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Lecture 7

Hierarchies



Regular Expression Equivalence – Recap

A regular expression over {0, 1} is defined by

r ::= 0 | 1 | rr | r |r | r ∩ r | r∗

The language defined by r is written L(r).

• let ϕ = C1 ∧ . . . ∧ Cm be a Boolean formula in 3CNF over variables
x1, . . . , xn

• compute from ϕ a regular expression: f(ϕ)=(α1|α2| . . . |αm)

• αi = γi1 . . . γin

• γij =


0 xj ∈ Ci

1 xj ∈ Ci

(0|1) otherwise

• example: (x ∨ y ∨ z) ∧ (y ∨ z ∨ w) transformed to (001(0|1)) |
(0|1)100)

• observe: ϕ is unsatisfiable iff f(ϕ) = {0, 1}n
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Agenda

• proof of Ladner’s theorem
• deterministic time hierarchy theorem
• non-deterministic time hierarchy theorem
• space hierarchy theorem
• relation between space and time



Ladner’s theorem

Ladner’s Theorem

NP-intermediate languages do exist!

Theorem (Ladner)

If P , NP then there exists a language L ⊆ NP \ P that is not NP-complete.



Ladner’s theorem

Proof Roadmap

1. P , NP implies SAT < P
2. construct language L ∈ NP such that

2.1 L < P
2.2 L not NP-complete

3. L = {ϕ01f(n)−n−1 | ϕ ∈ SAT, |ϕ| = n} padding SAT

4. f and L constructed by diagonalization by enumerating all languages
in P

5. show that L ∈ P implies SAT ∈ P (contradiction!)

6. assume L is NP-complete, then there is a polynomial reduction from
SAT, which yields a polynomial algorithm to decide SAT
(contradiction!)



Hierarchy Theorems

Agenda

• proof of Ladner’s theorem X
• deterministic time hierarchy theorem
• non-deterministic time hierarchy theorem
• space hierarchy theorem
• relation between space and time



Hierarchy Theorems

Time Hierarchy Theorem

Theorem (Time Hierarchy)

Let f , g : N→ N be time-constructible such that f · log f ∈ o(g). Then
DTIME(f(n)) ⊂ DTIME(g(n)).

• inclusion is strict
• proof: diagonalization, simulate Mx on x for g(|x |) steps
• shows that P does not collapse to level k
• logarithmic factor due to slowdown in universal simulation
• corollary: P ⊂ EXP
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Hierarchy Theorems

Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Let f , g : N→ N be time-constructible such that f(n + 1) ∈ o(g(n)). Then
NTIME(f(n)) ⊂ NTIME(g(n)).

• inclusion is strict
• proof by lazy diagonalization (see: AB Th. 3.2)
• note: proof of deterministic theorem does not carry over
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Hierarchy Theorems

Space Hierarchy Theorem

Theorem (Space Hierarchy)

Let f , g : N→ N be space-constructible such that f ∈ o(g). Then
SPACE(f(n)) ⊂ SPACE(g(n)).

• inclusion is strict
• stronger theorem than corresponding time theorem

• only constant space overhead
• f , g can be logarithmic too

• proof analogous to deterministic time hierarchy
• corollary: L ⊂ PSPACE
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Hierarchy Theorems

Relation between time and space

Theorem (Time vs. Space)

Let s : N→ N be space-constructible. Then

DTIME(s(n)) ⊆ SPACE(s(n)) ⊆ NSPACE(s(n)) ⊆ DTIME(2O(s(n)))

• inclusions are non-strict
• first two are obvious
• third inclusion requires notion of configuration graphs

• first inclusion can be strengthened to DTIME(s(n)) ⊆ SPACE(
s(n)
log n )
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Hierarchy Theorems

Configuration Graphs

Let M be a deterministic or non-deterministic TM using s(n) space. Let x
be some input.

• this induces a configuration graph G(M, x)

• nodes are configuration
• state
• content of work tapes

• edges are transitions (steps) that M can take
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Hierarchy Theorems

Properties of configuration graph

• outdegree of G(M, x) is 1 if M is deterministic; 2 if M is
non-deterministic

• G(M, x) has at most |Q | · Γc·s(n) nodes (c some constant)
• which is in 2O(s(n))

• G(M, x) can be made to have unique source and sink
• acceptance ∼ existence of path from source to sink
• which can be checked in time O(G(M, x))

⇒ NSPACE(s(n)) ⊆ DTIME(2O(s(n))) (using BFS)
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Conclusion
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Conclusion

Summary

• a lot of diagonalization
• Ladner: NP-intermediate languages exist
• f · log f ∈ o(g) implies DTIME(f(n)) ⊂ DTIME(g(n))

• f ∈ o(g) implies SPACE(f(n)) ⊂ SPACE(g(n))

• DTIME(f(n)) ⊆ SPACE(s(n)) ⊆ NSPACE(s(n)) ⊆ DTIME(2O(s(n)))
• P ⊂ EXP and L ⊂ PSPACE

Next time: PSPACE
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