Complexity Theory

Jan Kretinsky

Chair for Foundations of Software Reliability
and Theoretical Computer Science
Technical University of Munich

Summer 2016

Based on slides by Jérg Kreiker



Lecture 23
NC and AC scrutinized



Intro

Recap

Efficient parallel computation
e computable by some PRAM with
e polynomially many processors in
¢ polylogarithmic time
e robust wrt to underlying PRAM model



Intro

Recap

Efficient parallel computation
e computable by some PRAM with
e polynomially many processors in
¢ polylogarithmic time
e robust wrt to underlying PRAM model

corresponds to

small depth circuits
e of polynomial size
¢ polylogarithmic depth
¢ logspace uniform



Intro

Recap — NC and AC

If L € {0, 1}" is decided by a logspace-uniform family {C,} of
polynomially sized circuits with bounded fan-in

e and depth logX nthen L € NC* for k > 0
¢ NC = yso NC*



Intro

Recap — NC and AC

If L € {0, 1}" is decided by a logspace-uniform family {C,} of
polynomially sized circuits with bounded fan-in

e and depth logX nthen L € NC* for k > 0
¢ NC = yso NC*

If the fan-in is unbounded we obtain the corresponding AC
hierarchy.



Intro

Goal

Find the places of NC and AC among other complexity classes!



Intro

Agenda

NC versus AC
NC versus P

NC' versus L
NC? versus NL



NC vs AC

Unbounded — bounded fan-in

Theorem




NCvs AC

Unbounded — bounded fan-in

Theorem

Forallk >0
NCk c AcK ¢ NCKH1

Proof
e first inclusion trivial
o for the second, assume L € ACK by family {Cp}

e there exists a polynomial p(n) such that
e Cy has p(n) gates with
¢ maximal fan-in of at most p(n)
e each such gate can be simulated by a binary tree of gates of
the same kind with depth log(p(n)) = O(log n)
= the resulting circuit has size at most size p(n)?, depth at most
log"*"! n and maximal fan-in 2



NC vs AC

Corollary

Theorem




NCvs AC

Corollary

Theorem
AC = NC

Remarks

¢ the inclusions in the theorem on the previous slide are strict for
k=0

e one strict inclusion is trivial, the other one is subject of the next
lecture

o for practical relevance, we focus on bounded fan-in, ie. NC



NCvs AC

Agenda

NC versus AC v
NC versus P

NC' versus L
NC? versus NL



NCvsP

NC versus P

Theorem
NCCcP

Proof
e let L € NC by circuit family {Cp}

= there exists a logspace TM M that computes
M(1™) = desc(Cy)
¢ the following P machine decides L
e oninput x € {0, 1} simulate M to obtain desc(C)

e C, has input variables zi, ..., z,
e evaluate C, under the assignment ¢ that maps z; to the i — th
bit of x

e output Cp(0)

o all steps take polynomial time (evaluation takes time
proportional to circuit size)

10



NCvsP

Remarks

P equals the set of languages with logspace-uniform circuits of
polynomial size and polynomial depth (exercise)

it is an open problem whether the previous inclusion is strict
in fact it is open whether NC' ¢ PH

problem is important, since it answers whether all problems in
P have fast parallel algorithms

conjecture: strict



NCvsP

NC versus AC v
NC versus P v
NC' versus L
NC? versus NL

Agenda

192



NCivsL

Proof Steps

1. logspace reductions are transitive

2. if L e NC' then there exists a logspace uniform family of
circuits {Cp} of depth logn

3. circuit evaluation of a circuit of depth d and bounded fan-in can
be done in space O(d)

What is the theorem?

13



NCivsL

What is the theorem?

Theorem
NC' c L.

Proof
o for a language L € NC', we can compute its circuits (step 2) in
logspace
e we can evaluate circuits in logspace (step 3)
¢ the composition of these two algorithms is still logspace (step
1)

e steps 1 and 2 already proven



NCivsL

Proof of Step 3

e evaluate the circuit recursively
¢ identify gates with paths from output to input node

e output node: €
e left predecessor of gate 7: 7.0
¢ right predecessor of gate x: 7.1

15



NCivsL

Proof of Step 3

evaluate the circuit recursively
identify gates with paths from output to input node

e output node: €
e left predecessor of gate 7: 7.0
¢ right predecessor of gate x: 7.1

1. if 7 is an input return value
2. if 7 denotes an op gate, compute value of 7.0, value of 7.1 and
combine

recursive depth log n, only one global variable holding current
path: total log n space

note that the naive recursion takes log? n space!

15



NCivsL

NC versus AC v
NC versus P v
NC' versus L v/
NC? versus NL

Agenda

16



NC2 vs NL

The theorem

Theorem
NL c NC?

Proof outline

show that Path € NC?

let L € NL and NL machine M deciding it; for a given input
x €{0,1}*

build a circuit C; computing the adjacency matrix of M’s
configuration graph on input x

build a second circuit C» that takes this output and decides
whether there is an accepting run

the composition of Cy and C, decides L
observe: the composition can be computed in logspace



NC2 vs NL

Path € NC?

let A be the n x n adjacency matrix of a graph
let B = A + I (add self loops)
compute the square product B?

2
Bi,j = \/ B,"k A Bk,j
k

contains 1 iff there is a path of length at most 2
can be done in ACY c NC'

log n times repeated squaring

paths can be computed in NC?

18



NC2 vs NL

NC versus AC v
NC versus P v
NC' versus L v/
NC? versus NL v/

Agenda

19



Summary

Criticism of NC

The notion of NC as efficient parallel computation may be criticized.
e polynomially many processors

e in the NC hierarchy a log n algorithm with n? processors is
favored over one with n processors and time log® n
e expensive
¢ polylogarithmic depth
o for many practical inputs, sublinear algorithms might be as good

or better
e e.g. %' is at most log? n for values up to 2'%°

20



Summary

Summary

e NC'CLCNLCNC2CP
e up next: AC® c NC'

21



	Intro
	NC vs AC
	NC vs P
	NC1 vs L
	NC2 vs NL
	Summary

