
Technische Universität München (I7) Summer term 2016
Prof. J. Křet́ınský / Dr. C.H. Broadbent 18. Juli 2016

Solution

Computational Complexity – Homework 11

Discussed on TBA: (Please see Website News section for information as an email needs to be
sent to me to arrange next week’s tutorial time(s)).

Exercise 11.1

(a) Modify the approximation algorithm for vertex cover shown in the lecture (lecture 18, slide
19) such that it always computes an optimal solution if the given graph is a disjoint union
of linear chains.

(b) Consider the following algorithm for approximating an optimal vertex cover:

While G has edges choose any node v of maximal degree of G; add it to C; and
remove v and all edges connected to it from G.

• Quantify the approximation this algorithm obtains on the following graph:

V := {a1, a2, a3, a4}∪{b1, b2} E := {{ai, ai}|1 ≤ i ≤ 4}∪{{ai, bj}|1 ≤ i ≤ 4, 1 ≤ j ≤ 2}

• Can you generalize the graph from above to show that the approximation error can
be as large as ≈ ln |V |?

Exercise 11.2

Show that, if Sat ∈ PCP(r(n), 1) for some r(n) = o(log n), then P = NP.

Solution: Assume that Sat ∈ PCP(r(n), 1). Then there is some poly-time Turing machine V
(time bound T (n)) s.t. for every 3CNF φ (obviously, it is enough to consider only these formulae)

• if φ is satisfiable, then

∃π : #{ρ ∈ {0, 1}r(|φ|) | V (x, ρ, π) = 1} = 2r(|φ|)

• if φ is not satisfiable, then

∀π : #{ρ ∈ {0, 1}r(|φ|) | V (x, ρ, π) = 1} ≤ 1/2 · 2r(|φ|)



where V access at most q ∈ O(1) bits from the possible proof π. In particular, the queries
done by V on a given input φ are assumed to be nonadaptive by definition, i.e., the locations
i1(φ, ρ), . . . , iq(φ, ρ) at which V queries π are completely determined by φ and ρ. For every φ and
ρ ∈ {0, 1}r(|φ|) we may consider the Boolean function fφ,ρ(xi1(φ,ρ), xi2(φ,ρ), . . . , xiq(φ,ρ)) which is
true iff V accepts x on random bits ρ and query-answers xi1(φ,ρ), xi2(φ,ρ), . . . , xiq(φ,ρ).

As q is constant and every fφ,ρ can be evaluated in polynomial time (simply run V ), we can
calculate in time O(T (n)) also the truth table of fφ,ρ. From this truth table (which is of constant
size {0, 1}2q ), we can compute a 3CNF formula ψφ,ρ which represents fφ,ρ in time exponential
in q, i.e., constant time w.r.t. the input.

Define now
ψ :=

∧
ρ∈{0,1}r(|φ|)

ψφ,ρ.

Then ψ is satisfiable iff φ is satisfiable. Computing ψ amounts to simulating V at most 2q times
for every ρ ∈ {0, 1}r(|φ|) which takes time O(2r(|φ|) · T (|φ|)).

ψ uses at most O(2r(|φ|)) distinct variables. So, we need at most O(r(|φ|)) bits for representing
a single variable, hence,

|ψ| ∈ O(2r(n) · r(|φ|)) ⊆ O(22r(|φ|)),

i.e., there is some constant c > 1 s.t. |ψ| ≤ c · 22r(|φ|) if |φ| ≥ n0 for some n0.

Now, by making n0 even larger, we may assume that r(n) ≤ 1/4 log n for all n ≥ n0, i.e.,

|ψ| ≤ c · 21/2·log |φ| = c · |φ|1/2.

So, every formula of length at least n0 is equivalent to some formula of length cn1/2 w.r.t.
satisfiability.

Assume now, we apply this construction at most log n-times (i.e., we immediately stop if we
obtain a formula of length n0) where n is the length of the original formula. Every reduction takes
time polynomial in the original formula, so the total time is also bounded by some polynomial.
Consider the length of the resulting formula assuming that it still is of length at least n0:

n→ cn1/2 → c(c1/2n1/4)→ c(c1/2c1/4n1/8)→ . . .→ c
∑−1+logn
i=0 2−in2

− logn

≤ c2n1/n.

Now, as n1/n = e1/n·logn goes monotonically to 1 for n → ∞, we can choose n0 even so large,
that c2 · n−n0

0 ≤ n0. Within polynomial time we therefore can reduce the original formula φ to a
formula of length at most n0. Obviously, we can decide for every formula of length at most n0
in constant time whether it is satisfiable or not.

Exercise 11.3

Prove that QuadEq is NP-complete.

Solution: We show 3Sat ≤p QuadEq.

Assume φ = C1 ∧ . . . ∧ Cm is a 3CNF-formula over the variables x1, . . . , xn.

Note that for every clause C = l1 ∨ l2 ∨ l3 we have

l1 ∨ l2 ∨ l3 iff ¬(l1 ∧ l2 ∧ l3).



Note that ∧ and multiplication on the field F2 coincide. We therefore add for every clause the
equation:

l1 · l2 · l3 = 0.

In order to reduce the degree of every monomial to two, we replace l2 · l3 by the auxiliary variable
[l2l3] and add the equation

[l2l3] = l2 · l3.
Finally, we add the usual equations which ensure that associated literals are consistent, i.e.,

x+ x = 1.

Example : for φ = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) we obtain the two equations:

0 = x · y · z
0 = x · y · z

Introducing the auxiliary variables for quadratic terms, we obtain:

0 = x · [yz]
0 = x · [yz]

0 = y · z + [yz]
0 = y · z + [yz]

To these equations, we add the constraints for the literals:

1 = x+ x
1 = y + y
1 = z + z

Consider the satisfying assignment x = 0, y = 1, z = 0. We then have

x = 1 + x = 1 + 0 = 1
y = 1 + y = 1 + 1 = 0
z = 1 + z = 1 + 0 = 1
[yz] = y · z = 0 · 1 = 0
[yz] = y · z = 0 · 0 = 0
x · [yz] = 1 · 0 = 0
x · [yz] = 0 · 0 = 0

i.e., the satisfying assignment yields also a solution of the quadratic equation system.

Similarly, one checks that any solution of the quadratic systems yields a satisfying assigment for
the original formula.

Exercise 11.4

Consider the following problem:

Input : A matrix A ∈ Qm×n, a vector b ∈ Qm.
Target : Determine the maximal number of equations in Ax = b which can

simultaneously be satisfied by some x ∈ Qn.

Show that there is a constant ρ < 1 such that approximating the maximal size is NP-hard.



Solution: Consider any 3CNF-formula φ = C1 ∧ . . . ∧ Cm over the variables x1, . . . , xn. We
may assume that every clause consists of exactly three literals by simply repeating some literal
if necessary.

Now, transform a clause Ci into three equations stating that exactly one, resp. two, resp. three
literals are true. For instance, if C = x ∨ y ∨ x, then add the equations

1 = x+ 1− y + x
2 = x+ 1− y + x
3 = x+ 1− y + x

We do this for every clause of φ, so some equation might be appear several times in the final
equation b = Ax system.

Consider now an assignment α ∈ {0, 1}n s.t. exactly k clause of φ are satisfied. Then exactly k
equations of Ax = b are satisfied for x := α.

But how can we rule out that there some x ∈ Qn s.t. more than k equations in Ax = b are
satisfied? We simply add “enough incentive” to only consider Boolean vectors x: Any x ∈ Qn
can satisfy at most m equations by construction of Ax = b. So, for every variable xi add m+ 1
copies of the equations

0 = xi
1 = xi

We write A′x = b′ for the resulting system.

Now, any x ∈ {0, 1}n will always satisfy at least the n · (m+ 1) equations of A′x = b′ associated
with variables. But every x 6∈ {0, 1}n can satisfy at most m+ (n− 1) · (m+ 1) = n · (m+ 1)− 1
equations: at most m equations associated with the m clauses of φ; and as at least one component
of x is neither 0 nor 1, at most (n− 1)(m+ 1) equations associated with variables.

For the following, let kmax be the number of maximal clauses simultaneously satisfiable in φ.
Similarly, let nmax be the maximal number of equations simultaneously satisfiable in A′x = b′.
Then nmax = kmax + n(m+ 1).

Now, we know that there is some ρ < 1 s.t. it is NP-hard to decide whether kmax < ρ ·m or
kmax = m for arbitrary φ. Via our reduction, we can construct for every φ the equation system
A′x = b′ s.t. this becomes the question whether nmax < ρm+n(m+ 1) or nmax = m+n(m+ 1).
Hence, if we could approximate nmax (in polynomial time) for any ρ′ < 1, we could choose ρ′ so
close to 1 that

ρm+ n(m+ 1) ≤ ρ′(m+ n(m+ 1)).

Let n≈ now be the ρ′-approximation of nmax. If n≈ ≥ ρ′(m+ n(m+ 1), then by choice of ρ′ we
also know that n≈ ≥ ρm+ n(m+ 1) and, thus, can conclude that kmax 6< ρm, i.e., kmax = 1.

Remark : For a reduction from vertex cover/independent set see “hardness of approximate optima
in lattices, codes, and systems of linear equations” by Arora, Babai and Stern.

Exercise 11.5

We consider the optimization variant of the KnapsackProblem:



Input : Values v1, . . . , vn, weights w1, . . . , wn and a weight bound W , all natural
numbers representable by n bits.

Target : Compute the maximal total value attainable by any selection S of total weight
at most W , i.e.,

vopt := max{
∑
i∈S

vi | S ⊆ {1, 2, . . . , n} ∧
∑
i∈S

wi ≤W}.

(a) In Exercise 3.2(c) we have discussed a pseudo-polynomial algorithm which solves this pro-
blem in time O(nW ). Similarly, design an algorithm which finds the maximal total value
by computing an array A with

A[j, v] = min{W + 1,
∑
i∈S

wi | S ⊆ {1, 2, . . . , j} ∧
∑
i∈S

vi = v}.

Your algorithm should be polynomial in n and V :=
∑n
i=1 vi.

(a’) Modify your algorithms so that it runs in time polynomial in n and vopt.

(b) Assume you replace all values vi by v′i := bvi/2kc for some fixed k ≥ 0, i.e., you remove the
k least significant bits. The weights wi and the weight limit W stay unchanged. Let vopt,
resp. v′opt be the optimal value for the original resp. reduced instance.

We take v′opt · 2k as an approximation for vopt.

• Show that vopt ≥ v′opt2k. What is the approximation error in the worst case?

• Choose k s.t. the approximation error is at most ε > 0. Show that for this k the
algorithm runs in time polynomial in n and 1/ε.

Solution: (See also “Combinatorial Optimization” by Papadimitriou and Steiglitz, section 17.3
“approximation schemes”)

(a) We may assume that vi > 0 as all items of zero value can be simply discarded. We may
initialize the array by A[0..n, 0] := 0 and A[1..n, 0..V ] := W+1. Then for j = 0, 1, 2, . . . , n−
1:

• for v = 1, 2, . . . , V : (test for every possible value what is the minimal weight of a
selection S ⊆ [j])

– if A[j, v] ≤W : (only if we are still under the weight limit, try to add item j + 1)

∗ A[j+1, v] := min{A[j+1, v], A[j, v]} (we do not add item j+1 to the selection
associated with A[j, v])

∗ A[j+ 1, v+ vj+1] := min{A[j+ 1, v+ vj+1], A[j, v] +wj+1} (we add item j+ 1
to the selection)

Finally, scan A[n, 1..V ] for the optimal value vopt, i.e., the largest v s.t. A[n, v] ≤W .

Note that we have to add and compare in the worst case numbers of length 2n bits as we
assumed that all values and weights are n-bit numbers. So, the algorithms runs in time
O(n2V ).



(b) We replace the two-dimensional array A by an array B of binary trees B[j]: If A[j, v] <
W + 1, we insert the path corresponding to the binary representation of v into B[j] (if it
doesn’t exist already) and store in the last node of this path A[j, v]. Obviously, every tree
B[j] has at most vopt many leaves and height at most log V ≤ 2n. Hence, every tree B[j]
has at most 2n · vopt leaves where inserting and updating entries takes at most 2n time.
This leads to a running time of O(n3vopt).

(c) Assume that S resp. S′ is an optimal selection attaining vopt resp. v′opt. These selections
have to exist.

As S is optimal, we have

vopt =
∑
i∈S

vi ≥
∑
i∈S′

vi =
∑
i∈S′

v′i·2k+(vi−v′i·2k) = 2k·

v′opt +
∑
i∈S′

vi/2
k − bvi/2kc︸ ︷︷ ︸
∈[0,1)

 ≥ v′opt·2k
In particular:

vopt − v′opt
vopt

=
2k

∑
i∈S′ vi/2

k − bvi/2kc
vopt

≤ 2k · n
vopt

=: ε, i.e.,
vopt
2k

=
n

ε
.

So, the running time can also be expressed w.r.t. n and 1/ε:

O(n3 · v′opt) ⊆ O(n3 · vopt/2k) ⊆ O(n4 · 1/ε).


