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Computational Complexity — Homework 8

Discussed on 06.05.2016.

Exercise 8.1

Show that, if NP C BPP, then RP = NP.

Exercise 8.2

Show that
(a) RP, BPP, and PP are closed under <,,.
Remark: Recall that a class C is closed under <, if A <, BABe C= AcC.

(b) RP and BPP are closed under intersection and union.

Exercise 8.3

A probabilistic alternating Turing machine (short: PATM) is a tuple (Q%,QH, T, §g, 61) where
e ()= Q% U @3 is the set of control states. (Q% and @3 are required to be disjoint.)
e ['is the alphabet.
e Jp, 01 are two transition functions.

A run of a PATM M = (Q%,Qg,l",éo,él) on a given input z is simply a run by the underlying NDTM defined by
(Q% UQ3,T, dp,61). In particular, M runs in time T'(n) if every run on input x takes time at most 7'(|z|), i.e., the computation

tree of M on input x has height at most T'(|z|). (Recall the inductive definition of configuration tree: starting from the initial
configuration on input z (the root), every inner node of the tree is a non-halting configuration ¢ of M which has exactly
two childrens dp(c) and d1 (c), even if §o(c) = d1(c).)

The intuition of a PATM is that it combines randomization with nondeterminism: in a configuration with a control state
contained in Q3 a PATM basically explores both possible successors in parallel, while in a configuration with control state
in @1 it chooses on of the two possible successors uniformly at random. More formally, the probability that M accepts x

(Pr[M (z) = 1]) is then defined by labeling the computation tree bottom-up as follows:
e A leaf is labeled by 1 if it corresponds to a accepting configuration, otherwise it is labeled by 0.
e An inner node which corresponds to a control state from @ 1 is labeled by the average of the labels of its two children;
e while an inner node corresponding to a control state from @3 is labeled by the maximum of its two children.

The label of the root of the computation tree of M on input « is then the probability that M accepts x, short Pr[M (z) = 1].
Similarly, Pr[M(z) = 0] := 1 — Pr[M(z) = 1].

(a) Show that for every poly-time PATM M there is a poly-time PATM N s.t.:
e Pr[M(z) =1] =Pr[N(z) =1] for all z € {0,1}*.
e Every run of N on a given input x takes time exactly 2|z|* for some k > 0.
e Every inner node with control state in @ 1 (Q3) has only children with control state in Q3 (Q 1 ).

(b) Let M = (Q3,Qv,T,d0,01) be a poly-time ATM deciding the language L. We can reinterpret M also a PATM by
setting Q% := Qv. Show that
reLlL&PrM(z)=1=1.



(¢) The class APP is defined as follows:
A language L is contained in APP if there is a poly-time PATM M s.t.

x €L & Pr[M(z)=1] > 3/4.
e Show that APP C PSPACE by adapting the PSPACE-algorithm for deciding QSAT.

e Show that PSPACE C APP by adapting the proof of NP C PP given in the lecture.

Hint: Recall that AP = PSPACE, i.e., for every L € PSPACE there is a poly-time alternating Turing machine
deciding L. Now copy the construction from the proof of NP C PP in order to obtain from a poly-time ATM a
poly-time PATM M with z € L & Pr[M(x) = 1] > 3/4.

(d) The class ABPP is defined as follows:
A language L is contained in ABPP if there is a poly-time PATM M s.t.

x€L=Pr[M(z)=1]>3/4and x ¢ L = Pr[M(x) =1] < 1/4.

Obviously, we have ABPP C APP.
e Show that ABPP =IP = APP = PSPACE.
Hint: You already know ABPP from the lecture by some other name.

(e) Assume we extend the definition of PATMs by partitioning the control states into three classes @ %,Qg,Qv; the
acceptance probability Pr[M (x) = 1] is defined as above where the value of a node corresponding to a control state of
Qv is defined to be the minimum of the values of its two children. Call such a Turing machine a PAATM.

e Using PAATMs define the complexity classes AAPP and AABPP analogously to APP and ABPP.
Discuss how these relate to APP, PP, ABPP, BPP, AP, PSPACE, IP, AM.



