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Exercise 8.1

Show that, if NP ⊆ BPP, then RP = NP.

Exercise 8.2

Show that

(a) RP, BPP, and PP are closed under ≤p.

Remark : Recall that a class C is closed under ≤p if A ≤p B ∧B ∈ C⇒ A ∈ C.

(b) RP and BPP are closed under intersection and union.

Exercise 8.3

A probabilistic alternating Turing machine (short: PATM) is a tuple (Q 1
2
, Q∃,Γ, δ0, δ1) where

• Q := Q 1
2
∪Q∃ is the set of control states. (Q 1

2
and Q∃ are required to be disjoint.)

• Γ is the alphabet.

• δ0, δ1 are two transition functions.

A run of a PATM M = (Q 1
2
, Q∃,Γ, δ0, δ1) on a given input x is simply a run by the underlying NDTM defined by

(Q 1
2
∪Q∃,Γ, δ0, δ1). In particular, M runs in time T (n) if every run on input x takes time at most T (|x|), i.e., the computation

tree of M on input x has height at most T (|x|). (Recall the inductive definition of configuration tree: starting from the initial
configuration on input x (the root), every inner node of the tree is a non-halting configuration c of M which has exactly
two childrens δ0(c) and δ1(c), even if δ0(c) = δ1(c).)

The intuition of a PATM is that it combines randomization with nondeterminism: in a configuration with a control state
contained in Q∃ a PATM basically explores both possible successors in parallel, while in a configuration with control state
in Q 1

2
it chooses on of the two possible successors uniformly at random. More formally, the probability that M accepts x

(Pr[M(x) = 1]) is then defined by labeling the computation tree bottom-up as follows:

• A leaf is labeled by 1 if it corresponds to a accepting configuration, otherwise it is labeled by 0.

• An inner node which corresponds to a control state from Q 1
2

is labeled by the average of the labels of its two children;

• while an inner node corresponding to a control state from Q∃ is labeled by the maximum of its two children.

The label of the root of the computation tree of M on input x is then the probability that M accepts x, short Pr[M(x) = 1].
Similarly, Pr[M(x) = 0] := 1− Pr[M(x) = 1].

(a) Show that for every poly-time PATM M there is a poly-time PATM N s.t.:

• Pr[M(x) = 1] = Pr[N(x) = 1] for all x ∈ {0, 1}∗.

• Every run of N on a given input x takes time exactly 2|x|k for some k > 0.

• Every inner node with control state in Q 1
2

(Q∃) has only children with control state in Q∃ (Q 1
2
).

(b) Let M = (Q∃, Q∀,Γ, δ0, δ1) be a poly-time ATM deciding the language L. We can reinterpret M also a PATM by
setting Q 1

2
:= Q∀. Show that

x ∈ L⇔ Pr[M(x) = 1] = 1.



(c) The class APP is defined as follows:

A language L is contained in APP if there is a poly-time PATM M s.t.

x ∈ L⇔ Pr[M(x) = 1] ≥ 3/4.

• Show that APP ⊆ PSPACE by adapting the PSPACE-algorithm for deciding QSat.

• Show that PSPACE ⊆ APP by adapting the proof of NP ⊆ PP given in the lecture.

Hint : Recall that AP = PSPACE, i.e., for every L ∈ PSPACE there is a poly-time alternating Turing machine
deciding L. Now copy the construction from the proof of NP ⊆ PP in order to obtain from a poly-time ATM a
poly-time PATM M with x ∈ L⇔ Pr[M(x) = 1] ≥ 3/4.

(d) The class ABPP is defined as follows:

A language L is contained in ABPP if there is a poly-time PATM M s.t.

x ∈ L⇒ Pr[M(x) = 1] ≥ 3/4 and x 6∈ L⇒ Pr[M(x) = 1] ≤ 1/4.

Obviously, we have ABPP ⊆ APP.

• Show that ABPP = IP = APP = PSPACE.

Hint : You already know ABPP from the lecture by some other name.

(e) Assume we extend the definition of PATMs by partitioning the control states into three classes Q 1
2
, Q∃, Q∀; the

acceptance probability Pr[M(x) = 1] is defined as above where the value of a node corresponding to a control state of
Q∀ is defined to be the minimum of the values of its two children. Call such a Turing machine a PAATM.

• Using PAATMs define the complexity classes AAPP and AABPP analogously to APP and ABPP.

Discuss how these relate to APP, PP, ABPP, BPP, AP, PSPACE, IP, AM.


