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Lecture 23
NC and AC scrutinized



Intro

Recap

Efficient parallel computation
e computable by some PRAM with
e polynomially many processors in
¢ polylogarithmic time
e robust wrt to underlying PRAM model
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Recap

Efficient parallel computation
e computable by some PRAM with
e polynomially many processors in
¢ polylogarithmic time
e robust wrt to underlying PRAM model

corresponds to

small depth circuits
e of polynomial size
¢ polylogarithmic depth
¢ logspace uniform



Intro

Recap — NC and AC

If L € {0, 1}" is decided by a logspace-uniform family {C,} of
polynomially sized circuits with bounded fan-in

e and depth logX nthen L € NC* for k > 0
¢ NC = yso NC*



Intro

Recap — NC and AC

If L € {0, 1}" is decided by a logspace-uniform family {C,} of
polynomially sized circuits with bounded fan-in

e and depth logX nthen L € NC* for k > 0
¢ NC = yso NC*

If the fan-in is unbounded we obtain the corresponding AC
hierarchy.



Intro

Goal

Find the places of NC and AC among other complexity classes!



Intro

Agenda

NC versus AC
NC versus P

NC' versus L
NC? versus NL



NC vs AC

Unbounded — bounded fan-in

Theorem




NCvs AC

Unbounded — bounded fan-in

Theorem

Forallk >0
NCk c AcK ¢ NCKH1

Proof
e first inclusion trivial
o for the second, assume L € ACK by family {Cp}

e there exists a polynomial p(n) such that
e Cy has p(n) gates with
¢ maximal fan-in of at most p(n)
e each such gate can be simulated by a binary tree of gates of
the same kind with depth log(p(n)) = O(log n)
= the resulting circuit has size at most size p(n)?, depth at most
log"*"! n and maximal fan-in 2
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Corollary

Theorem




NCvs AC

Corollary

Theorem
AC = NC

Remarks

¢ the inclusions in the theorem on the previous slide are strict for
k=0

e one strict inclusion is trivial, the other one is subject of the next
lecture

o for practical relevance, we focus on bounded fan-in, ie. NC



NCvs AC

Agenda

NC versus AC v
NC versus P

NC' versus L
NC? versus NL



NCvsP

NC versus P

Theorem
NCCcP

Proof
e let L € NC by circuit family {Cp}

= there exists a logspace TM M that computes
M(1™) = desc(Cy)
¢ the following P machine decides L
e oninput x € {0, 1} simulate M to obtain desc(C)

e C, has input variables zi, ..., z,
e evaluate C, under the assignment ¢ that maps z; to the i — th
bit of x

e output Cp(0)

o all steps take polynomial time (evaluation takes time
proportional to circuit size)
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NCvsP

Remarks

P equals the set of languages with logspace-uniform circuits of
polynomial size and polynomial depth (exercise)

it is an open problem whether the previous inclusion is strict
in fact it is open whether NC' ¢ PH

problem is important, since it answers whether all problems in
P have fast parallel algorithms

conjecture: strict



NCvsP

NC versus AC v
NC versus P v
NC' versus L
NC? versus NL

Agenda
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NCivsL

Proof Steps

1. logspace reductions are transitive

2. if L e NC' then there exists a logspace uniform family of
circuits {Cp} of depth logn

3. circuit evaluation of a circuit of depth d and bounded fan-in can
be done in space O(d)

What is the theorem?
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NCivsL

What is the theorem?

Theorem
NC' c L.

Proof
o for a language L € NC', we can compute its circuits (step 2) in
logspace
e we can evaluate circuits in logspace (step 3)
¢ the composition of these two algorithms is still logspace (step
1)

e steps 1 and 2 already proven



NCivsL

Proof of Step 3

e evaluate the circuit recursively
¢ identify gates with paths from output to input node

e output node: €
e left predecessor of gate 7: 7.0
¢ right predecessor of gate x: 7.1
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NCivsL

Proof of Step 3

evaluate the circuit recursively
identify gates with paths from output to input node

e output node: €
e left predecessor of gate 7: 7.0
¢ right predecessor of gate x: 7.1

1. if 7 is an input return value
2. if 7 denotes an op gate, compute value of 7.0, value of 7.1 and
combine

recursive depth log n, only one global variable holding current
path: total log n space

note that the naive recursion takes log? n space!
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NCivsL

NC versus AC v
NC versus P v
NC' versus L v/
NC? versus NL

Agenda
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NC2 vs NL

The theorem

Theorem
NL c NC?

Proof outline

show that Path € NC?

let L € NL and NL machine M deciding it; for a given input
x €{0,1}*

build a circuit C; computing the adjacency matrix of M’s
configuration graph on input x

build a second circuit C» that takes this output and decides
whether there is an accepting run

the composition of Cy and C, decides L
observe: the composition can be computed in logspace



NC2 vs NL

Path € NC?

let A be the n x n adjacency matrix of a graph
let B = A + I (add self loops)
compute the square product B?

2
Bi,j = \/ B,"k A Bk,j
k

contains 1 iff there is a path of length at most 2
can be done in ACY c NC'

log n times repeated squaring

paths can be computed in NC?
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NC2 vs NL

NC versus AC v
NC versus P v
NC' versus L v/
NC? versus NL v/

Agenda
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Summary

Criticism of NC

The notion of NC as efficient parallel computation may be criticized.
e polynomially many processors

e in the NC hierarchy a log n algorithm with n? processors is
favored over one with n processors and time log® n
e expensive
¢ polylogarithmic depth
o for many practical inputs, sublinear algorithms might be as good

or better
e e.g. %' is at most log? n for values up to 2'%°
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Summary

Summary

e NC'CLCNLCNC2CP
e up next: AC® c NC'
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