Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science Technical University of Munich Summer 2016

Based on slides by Jörg Kreiker

Lecture 7 Hierarchies

A regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

A regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

The language defined by *r* is written $\mathcal{L}(r)$.

• let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n

A regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

- let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n
- compute from φ a regular expression: $f(\varphi) = (\alpha_1 | \alpha_2 | \dots | \alpha_m)$

A regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

- let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n
- compute from φ a regular expression: $f(\varphi) = (\alpha_1 | \alpha_2 | \dots | \alpha_m)$
- $\alpha_i = \gamma_{i1} \dots \gamma_{in}$

A regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

- let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n
- compute from φ a regular expression: $f(\varphi) = (\alpha_1 | \alpha_2 | \dots | \alpha_m)$
- $\alpha_i = \gamma_{i1} \dots \gamma_{in}$
- $\gamma_{ij} = \begin{cases} 0 & x_j \in C_i \\ 1 & \overline{x_j} \in C_i \\ (0|1) & \text{otherwise} \end{cases}$

A regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

The language defined by *r* is written $\mathcal{L}(r)$.

- let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n
- compute from φ a regular expression: $f(\varphi) = (\alpha_1 | \alpha_2 | \dots | \alpha_m)$
- $\alpha_i = \gamma_{i1} \dots \gamma_{in}$

•
$$\gamma_{ij} = \begin{cases} 0 & x_j \in C_i \\ 1 & \overline{x_j} \in C_i \\ (0|1) & \text{otherwise} \end{cases}$$

• example: $(x \lor y \lor \overline{z}) \land (\overline{y} \lor z \lor w)$ transformed to (001(0|1)) | (0|1)100)

A regular expression over {0, 1} is defined by

```
r ::= 0 | 1 | rr | r|r | r \cap r | r^*
```

- let $\varphi = C_1 \land \ldots \land C_m$ be a Boolean formula in 3CNF over variables x_1, \ldots, x_n
- compute from φ a regular expression: $f(\varphi) = (\alpha_1 | \alpha_2 | \dots | \alpha_m)$
- $\alpha_i = \gamma_{i1} \dots \gamma_{in}$

•
$$\gamma_{ij} = \begin{cases} 0 & x_j \in C_i \\ 1 & \overline{x_j} \in C_i \\ (0|1) & \text{otherwise} \end{cases}$$

- example: $(x \lor y \lor \overline{z}) \land (\overline{y} \lor z \lor w)$ transformed to (001(0|1)) | (0|1)100)
- observe: φ is unsatisfiable iff $f(\varphi) = \{0, 1\}^n$

- proof of Ladner's theorem
- · deterministic time hierarchy theorem
- non-deterministic time hierarchy theorem
- space hierarchy theorem
- relation between space and time

Ladner's Theorem

NP-intermediate languages do exist!

Theorem (Ladner)

If $P \neq NP$ then there exists a language $L \subseteq NP \setminus P$ that is not NP-complete.

Proof Roadmap

- **1.** $P \neq NP$ implies SAT $\notin P$
- **2.** construct language $L \in NP$ such that
 - **2.1** *L* ∉ **P**
 - 2.2 L not NP-complete
- **3.** $L = \{\varphi O 1^{f(n)-n-1} \mid \varphi \in SAT, |\varphi| = n\}$ padding SAT
- f and L constructed by diagonalization by enumerating all languages in P
- **5.** show that $L \in P$ implies SAT $\in P$ (contradiction!)
- 6. assume *L* is NP-complete, then there is a polynomial reduction from SAT, which yields a polynomial algorithm to decide SAT (contradiction!)

Agenda

- proof of Ladner's theorem \checkmark
- · deterministic time hierarchy theorem
- · non-deterministic time hierarchy theorem
- space hierarchy theorem
- relation between space and time

Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f \cdot \log f \in o(g)$. Then DTIME $(f(n)) \subset \text{DTIME}(g(n))$.

Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f \cdot \log f \in o(g)$. Then DTIME $(f(n)) \subset \text{DTIME}(g(n))$.

- inclusion is strict
- proof: diagonalization, simulate M_x on x for g(|x|) steps
- shows that P does not collapse to level k
- logarithmic factor due to slowdown in universal simulation
- corollary: P ⊂ EXP

Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f(n + 1) \in o(g(n))$. Then NTIME $(f(n)) \subset \text{NTIME}(g(n))$.

Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible such that $f(n + 1) \in o(g(n))$. Then NTIME $(f(n)) \subset \text{NTIME}(g(n))$.

- inclusion is strict
- proof by lazy diagonalization (see: AB Th. 3.2)
- note: proof of deterministic theorem does not carry over

Space Hierarchy Theorem

Theorem (Space Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be space-constructible such that $f \in o(g)$. Then **SPACE** $(f(n)) \subset$ **SPACE**(g(n)).

Space Hierarchy Theorem

Theorem (Space Hierarchy)

Let $f, g : \mathbb{N} \to \mathbb{N}$ be space-constructible such that $f \in o(g)$. Then **SPACE** $(f(n)) \subset$ **SPACE**(g(n)).

- inclusion is strict
- · stronger theorem than corresponding time theorem
 - only constant space overhead
 - f, g can be logarithmic too
- · proof analogous to deterministic time hierarchy
- corollary: L ⊂ PSPACE

Agenda

- proof of Ladner's theorem \checkmark
- deterministic time hierarchy theorem \checkmark
- non-deterministic time hierarchy theorem \checkmark
- space hierarchy theorem \checkmark
- relation between space and time

Relation between time and space

Theorem (Time vs. Space)

Let $s : \mathbb{N} \to \mathbb{N}$ be space-constructible. Then

 $\mathsf{DTIME}(s(n)) \subseteq \mathsf{SPACE}(s(n)) \subseteq \mathsf{NSPACE}(s(n)) \subseteq \mathsf{DTIME}(2^{O(s(n))})$

Relation between time and space

Theorem (Time vs. Space)

Let $s:\mathbb{N}\to\mathbb{N}$ be space-constructible. Then

 $\mathsf{DTIME}(s(n)) \subseteq \mathsf{SPACE}(s(n)) \subseteq \mathsf{NSPACE}(s(n)) \subseteq \mathsf{DTIME}(2^{O(s(n))})$

- inclusions are non-strict
- first two are obvious
- third inclusion requires notion of configuration graphs
- first inclusion can be strengthened to $\text{DTIME}(s(n)) \subseteq \text{SPACE}(\frac{s(n)}{\log n})$

Configuration Graphs

Let *M* be a deterministic or non-deterministic TM using s(n) space. Let *x* be some input.

Configuration Graphs

Let *M* be a deterministic or non-deterministic TM using s(n) space. Let *x* be some input.

- this induces a configuration graph G(M, x)
- nodes are configuration
 - state
 - content of work tapes
- edges are transitions (steps) that M can take

Properties of configuration graph

- outdegree of G(M, x) is 1 if *M* is deterministic; 2 if *M* is non-deterministic
- G(M, x) has at most $|Q| \cdot \Gamma^{c \cdot s(n)}$ nodes (c some constant)
- which is in 2^{O(s(n))}
- G(M, x) can be made to have unique source and sink
- acceptance ~ existence of path from source to sink
- which can be checked in time O(G(M, x))

Properties of configuration graph

- outdegree of G(M, x) is 1 if M is deterministic; 2 if M is non-deterministic
- G(M, x) has at most $|Q| \cdot \Gamma^{c \cdot s(n)}$ nodes (*c* some constant)
- which is in 2^{O(s(n))}
- G(M, x) can be made to have unique source and sink
- acceptance ~ existence of path from source to sink
- which can be checked in time O(G(M, x))
- \Rightarrow NSPACE(s(n)) \subseteq DTIME($2^{O(s(n))}$) (using BFS)

References

- regular expression inequivalence from *Schöning* Theoretische Informatik – kurzgefasst
- the proof of Ladner's theorem given here follows AB, Th. 3.3
- nice survey, see blog.computationalcomplexity.org/media/ladner.pdf
- original proof of time hierarchy by *Hartmanis and Stearns* On the computational complexity of algorithms in Transactions of the American Mathematical Society 117.
- non-det time hierarchy by Stephen Cook: A hierarchy for nondeterministic time complexity in 4th annual ACM Symposium on Theory of Computing.
- stronger result on time vs space using pebble games by *Hopcroft*, *Paul, and Valiant* On time versus space in Journal of the ACM 24(2):332-337, April 1977.

Conclusion

Summary

- a lot of diagonalization
- Ladner: NP-intermediate languages exist
- $f \cdot \log f \in o(g)$ implies $\mathsf{DTIME}(f(n)) \subset \mathsf{DTIME}(g(n))$
- $f \in o(g)$ implies SPACE $(f(n)) \subset$ SPACE(g(n))
- $DTIME(f(n)) \subseteq SPACE(s(n)) \subseteq NSPACE(s(n)) \subseteq DTIME(2^{O(s(n))})$
- $P \subset EXP$ and $L \subset PSPACE$

Next time: **PSPACE**