
Technische Universität München (I7) Summer term 2016
Prof. J. Křet́ınský / Dr. C.H. Broadbent 19. April 2016

Solution

Computational Complexity – Homework 1

Discussed on 15.04.2016.

Exercise 1.1

Recall the definition of the Landau notation for f, g : N→ N:

f ∈ O(g) :⇔ ∃c ∈ (0,∞)∃n0 ∈ N∀n > n0 : f(n) ≤ c · g(n).
f ∈ Ω(g) :⇔ g ∈ O(f)
f ∈ Θ(g) :⇔ f ∈ O(g) ∧ f ∈ Ω(g)
f ∈ o(g) :⇔ ∀ε ∈ (0,∞)∃n0 ∈ N∀n > n0 : f(n) ≤ ε · g(n)
f ∈ ω(g) :⇔ g ∈ o(f).

Remark : Some authors prefer to write f = O(g) instead of f ∈ O(g). As O(g) is set of functions,
while f is a function, the latter is more precise than the former.

(a) Assume f, g are strictly positive functions, i.e., f(n), g(n) > 0 for all n ∈ N. Show or
disprove:

• f ∈ Θ(g) if and only if there exist c1, c2 ∈ (0,∞) such that c1 ≤ f(n)/g(n) ≤ c2 for
almost all n ∈ N. (“almost all” is equivalent to “except for finitely many”).

• f ∈ o(g) if and only if limn→∞ f(n)/g(n) = 0.

(b) Let f and g be any two of the following functions. Describe their relation using the Landau
notation.

(a)n2 (b)n3 (c)n2 log n
(d) 2n (e)nn (f)nlogn

(g) 22n

(h) 22n+1

(j)n2 if n is odd, 2n otherwise.

(c) Describe (and prove) the relations between 2O(n), O(2n) and 2n
O(1)

.

Solution:

•

f ∈ Θ(g)
⇔ f ∈ O(g) ∧ g ∈ O(f)
⇔ ∃cf > 0∃nf∀n ≥ nf : f(n) ≤ cfg(n) ∧ ∃cg > 0∃ng∀n ≥ ng : g(n) ≤ cgf(n)
∗⇔ ∃cf , cg > 0∃n0∀n ≥ n0 : f(n) ≤ cfg(n) ∧ g(n) ≤ cgf(n)

⇔ ∃cf , cg > 0∃n0∀n ≥ n0 : 1
cg
≤ f(n)

g(n) ≤ cf
∗∗⇔ ∃c1, c2 > 0∃n0∀n ≥ n0 : c1 ≤ f(n)

g(n) ≤ c2

*: (⇒) set n0 := max(nf , ng). (⇐) set nf := ng := n0.

**: cf = c2, c1 = 1/cf .

•
f ∈ o(g)

⇔ ∀c > 0∃nc∀n ≥ nc : f(n) ≤ cg(n)

⇔ ∀c > 0∃nc∀n ≥ nc : f(n)
g(n) ≤ c

∗⇔ ∀ε > 0∃nε∀n ≥ nε :
∣∣∣ f(n)
g(n)

∣∣∣ < ε

⇔ limn→∞
f(n)
g(n) = 0.

*: Note that (i) f(n), g(n) > 0 and (ii) (⇒) set c := 0.9ε, (⇐) ε := c.

• Without any guarantee! Lower half defined by symmetry.

n2 n3 n2 log n 2n nn nlogn 22n

22n+1

f(n) := (n odd? n2 : 2n)

n2 Θ(n2) o(n3) o(n2 log n) o(2n) o(nn) o(nlogn) o(22n

) o(22n+1

) O(f(n))

n3 Θ(n3) ω(n2 log n) o(2n) o(nn) o(nlogn) o(22n

) o(22n+1

) −−
n2 log n Θ(n2 log n) o(2n) o(nn) o(nlogn) o(22n

) o(22n+1

) −−
2n Θ(2n) o(nn) ω(nlogn)∗ o(22n

) o(22n+1

) Ω(f(n))

nn Θ(nn) ω(nlogn) o(22n

) o(22n+1

) ω(f(n))

nlogn Θ(nlogn) o(22n

) o(22n+1

) −−
22n

Θ(22n

) o(22n+1

) ω(f(n))

22n+1

Θ(22n+1

) ω(f(n))
f(n) Θ(f(n))

*:

2n ∈ ω(nlogn)⇔ nlogn ∈ o(2n)⇔ lim
n→∞

nlogn

2n
= 0⇔ lim

n→∞
2(logn)2−n = 0⇔ lim

n→∞
(log n)2−n = −∞⇔ lim

n→∞

(log n)2

n
= 0.

Using l’Hospital:

lim
n→∞

(log n)2

n
= 0⇔ lim

n→∞

2(log n) 1
n

1
= 0⇔ lim

n→∞

log n

n
= 0⇔ lim

n→∞

1/n

1
= 0.

Remark : Similarly, one shows that (log n)k ∈ o(n) for any k ∈ N.

• We have O(2n) 2O(n) 2n
O(1)

. Proof: Let f ∈ O(2n), then there exists c ≥ 1 such that
f(n) ≤ c2n for all large enough n. Hence f(n) ≤ 2log c+n ≤ 2cn for all large enough n and
thus f ∈ 2O(n). Similarly we have 2cn ≤ 2n

c

for c ≥ 1 and large enough n which shows the
second inclusion. Observe that the inclusions are strict, since for example 23n /∈ O(2n) and

2n
5

/∈ O(2O(n))

Exercise 1.2

For a, b, c positive integers with c ≥ 2 show or disprove that

a2n·b·c
n

∈ 22O(n)

.

Solution: Recall that f(n) ∈ Ω(n) if

∃c ∈ (0,∞)∃n0∀n ≥ n0 : f(n) ≤ c · n.

Hence, we have to show that there are constants C > 0 and n0 such that

a2n·b·c
n

≤ 22C·n
for all n ≥ n0.

As log is strictly monotonically increasing, this is equivalent to

log a+ n · b · cn ≤ 2C·n for all n ≥ n0.

(We always assume that log refers to the base 2.)

As b > 0, c > 1 we find a n0 such that log a ≤ n · b · cn for all n ≥ n0. Thus, it is sufficient to
adapt the constants C, n0 in such a way that

2n · b · cn ≤ 2C·n for all n ≥ n0.

Again using the monotonicity of log, we obtain:

1 + log b+ log n+ n · log c ≤ C · n for all n ≥ n0.

Choosing n0 big enough so that (i) log a ≤ n · b · cn and (ii) 1 + log b + log n ≤ n · log c, we can
choose C to be 2 log c.

Exercise 1.3

Consider the following language on {0, 1}:

L = {u0v0w ∈ {0, 1}∗ | u, v, w ∈ {1}∗ ∧ |v| ≤ |w| ≤ |u| ∧ ∃k ∈ {|v| , . . . , |w|} : k divides |u|}.

Its characteristic function fL is then

fL : {0, 1}∗ → {0, 1} : x 7→
{

1 if x ∈ L
0 if x 6∈ L

Construct a Turing machine which computes fL in time O(nk) for some fixed k > 0.

Solution: We give an informal description of the behaviour of a TM deciding L:

• 1. Step: Check that the input x is of the form 1∗01∗01∗.

If x is not of the required from, output 0 and halt.

• 2. Step: Copy u, v, and w parts of x to work tapes 1 to 3.

• 3. Step: Check that |v| ≤ |w| ≤ |u|.

If x does not satisfy the requirement on u, v, w, output 0 and halt.

• 4. Step: As long as work tape 4 contains less 1s than work tape 1 (u) append the content
of work tape 2 (v) to the content of work tape 4.

• 5. Step: Check whether work tapes 1 and 4 contain the same number of 1s.

If this is the case, output 1 and halt.

• 6. Step: Empty work tape 4.

• 7. Step: Append an 1 to the content of work tape 2.

• 8. Step: Check that work tape 2 contains at most as many 1s as work tape 3.

If this does not hold, output 0 and halt.

• Go to Step 4.

One easily checks that every “macro step” can be done by a TM using at most O(|x|) many
steps.

Exercise 1.4

If f : {0, 1}∗ → {0, 1} is computable by a TM with a finite alphabet Γ then it is also computable
by a TM with alphabet Σ = {0, 1,�,B}, moreover, with only a polynomial overhead.

Prove the statement above. Does the same hold for infinite Γ? Does the same hold for Σ =
{1,�,B}?

Solution: In the lecture, you have seen that a k-tape TM can be simulated by a single tape
TM with only a polynomial overhead. We will make use of this fact.

First, note that any element of Γ can be encoded using k = dlog |Γ|e letters of binary alphabet.
We can thus simulate the working tape with symbols of Γ by k tapes with symbols of Σ.

Exercise 1.5

Call a Turing machine M oblivious if the positions of its heads at the ith step of its computation
on input x depend only on i and |x|, but not x itself.

Let L ∈ DTIME(T) with T : N→ N time-constructible. Show that there is an oblivious Turing
machine which decides L in time O(T 2).

Solution: Let M be a Turing machine deciding L in time T (n). Further, let MT be a Turing
machine calculating T . As T is required to be time-constructible, we find such a MT .

We sketch how to construct from M and MT an oblivious Turing machine O which decides L in
time O(T (n)2). For simplicity, we assume that M is a one-tape TM; for this, we allow M to also
write to the input tape. O is not required to have only a single tape, still we allow O to write to
its input tape, too.

The behaviour of O is as follows:

(a) First, O reads the input once from left to right, copies for every symbol read an 1 to the
input tape of MT , and, finally, moves all heads back to the left-most position.

(b) It then starts MT on input 1|x|. For every step done by MT , O also writes an 1 to two
tapes, called space and time in the following. After MT has terminated, the content of
both space and time is B1T (|x|).

(c) Then, O simulates exactly T (|x|) steps of M , i.e., after simulating a single step of M , O
moves the head of time one place to the left, the simulation terminates when the head of
time hits B.

A single step of M is simulated as follows:

O remembers the position of the head of M on the input tape by some apropriate symbol,
e.g., if Γ is the tape alphabet used by M , then O might use the symbols Γ ∪ Γ̂ where
Γ̂ = {γ̂ | γ ∈ Γ}.

In order for O to be able to simulate a step of M , O needs to remember the control state
of M and (at most three) symbols µγ̂ν within the 1-step vicinity of the head of the M .
(This is finite information and therefore can be stored in the control of O. Check this by
yourself!)

As M is time-bounded by T , O knows that the head of M can never move more than T (|x|)
steps to the right. Hence, O can scan the whole tape content of M by moving its input
head T (|x|) steps to the right and then back again. The space tape can be used for this.

Within this scan, O can remember the three symbols µγ̂ν, determine from the next step
of M and change its tape content accordingly.

E.g.: assume that a given point of time M is in the configuration (q,Babĉd)) with δM (q, c) =
(q′, e,→), i.e., M makes the following step:

(q,Babĉd)→ (q′,Babed̂).

O simulates this step as follows: it remebers in its control state the control state q of M
plus the last three symbols read. O scans its input tape from left to right until one step
after ĉ is encountered. Then O remembers the necessary symbols bĉd and the state q so
it can determine the next step of M . As M moves right, O can immediately replace d to
d̂, then it moves on to the right until T (n) steps are made (reading space in lockstep). O

then moves its input head back to the left-most position. On its way back O waits on d̂ so
it can replace the symbol ĉ left of it by e. Similarly, O can simulate a step where M moves
its head to the left.

It is left to the reader to check that O is indeed oblivious.

Exercise 1.6*

Let M be a Turing machine with a (read only) input tape and one combined work/output tape.
We assume that M decides a language L ⊆ {0, 1}∗, i.e., every computation of M on an input
x ∈ {0, 1}∗ terminates eventually and after terminating the left-most position of the work tape
will either be 1 if x ∈ L or 0 if x 6∈ L.

We further assume that M never writes any “blank” �. The space s(x) used by M when proces-
sing an input x is then simply the number of non-blank symbols on the work/output tape after
the computation of M on x has terminated.

(a) A reduced configuration is defined to be any tuple we obtain from any configuration of M
by forgetting about the input tape, i.e., a reduced configuration only remembers the control
state and the contents and head positions of the k work tapes. Given an input x, let Ci(x)
be the set of all configurations of the computation of M on x for which the input head
reads the ith input symbol xi. Let Ri(x) be the set of reduced configurations we obtain
from Ci(x).

Let x = x1x2 . . . xn be an input of length n such that for any input y of length at most
n− 1 we have s(y) < s(x).

• Show that Ri(x) = Rj(x) for 1 ≤ i < j ≤ n implies that xi 6= xj .

Hint : Assume that Ri(x) = Rj(x) and xi = xj for some 1 ≤ i < j ≤ n. Consider then
the input y = x1 . . . xixj+1 . . . xn, i.e., we obtain y from x by canceling the symbols on
positions i+ 1, . . . , j. For this input one can show that

Rk(y) ⊆ Rk(x) for 1 ≤ k ≤ i, resp. Rk(y) ⊆ Rk+(j−i)(x) for i < k ≤ n− (j − i). (Proof?)

Show that this property entails the contradiction that M requires less than s(x) space for
processing x.

(b) Set f(n) := max{s(x) | x ∈ {0, 1}n} and assume that f(n) is unbounded.

• Show that f(n) 6∈ o(log log n).

Hint : Use the result of (a) to get an upper bound on n depending only on f(n).

Solution:

• The proof goes by a kind of ‘shrinking argument’ (the opposite of a ‘pumping argument’).
We argue by contradiction, showing that if under the given assumptions it were the case that
xi = xj , then the segment in between can be deleted without substantially changing the
behaviour of the Turing machine. In particular it will not use any less space, contradicting
the monotonicity of s.

Assume that xi = xj and set y = x1 . . . xixj+1 . . . xn. Clearly, y has length less than n. By
assumption on x, the computation of M on y therefore requires less than s(x) space.

As Ri(x) = Rj(x) one can show that Rk(y) ⊆ Rk(x) for k ≤ i and Rk(y) ⊆ Rk+(j−i)(x)
for k > i.

This can be proven by induction on the length of a computation of M on y. That is, we
can show by induction on l, that if M reaches a configuration C after l steps such that

M ’s input tape head is in the kth position (so that C ∈ Ck(y)), then the reduction of C
belongs to Rk(x) if k ≤ i and Rk+(j−1)(x) if k > i.

As M halts for any input, one of the Ri(y) has to contain a halting configuration. As there
is exactly one such configuration for every input, and the Ri(y)s are subsets of the Rj(x)s,
this halting configuration is also the halting configuration of the run of M on x. But as the
run of M on y needs less than s(x) space, we obtain the contradiction that the number of
non-blank symbols of the work tape in the halting configuration of the computation of M
on n is less than s(x).

• Choose any S > 0 and let xS be a shortest input such that s(xS) = f(nS) ≥ S with
nS := |xS |, i.e., f(k) < S for k < nS . As f(n) is assumed to be unbounded, we find such
an input xS . (The subscript S is to remind ourselves on the dependency on S.)

We now use (a) to get an upper bound on the length of x:

Every reduced configuration is of the form (q, i, w) where q is a control state, i is the position
of the head of the work tape, and w is the content of the work tape. Thus, there are at

most |Q| · f(nS) · |Γ|f(nS)
different reduced configurations. As Ri(xS) = Rj(xS) implies

xi 6= xj for i 6= j, a particular subset of Q × {1, . . . , f(nS)} × Γf(nS) can only appear at
most twice (as xi ∈ {0, 1}) in the sequence R1(x), . . . , RnS

(x). Hence, we have

nS ≤ 2 · 2|Q|·f(nS)·|Γ|f(nS)

.

As 2 · 2|Q|·S·|Γ|S ∈ 22O(S)

, we find c > 0 and S0 > 0 such that:

nS ≤ 22cf(nS)

for all S ≥ S0(as f(nS) ≥ S ≥ S0)

This implies that for infinitely many n we have

1

c
· log log n ≤ f(n),

i.e., f(n) 6∈ o(log log n).

Remark : As a corollary we obtain that every language L which is decided by TM using
o(log log n) space can also be decided by a Turing machine using constant space. As constant
space can always be encoded into the finite control of the TM, such a TM is basically a
two-way finite automaton.

