Complexity Theory

Jan Kretinsky

Chair for Foundations of Software Reliability and Theoretical Computer Science
Technical University of Munich

Summer 2016

Based on slides by Jorg Kreiker

Lecture 7

Hierarchies

Regular Expression Equivalence — Recap

A regular expression over {0, 1} is defined by
r=011]|rr|rrirnr]|r

The language defined by r is written £(r).

Regular Expression Equivalence — Recap

A regular expression over {0, 1} is defined by
r=011]|rr|rrirnr]|r
The language defined by r is written £(r).

e leto =Cy A...A Cpbe aBoolean formula in 3CNF over variables
X{,...,Xn

Regular Expression Equivalence — Recap

A regular expression over {0, 1} is defined by
r=011]|rr|rrirnr]|r
The language defined by r is written £(r).

e leto =Cy A...A Cpbe aBoolean formula in 3CNF over variables
X{,...,Xn

o compute from ¢ a regular expression: f(¢)=(a1l@z|...lam)

Regular Expression Equivalence — Recap

A regular expression over {0, 1} is defined by
r=011]|rr|rrirnr]|r
The language defined by r is written £(r).

e leto =Cy A...A Cpbe aBoolean formula in 3CNF over variables
X{,...,Xn
o compute from ¢ a regular expression: f(¢)=(a1l@z|...lam)

® @ =Yit..-Yin

Regular Expression Equivalence — Recap

A regular expression over {0, 1} is defined by
r=011]|rr|rrirnr]|r

The language defined by r is written £(r).

let o = Ci A ... A Cy be a Boolean formula in 3CNF over variables
X{,...,Xn

compute from ¢ a regular expression: f(¢)=(a1l@z|...|lam)

® @ =Yit..-Yin

0 xj € G
yi=1q 1 X € Gi

(0]1) otherwise

Regular Expression Equivalence — Recap

A regular expression over {0, 1} is defined by
r=011]|rr|rrirnr]|r
The language defined by r is written £(r).

e leto =Cy A...A Cpbe aBoolean formula in 3CNF over variables
X{,...,Xn

o compute from ¢ a regular expression: f(¢)=(a1l@z|...lam)
¢ @ =%it.--Yin

0 xj € G
o yj=1 1 X € Ci

(0[1) otherwise

e example: (x Vy VvV Z) A (yV zV w) transformed to (001(0[1)) |
(0[1)100)

Regular Expression Equivalence — Recap

A regular expression over {0, 1} is defined by

r=011]|rr|rrirnr]|r

The language defined by r is written £(r).

let o = Ci A ... A Cy be a Boolean formula in 3CNF over variables
X{,...,Xn

compute from ¢ a regular expression: f(¢)=(a1l@z|...|lam)
@i =%t .--VYin

0 xj € G
yi=1q 1 X € Gi

(0[1) otherwise

example: (x Vy Vv Z) A (y Vv z Vv w) transformed to (001(0[1)) |
(0[1)100)
observe: ¢ is unsatisfiable iff f(¢) = {0, 1}"

Agenda

proof of Ladner’s theorem

deterministic time hierarchy theorem
non-deterministic time hierarchy theorem
space hierarchy theorem

relation between space and time

Ladner’s theorem

Ladner’s Theorem

NP-intermediate languages do exist!

Theorem (Ladner)
If P # NP then there exists a language L € NP \ P that is not NP-complete.

Ladner’s theorem

Proof Roadmap

. P # NP implies SAT ¢ P

construct language L € NP such that

21 L¢P

2.2 L not NP-complete

L = {¢017("M-"-1| , € SAT, |¢| = n} padding SAT

f and L constructed by diagonalization by enumerating all languages
in P

show that L € P implies SAT € P (contradiction!)

assume L is NP-complete, then there is a polynomial reduction from

SAT, which yields a polynomial algorithm to decide SAT
(contradiction!)

Hierarchy Theorems

Agenda

proof of Ladner’s theorem v/

deterministic time hierarchy theorem

non-deterministic time hierarchy theorem
space hierarchy theorem
relation between space and time

Hierarchy Theorems

Time Hierarchy Theorem

Theorem (Time Hierarchy)

Letf,g : N — N be time-constructible such that f - log f € o(g). Then
DTIME(f(n)) c DTIME(g(n)).

Hierarchy Theorems

Time Hierarchy Theorem

Theorem (Time Hierarchy)

Letf,g : N — N be time-constructible such that f - log f € o(g). Then
DTIME(f(n)) c DTIME(g(n)).

inclusion is strict

proof: diagonalization, simulate My on x for g(|x|) steps
shows that P does not collapse to level k

logarithmic factor due to slowdown in universal simulation

corollary: P c EXP

Hierarchy Theorems

Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Letf,g : N — N be time-constructible such that f(n + 1) € o(g(n)). Then
NTIME(f(n)) c NTIME(g(n)).

Hierarchy Theorems

Non-deterministic versions

Theorem (Time Hierarchy (non-det))

Letf,g : N — N be time-constructible such that f(n + 1) € o(g(n)). Then
NTIME(f(n)) c NTIME(g(n)).

e inclusion is strict
e proof by lazy diagonalization (see: AB Th. 3.2)
e note: proof of deterministic theorem does not carry over

Hierarchy Theorems

Space Hierarchy Theorem

Theorem (Space Hierarchy)

Let f,g : N — N be space-constructible such that f € o(g). Then
SPACE(f(n)) c SPACE(g(n)).

Hierarchy Theorems

Space Hierarchy Theorem

Theorem (Space Hierarchy)

Letf,g : N — N be space-constructible such that f € o(g). Then
SPACE(f(n)) c SPACE(g(n)).

inclusion is strict
stronger theorem than corresponding time theorem

¢ only constant space overhead
e f, g can be logarithmic too

proof analogous to deterministic time hierarchy
corollary: L c PSPACE

Hierarchy Theorems

Agenda

proof of Ladner’s theorem v/

deterministic time hierarchy theorem v/

non-deterministic time hierarchy theorem v/
space hierarchy theorem v/
relation between space and time

Hierarchy Theorems

Relation between time and space

Theorem (Time vs. Space)
Let s : N — N be space-constructible. Then

DTIME(s(n)) € SPACE(s(n)) € NSPACE(s(n)) € DTIME(29(("))

Hierarchy Theorems

Relation between time and space

Theorem (Time vs. Space)
Let s : N — N be space-constructible. Then

DTIME(s(n)) < SPACE(s(n)) € NSPACE(s(n)) DTIME(29(("))

inclusions are non-strict

first two are obvious
third inclusion requires notion of configuration graphs
first inclusion can be strengthened to DTIME(s(n)) € SPACE(%)

Hierarchy Theorems

Configuration Graphs

Let M be a deterministic or non-deterministic TM using s(n) space. Let x
be some input.

Hierarchy Theorems

Configuration Graphs

Let M be a deterministic or non-deterministic TM using s(n) space. Let x
be some input.

o this induces a configuration graph G(M, x)
e nodes are configuration

o state
e content of work tapes

e edges are transitions (steps) that M can take

Hierarchy Theorems

Properties of configuration graph

e outdegree of G(M, x) is 1 if M is deterministic; 2 if M is
non-deterministic

e G(M, x) has at most |Q| - F°*(") nodes (¢ some constant)
o which is in 20(s(")

e G(M, x) can be made to have unique source and sink

e acceptance ~ existence of path from source to sink
 which can be checked in time O(G(M, x))

Hierarchy Theorems

Properties of configuration graph

e outdegree of G(M, x) is 1 if M is deterministic; 2 if M is
non-deterministic

e G(M, x) has at most |Q| - F°*(") nodes (¢ some constant)
o which is in 20(s(")
e G(M, x) can be made to have unique source and sink
e acceptance ~ existence of path from source to sink
 which can be checked in time O(G(M, x))

= NSPACE(s(n)) c DTIME(29(s(M)) (using BFS)

Conclusion

References

regular expression inequivalence from Schéning Theoretische
Informatik — kurzgefasst

the proof of Ladner’s theorem given here follows AB, Th. 3.3

nice survey, see
blog.computationalcomplexity.org/media/ladner.pdf

original proof of time hierarchy by Hartmanis and Stearns On the
computational complexity of algorithms in Transactions of the
American Mathematical Society 117.

non-det time hierarchy by Stephen Cook: A hierarchy for
nondeterministic time complexity in 4th annual ACM Symposium on
Theory of Computing.

stronger result on time vs space using pebble games by Hopcroft,
Paul, and Valiant On time versus space in Journal of the ACM
24(2):332-337, April 1977.

Conclusion

Summary

a lot of diagonalization

Ladner: NP-intermediate languages exist

f-logf € o(g) implies DTIME(f(n)) c DTIME(g(n))

f € o(g) implies SPACE(f(n)) c SPACE(g(n))

DTIME(f(n)) € SPACE(s(n)) € NSPACE(s(n)) € DTIME(29(s(m))
P c EXP and L c PSPACE

Next time: PSPACE

	Ladner's theorem
	Hierarchy Theorems
	Conclusion

