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Hierarchies
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Regular Expression Equivalence — Recap

A regular expression over {0, 1} is defined by

r=011]|rr|rrirnr]|r

The language defined by r is written £(r).

let o = Ci A ... A Cy be a Boolean formula in 3CNF over variables
X{,...,Xn

compute from ¢ a regular expression: f(¢)=(a1l@z|...|lam)
@i =%t .--VYin

0 xj € G
yi=1q 1 X € Gi

(0[1) otherwise

example: (x Vy Vv Z) A (y Vv z Vv w) transformed to (001(0[1)) |
(0[1)100)
observe: ¢ is unsatisfiable iff f(¢) = {0, 1}"
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Ladner’s theorem

Ladner’s Theorem

NP-intermediate languages do exist!

Theorem (Ladner)
If P # NP then there exists a language L € NP \ P that is not NP-complete.



Ladner’s theorem

Proof Roadmap

. P # NP implies SAT ¢ P

construct language L € NP such that

21 L¢P

2.2 L not NP-complete

L = {¢017("M-"-1| , € SAT, |¢| = n} padding SAT

f and L constructed by diagonalization by enumerating all languages
in P

show that L € P implies SAT € P (contradiction!)

assume L is NP-complete, then there is a polynomial reduction from

SAT, which yields a polynomial algorithm to decide SAT
(contradiction!)
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Time Hierarchy Theorem

Theorem (Time Hierarchy)

Letf,g : N — N be time-constructible such that f - log f € o(g). Then
DTIME(f(n)) c DTIME(g(n)).

inclusion is strict

proof: diagonalization, simulate My on x for g(|x|) steps
shows that P does not collapse to level k

logarithmic factor due to slowdown in universal simulation

corollary: P c EXP



Hierarchy Theorems

Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Letf,g : N — N be time-constructible such that f(n + 1) € o(g(n)). Then
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Hierarchy Theorems

Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Letf,g : N — N be time-constructible such that f(n + 1) € o(g(n)). Then
NTIME(f(n)) c NTIME(g(n)).

e inclusion is strict
e proof by lazy diagonalization (see: AB Th. 3.2)
e note: proof of deterministic theorem does not carry over
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Space Hierarchy Theorem

Theorem (Space Hierarchy)

Letf,g : N — N be space-constructible such that f € o(g). Then
SPACE(f(n)) c SPACE(g(n)).

inclusion is strict
stronger theorem than corresponding time theorem

¢ only constant space overhead
e f, g can be logarithmic too

proof analogous to deterministic time hierarchy
corollary: L c PSPACE
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Hierarchy Theorems

Relation between time and space

Theorem (Time vs. Space)
Let s : N — N be space-constructible. Then

DTIME(s(n)) < SPACE(s(n)) € NSPACE(s(n))  DTIME(29(("))

inclusions are non-strict

first two are obvious
third inclusion requires notion of configuration graphs
first inclusion can be strengthened to DTIME(s(n)) € SPACE(%)
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Hierarchy Theorems

Configuration Graphs

Let M be a deterministic or non-deterministic TM using s(n) space. Let x
be some input.

o this induces a configuration graph G(M, x)
e nodes are configuration

o state
e content of work tapes

e edges are transitions (steps) that M can take
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Properties of configuration graph

e outdegree of G(M, x) is 1 if M is deterministic; 2 if M is
non-deterministic

e G(M, x) has at most |Q| - F°*(") nodes (¢ some constant)
o which is in 20(s(")

e G(M, x) can be made to have unique source and sink

e acceptance ~ existence of path from source to sink
 which can be checked in time O(G(M, x))
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Properties of configuration graph

e outdegree of G(M, x) is 1 if M is deterministic; 2 if M is
non-deterministic

e G(M, x) has at most |Q| - F°*(") nodes (¢ some constant)
o which is in 20(s(")
e G(M, x) can be made to have unique source and sink
e acceptance ~ existence of path from source to sink
 which can be checked in time O(G(M, x))

= NSPACE(s(n)) c DTIME(29(s(M)) (using BFS)
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Conclusion

Summary

a lot of diagonalization

Ladner: NP-intermediate languages exist

f-logf € o(g) implies DTIME(f(n)) c DTIME(g(n))

f € o(g) implies SPACE(f(n)) c SPACE(g(n))

DTIME(f(n)) € SPACE(s(n)) € NSPACE(s(n)) € DTIME(29(s(m))
P c EXP and L c PSPACE

Next time: PSPACE
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