
Complexity Theory

Jan Křetı́nský

Chair for Foundations of Software Reliability
and Theoretical Computer Science

Technical University of Munich

Summer 2016

Based on slides by Jörg Kreiker



Lecture 21

NP ⊆ PCP[poly(n), 1]



Recap: Two views of the PCP theorem

prob. checkable proofs hardness of approximation

PCP verifier V ↔ CSP instance

proof π ↔ variable assignment

|π| ↔ number of vars in CSP

number of queries ↔ arity of constraints

number of random bits ↔ log m, where
m is number of clauses



Goal and plan

Goal
• proof a weaker PCP theorem
• learn interesing encoding/decoding schemes useful in such proofs

Plan
• proof

• an NP-complete language: Quadeq
• Walsh-Hadamard encodings
• a PCP[poly, 1] system for Quadeq

• summary: PCP and hardness of approximation



Weak PCP

Theorem
NP ⊆ PCP[poly, 1]

Proof: It suffices to come up with a PCP system for one NP-complete
language, where the verifier
• uses polynomially many random bits (exponentially long proofs)
• makes a constant number of queries to that proof

Plan:
• an NP-complete language: Quadeq
• Walsh-Hadamard encodings
• a PCP[poly, 1] system for Quadeq



Disclaimer

All arithmetic today will be modulo 2, that is, over the field {0, 1}!

• 1 + 1 = 0
• x2 = x
• x + y = x − y



Quadeq

• satisfiable quadratic equations over {0, 1}
• n variables/m equations
• no purely linear terms
• NP-complete (exercise!)

Example (Running example)

xy + xz = 1
y2 + yz + z2 = 1
x2 + yx + z2 = 0

Solution: x = 1, y = 0, z = 1
as a vector: s = (1 0 1)



Quadeq

• satisfiable quadratic equations over {0, 1}
• n variables/m equations
• no purely linear terms
• NP-complete (exercise!)

Example (Running example)

xy + xz = 1
y2 + yz + z2 = 1
x2 + yx + z2 = 0

Solution: x = 1, y = 0, z = 1
as a vector: s = (1 0 1)



Be smart, use vector notation

xy + xz = 1
y2 + yz + z2 = 1
x2 + yx + z2 = 0

s = (1 0 1)

vector notation: for a given m × n2 matrix A and m vector b find solution
u = (x y z) such that

A(u ⊗ u) = b

u ⊗ u x2 xy xz yx y2 yz zx zy z2

s ⊗ s 1 0 1 0 0 0 1 0 1 b
A 0 1 1 0 0 0 0 0 0 1

0 0 0 0 1 1 0 0 1 1
1 0 0 1 0 0 0 0 1 0



Be smart, use vector notation

xy + xz = 1
y2 + yz + z2 = 1
x2 + yx + z2 = 0

s = (1 0 1)

vector notation: for a given m × n2 matrix A and m vector b find solution
u = (x y z) such that

A(u ⊗ u) = b

u ⊗ u x2 xy xz yx y2 yz zx zy z2

s ⊗ s 1 0 1 0 0 0 1 0 1 b
A 0 1 1 0 0 0 0 0 0 1

0 0 0 0 1 1 0 0 1 1
1 0 0 1 0 0 0 0 1 0



Overview

• Quadeq is the language of satisfiable systems of quadratic equations
over {0, 1}

• natural PCP system expects a solution u and checks whether it is
valid

• but this yields superconstant number of queries!
• how can we encode a solution such that a constant number of

queries suffices?

• use longer proofs!

• an NP-complete language: Quadeq X
• Walsh-Hadamard encodings
• a PCP[poly, 1] system for Quadeq



Overview

• Quadeq is the language of satisfiable systems of quadratic equations
over {0, 1}

• natural PCP system expects a solution u and checks whether it is
valid

• but this yields superconstant number of queries!
• how can we encode a solution such that a constant number of

queries suffices?
• use longer proofs!

• an NP-complete language: Quadeq X
• Walsh-Hadamard encodings
• a PCP[poly, 1] system for Quadeq



PCP for Quadeq

Input: m × n2 matrix A , m vector b

Verifier Proof π

1. check that f , g are linear
functions

2. check that
g = WH(u ⊗ u) where
f = WH(u)

3. check that g encodes a
satisfying assignment

• π ∈ {0, 1}2
n+2n2

• π is a pair of linear
functions 〈f , g〉, i.e.
strings from {0, 1}2

n
and

{0, 1}2
n2

, resp.
• if u satisfies

A(u ⊗ u) = b then
f = WH(u) and
g = WH(u ⊗ u) are
Walsh-Hadamard
encodings



Walsh-Hadamard encoding

Definition (WH)

Let u ∈ {0, 1}n be a vector. The Walsh-Hadamard encoding of u written
WH(u) is the truth table of the linear function f : {0, 1}n → {0, 1} where
f(x) = u � x. Furthermore (u1 . . . un) � (x1 . . . xn) = Σn

i=1uixi

Example
The solution to our running example is s = (1 0 1). We have

WH(s) = (0 1 0 1 1 0 1 0)

Note: |WH(u)| = 2|u|



Walsh-Hadamard encoding

Definition (WH)

Let u ∈ {0, 1}n be a vector. The Walsh-Hadamard encoding of u written
WH(u) is the truth table of the linear function f : {0, 1}n → {0, 1} where
f(x) = u � x. Furthermore (u1 . . . un) � (x1 . . . xn) = Σn

i=1uixi

Example
The solution to our running example is s = (1 0 1). We have

WH(s) = (0 1 0 1 1 0 1 0)

Note: |WH(u)| = 2|u|



Properties (without proof)

Random subsum principle
• if u , v then for 1/2 of the choices of x we have u � x , v � x
• if u , v then WH(u) and WH(v) differ on at least half their bits

Local linearity testing
• we say that f , g : {0, 1}n → {0, 1} are ρ-close if

Prx∈R {0,1}n [f(x) = g(x)] ≥ ρ

• if there exists a ρ > 1/2 s.t.

Prx,y∈R {0,1}n [f(x + y) = f(x) + f(y)]≥ ρ

then f is ρ-close to a linear function



Properties (without proof)

Random subsum principle
• if u , v then for 1/2 of the choices of x we have u � x , v � x
• if u , v then WH(u) and WH(v) differ on at least half their bits

Local linearity testing
• we say that f , g : {0, 1}n → {0, 1} are ρ-close if

Prx∈R {0,1}n [f(x) = g(x)] ≥ ρ

• if there exists a ρ > 1/2 s.t.

Prx,y∈R {0,1}n [f(x + y) = f(x) + f(y)]≥ ρ

then f is ρ-close to a linear function



PCP for Quadeq

Input: m × n2 matrix A , m vector b

Verifier Proof π

1. check that f , g are linear
functions

2. check that
g = WH(u ⊗ u) where
f = WH(u)

3. check that g encodes a
satisfying assignment

• π ∈ {0, 1}2
n+2n2

• π is a pair of linear
functions 〈f , g〉, i.e.
strings from {0, 1}2

n
and

{0, 1}2
n2

, resp.
• if u satisfies

A(u ⊗ u) = b then
f = WH(u) and
g = WH(u ⊗ u) are
Walsh-Hadamard
encodings



Local linearity testing

• we test the linearity condition (f(x + y) = f(x) + f(y)) independently
1/δ > 2 times, and accept if all tests pass

• we accept a linear function with probability 1
• if f is not 1 − δ-close to a linear function

• all tests are passed with probability at most (1 − δ)(1/δ)

⇒ such a function is rejected with probability at least 1 − 1/e > 1/2

• for instance, we could make a 0.999 linearity test using 1000 trials



Local decoding

• it might happen, that we accept non-linear functions that are very
close to linear functions

• in this case we treat them as if they were linear
• if we want to query f(x)

1. we choose x′ ∈ {0, 1}n at random
2. set x′′ = x + x′

3. let y′ = f(x′) and y′′ = f(x′′)
4. output y′ + y′′

• this makes two queries instead of one
• and recovers the value of the closest linear function with high

probability



PCP for Quadeq

Input: m × n2 matrix A , m vector b

Verifier Proof π

1. check that f , g are linear
functions X

2. check that
g = WH(u ⊗ u) where
f = WH(u)

3. check that g encodes a
satisfying assignment

• π ∈ {0, 1}2
n+2n2

• π is a pair of linear
functions 〈f , g〉, i.e.
strings from {0, 1}2

n
and

{0, 1}2
n2

, resp.
• if u satisfies

A(u ⊗ u) = b then
f = WH(u) and
g = WH(u ⊗ u) are
Walsh-Hadamard
encodings



Check WH encodings

Test 10 times for random r, r′ ∈ {0, 1}n

f(r)f(r′) = g(r ⊗ r′)

If the proof is correct we always accept:

f(r)f(r′) =
(
Σi∈[n]uiri

)(
Σj∈[n]ujr ′j

)
= Σi,j∈[n]uiujrir ′j
= ((u ⊗ u) � (r ⊗ r′))
= g(r ⊗ r′)

If the proof is wrong we reject with probability at least 1/4 by applying the
random subsum principle twice, because in esence we compute rUr′ and
rWr′ for different matrices U and W .



Check WH encodings

Test 10 times for random r, r′ ∈ {0, 1}n

f(r)f(r′) = g(r ⊗ r′)

If the proof is correct we always accept:

f(r)f(r′) =
(
Σi∈[n]uiri

)(
Σj∈[n]ujr ′j

)
= Σi,j∈[n]uiujrir ′j
= ((u ⊗ u) � (r ⊗ r′))
= g(r ⊗ r′)

If the proof is wrong we reject with probability at least 1/4 by applying the
random subsum principle twice, because in esence we compute rUr′ and
rWr′ for different matrices U and W .



Check WH encodings

Test 10 times for random r, r′ ∈ {0, 1}n

f(r)f(r′) = g(r ⊗ r′)

If the proof is correct we always accept:

f(r)f(r′) =
(
Σi∈[n]uiri

)(
Σj∈[n]ujr ′j

)
= Σi,j∈[n]uiujrir ′j
= ((u ⊗ u) � (r ⊗ r′))
= g(r ⊗ r′)

If the proof is wrong we reject with probability at least 1/4 by applying the
random subsum principle twice, because in esence we compute rUr′ and
rWr′ for different matrices U and W .



PCP for Quadeq

Input: m × n2 matrix A , m vector b

Verifier Proof π

1. check that f , g are linear
functions X

2. check that
g = WH(u ⊗ u) where
f = WH(u) X

3. check that g encodes a
satisfying assignment

• π ∈ {0, 1}2
n+2n2

• π is a pair of linear
functions 〈f , g〉, i.e.
strings from {0, 1}2

n
and

{0, 1}2
n2

, resp.
• if u satisfies

A(u ⊗ u) = b then
f = WH(u) and
g = WH(u ⊗ u) are
Walsh-Hadamard
encodings



Is the assignment satisfying?

• for each of m equations we can check g(z) at some place z
corresponding to the coefficients in matrix A

• but this is not constant queries!

• instead multiply each equation by a random bit and take the sum of all
equations

• if g encodes a solution, we will always have a solution to the sum
• otherwise, we have a solution with probability 1/2 only



Is the assignment satisfying?

• for each of m equations we can check g(z) at some place z
corresponding to the coefficients in matrix A

• but this is not constant queries!
• instead multiply each equation by a random bit and take the sum of all

equations
• if g encodes a solution, we will always have a solution to the sum
• otherwise, we have a solution with probability 1/2 only



Is the system in PCP[poly(n), 1]?

1. π ∈ {0, 1}2
n+2n2

2. check that f , g are linear functions
• 2(1 − δ) · n random bits, 2(1 − δ) queries

3. check that g = WH(u ⊗ u) where f = WH(u)
• 20n random bits, 20 queries

4. check that g encodes a satisfying assignment
• m random bits (one per equation), 1 query

Yes!



Is the system in PCP[poly(n), 1]?

1. π ∈ {0, 1}2
n+2n2

2. check that f , g are linear functions
• 2(1 − δ) · n random bits, 2(1 − δ) queries

3. check that g = WH(u ⊗ u) where f = WH(u)
• 20n random bits, 20 queries

4. check that g encodes a satisfying assignment
• m random bits (one per equation), 1 query

Yes!



Conclusion

PCP and hardness of approximation
• computing approximate solutions to NP-hard problems is important
• the classical Cook-Levin reduction does not rule out efficient

approximations
• many nontrivial approximation algorithms exist (2-app for metric TSP,

knapsack, 2-app for vertex cover)
• PCP theorem shows hardness of approximating max3SAT to within

any constant factor if P , NP
• we showed hardness of approximation for Indset as well
• this is equivalent to having a probabilistically checkable proof system

with logarithmic randomness and constant queries
• PCP proofs involve intricate encoding schemes like Walsh-Hadamard

Further Reading Luca Trevisan, Inapproximability of Combinatorial
Optimization Problems, available from
http://www.cs.berkeley.edu/˜luca/pubs/inapprox.pdf

Next and final topic: Parallelism


