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Lecture 23

NC and AC scrutinized

2



Intro

Recap

Efficient parallel computation

• computable by some PRAM with

• polynomially many processors in

• polylogarithmic time

• robust wrt to underlying PRAM model

corresponds to

small depth circuits

• of polynomial size

• polylogarithmic depth

• logspace uniform
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Intro

Recap – NC and AC

If L ⊆ {0, 1}∗ is decided by a logspace-uniform family {Cn} of
polynomially sized circuits with bounded fan-in

• and depth logk n then L ∈ NCk for k ≥ 0

• NC =
⋃

k≥0 NCk

If the fan-in is unbounded we obtain the corresponding AC
hierarchy.
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Intro

Goal

Find the places of NC and AC among other complexity classes!
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Intro

Agenda

• NC versus AC
• NC versus P
• NC1 versus L
• NC2 versus NL
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NC vs AC

Unbounded→ bounded fan-in

Theorem
For all k ≥ 0

NCk ⊆ ACk ⊆ NCk+1

Proof

• first inclusion trivial

• for the second, assume L ∈ ACk by family {Cn}

• there exists a polynomial p(n) such that
• Cn has p(n) gates with
• maximal fan-in of at most p(n)

• each such gate can be simulated by a binary tree of gates of
the same kind with depth log(p(n)) = O(log n)

⇒ the resulting circuit has size at most size p(n)2, depth at most
logk+1 n and maximal fan-in 2
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NC vs AC

Corollary

Theorem
AC = NC

Remarks

• the inclusions in the theorem on the previous slide are strict for
k = 0

• one strict inclusion is trivial, the other one is subject of the next
lecture

• for practical relevance, we focus on bounded fan-in, ie. NC
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NC vs AC

Agenda

• NC versus AC X
• NC versus P
• NC1 versus L
• NC2 versus NL
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NC vs P

NC versus P

Theorem
NC ⊆ P

Proof

• let L ∈ NC by circuit family {Cn}

⇒ there exists a logspace TM M that computes
M(1n) = desc(Cn)

• the following P machine decides L
• on input x ∈ {0, 1}n simulate M to obtain desc(Cn)
• Cn has input variables z1, . . . , zn
• evaluate Cn under the assignment σ that maps zi to the i − th

bit of x
• output Cn(σ)

• all steps take polynomial time (evaluation takes time
proportional to circuit size)
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NC vs P

Remarks

• P equals the set of languages with logspace-uniform circuits of
polynomial size and polynomial depth (exercise)

• it is an open problem whether the previous inclusion is strict

• in fact it is open whether NC1 ⊂ PH
• problem is important, since it answers whether all problems in

P have fast parallel algorithms

• conjecture: strict

11



NC vs P

Agenda

• NC versus AC X
• NC versus P X
• NC1 versus L
• NC2 versus NL
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NC1 vs L

Proof Steps

1. logspace reductions are transitive

2. if L ∈ NC1 then there exists a logspace uniform family of
circuits {Cn} of depth log n

3. circuit evaluation of a circuit of depth d and bounded fan-in can
be done in space O(d)

What is the theorem?
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NC1 vs L

What is the theorem?

Theorem
NC1 ⊆ L.

Proof

• for a language L ∈ NC1, we can compute its circuits (step 2) in
logspace

• we can evaluate circuits in logspace (step 3)

• the composition of these two algorithms is still logspace (step
1)

• steps 1 and 2 already proven
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NC1 vs L

Proof of Step 3

• evaluate the circuit recursively
• identify gates with paths from output to input node

• output node: ε
• left predecessor of gate π: π.0
• right predecessor of gate π: π.1

• 1. if π is an input return value
2. if π denotes an op gate, compute value of π.0, value of π.1 and

combine

• recursive depth log n, only one global variable holding current
path: total log n space

• note that the naive recursion takes log2 n space!
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NC1 vs L

Agenda

• NC versus AC X
• NC versus P X
• NC1 versus L X
• NC2 versus NL
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NC2 vs NL

The theorem

Theorem
NL ⊆ NC2

Proof outline

• show that Path ∈ NC2

• let L ∈ NL and NL machine M deciding it; for a given input
x ∈ {0, 1}∗

• build a circuit C1 computing the adjacency matrix of M’s
configuration graph on input x

• build a second circuit C2 that takes this output and decides
whether there is an accepting run

• the composition of C1 and C2 decides L

• observe: the composition can be computed in logspace
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NC2 vs NL

Path ∈ NC2

• let A be the n × n adjacency matrix of a graph

• let B = A + I (add self loops)

• compute the square product B2

B2
i,j =
∨

k

Bi,k ∧ Bk ,j

• contains 1 iff there is a path of length at most 2

• can be done in AC0 ⊆ NC1

• log n times repeated squaring

⇒ paths can be computed in NC2
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NC2 vs NL

Agenda

• NC versus AC X
• NC versus P X
• NC1 versus L X
• NC2 versus NL X
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Summary

Criticism of NC

The notion of NC as efficient parallel computation may be criticized.
• polynomially many processors

• in the NC hierarchy a log n algorithm with n2 processors is
favored over one with n processors and time log2 n

• expensive
• polylogarithmic depth

• for many practical inputs, sublinear algorithms might be as good
or better

• e.g. n0.1 is at most log2 n for values up to 2100
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Summary

Summary

• AC = NC
• NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ P
• up next: AC0 ⊂ NC1
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