity Classes Definitions

Basic complexity classes

deterministic non-deterministic
time

P =
⋃

p≥1 DTIME(np) NP =
⋃

p≥1 NTIME(np)

EXP =
⋃

p≥1 DTIME(2np
) NEXP =

⋃
p≥1 NTIME(2np

)

space

L = SPACE(log n) NL = NSPACE(log n)

PSPACE =
⋃

p>0 SPACE(np) NPSPACE =
⋃

p>0 NSPACE(np)

Basic Complexity Classes Examples

Interesting examples

Most examples are the hardest within a given complexity class. They are
complete for the class (wrt suitable reductions).

L: essentially constant number of pointers into input plus logarithmically
many boolean flags
• UPath = {〈G, s, t〉 | ∃a path from s to t in undirected graph G}

[Reingold 2004]
• Even = {x | x has an even number of 1s}

NL: L plus guessing, read-once certificates
• Path = {〈G, s, t〉 | ∃a path from s to t in directed graph G}
• 2SAT = {ϕ |
ϕ satisfiable Boolean formula in CNF with two literals per clause }

Basic Complexity Classes Examples

Interesting examples

Most examples are the hardest within a given complexity class. They are
complete for the class (wrt suitable reductions).

L: essentially constant number of pointers into input plus logarithmically
many boolean flags
• UPath = {〈G, s, t〉 | ∃a path from s to t in undirected graph G}

[Reingold 2004]
• Even = {x | x has an even number of 1s}

NL: L plus guessing, read-once certificates
• Path = {〈G, s, t〉 | ∃a path from s to t in directed graph G}
• 2SAT = {ϕ |
ϕ satisfiable Boolean formula in CNF with two literals per clause }

Basic Complexity Classes Examples

Interesting examples

Most examples are the hardest within a given complexity class. They are
complete for the class (wrt suitable reductions).

L: essentially constant number of pointers into input plus logarithmically
many boolean flags
• UPath = {〈G, s, t〉 | ∃a path from s to t in undirected graph G}

[Reingold 2004]
• Even = {x | x has an even number of 1s}

NL: L plus guessing, read-once certificates
• Path = {〈G, s, t〉 | ∃a path from s to t in directed graph G}
• 2SAT = {ϕ |
ϕ satisfiable Boolean formula in CNF with two literals per clause }

Basic Complexity Classes Examples

Interesting examples

P: polynomial time, tractable, low-level choices of TM definitions are
immaterial to P
• Circuit − Eval = {〈C , x〉 | C is a n− in/1−out circuit, xsatisfying signals}
• Primes = {x | x prime} [AKS 2004]
• many graph problems like DFS and BFS

NP: polynomially verifiable certificates, puzzles
• Indset = {〈G, k 〉 | G has an independent set of size k }
• 3−Coloring = {G | G is 3-colorable}
• 3SAT = {ϕ | ϕ satisfiable Boolean formula in CNF with three literals per

clause }

EXP: exponential-time, for instance the language
Haltk = {〈M, x, k 〉 | DTM M stops on input x within k steps }

PSPACE: polynomial space, games, for instance
TQBF = {Q1x1 . . .Qk xkϕ | k ≥ 0,Qi ∈ {∀,∃}, ϕ Boolean formula over
xi such that whole formula is true }

Basic Complexity Classes Examples

Interesting examples

P: polynomial time, tractable, low-level choices of TM definitions are
immaterial to P
• Circuit − Eval = {〈C , x〉 | C is a n− in/1−out circuit, xsatisfying signals}
• Primes = {x | x prime} [AKS 2004]
• many graph problems like DFS and BFS

NP: polynomially verifiable certificates, puzzles
• Indset = {〈G, k 〉 | G has an independent set of size k }
• 3−Coloring = {G | G is 3-colorable}
• 3SAT = {ϕ | ϕ satisfiable Boolean formula in CNF with three literals per

clause }

EXP: exponential-time, for instance the language
Haltk = {〈M, x, k 〉 | DTM M stops on input x within k steps }

PSPACE: polynomial space, games, for instance
TQBF = {Q1x1 . . .Qk xkϕ | k ≥ 0,Qi ∈ {∀,∃}, ϕ Boolean formula over
xi such that whole formula is true }

Basic Complexity Classes Examples

Interesting examples

P: polynomial time, tractable, low-level choices of TM definitions are
immaterial to P
• Circuit − Eval = {〈C , x〉 | C is a n− in/1−out circuit, xsatisfying signals}
• Primes = {x | x prime} [AKS 2004]
• many graph problems like DFS and BFS

NP: polynomially verifiable certificates, puzzles
• Indset = {〈G, k 〉 | G has an independent set of size k }
• 3−Coloring = {G | G is 3-colorable}
• 3SAT = {ϕ | ϕ satisfiable Boolean formula in CNF with three literals per

clause }

EXP: exponential-time, for instance the language
Haltk = {〈M, x, k 〉 | DTM M stops on input x within k steps }

PSPACE: polynomial space, games, for instance
TQBF = {Q1x1 . . .Qk xkϕ | k ≥ 0,Qi ∈ {∀,∃}, ϕ Boolean formula over
xi such that whole formula is true }

Basic Complexity Classes Examples

Interesting examples

P: polynomial time, tractable, low-level choices of TM definitions are
immaterial to P
• Circuit − Eval = {〈C , x〉 | C is a n− in/1−out circuit, xsatisfying signals}
• Primes = {x | x prime} [AKS 2004]
• many graph problems like DFS and BFS

NP: polynomially verifiable certificates, puzzles
• Indset = {〈G, k 〉 | G has an independent set of size k }
• 3−Coloring = {G | G is 3-colorable}
• 3SAT = {ϕ | ϕ satisfiable Boolean formula in CNF with three literals per

clause }

EXP: exponential-time, for instance the language
Haltk = {〈M, x, k 〉 | DTM M stops on input x within k steps }

PSPACE: polynomial space, games, for instance
TQBF = {Q1x1 . . .Qk xkϕ | k ≥ 0,Qi ∈ {∀,∃}, ϕ Boolean formula over
xi such that whole formula is true }

Basic Complexity Classes Complements

Complements

Definition (Complement classes)

Let C ⊆ P({0, 1}∗) be a complexity class. We define coC = {L | L ∈ C} to
be the complement class of C, where L = {0, 1}∗ \ L is the complement of
L .

• important class coNP
• coNP is not the complement of P
• example: Tautology ∈ coNP, where a tautology is Boolean formula

that is true for every assignment
• reminder: closure under complement wrt expressiveness and

conciseness
• finite state machines
• pushdown automata
• DTM, NDTM

• note: P ⊆ NP ∩ coNP

Basic Complexity Classes Complements

Agenda

• universal Turing machine X
• decision vs. search X
• computability, halting problem X
• basic complexity classes X

Basic Complexity Classes Complements

Relation between classes

NL

P
NP ∩ coNP

NPcoNP

PSPACE = NPSPACE

EXP

L

Summary

What have we learnt?

• TM can be represented as strings; universal TM can simulate any TM
given its representations with polynomial overhead only

• uncomputable functions do exist (halting problem): diagonalization
and reductions

• non-deterministic TMs
• space, time, deterministic, non-deterministic, complement complexity

classes
• L, NL, P, NP, EXP, PSPACE
• 2SAT, 3SAT, Path, UPath, TQBF, Primes, Indset, 3−Coloring
• big picture
• up next: justify and explore the big picture

	P vs. NP
	Universal Turing Machine
	Simulation

	Decision vs. Search
	Computability
	Basic Complexity Classes
	Time
	Space
	NDTM
	Definitions
	Examples
	Complements

	Summary

