Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science
Technical University of Munich
Summer 2016

Based on slides by Jörg Kreiker

Lecture 4

NP-completeness

Recap: relations between classes

Agenda

- efficiently checkable certificates
- reductions, hardness, completeness
- Cook-Levin: 3SAT is NP-complete

NP: efficiently checkable certificates

NP computable with NDTM in polynomial time.

NP: efficiently checkable certificates

NP computable with NDTM in polynomial time.
Theorem (Certificates)
For every $L \subseteq\{0,1\}^{*}$ holds: $L \in$ NP if and only if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM M such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)} \cdot M(x, u)=1
$$

NP: efficiently checkable certificates

NP computable with NDTM in polynomial time.
Theorem (Certificates)
For every $L \subseteq\{0,1\}^{*}$ holds: $L \in N P$ if and only if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM M such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)} \cdot M(x, u)=1
$$

- M is called verifier
- u is called certificate

NP: efficiently checkable certificates

NP computable with NDTM in polynomial time.
Theorem (Certificates)
For every $L \subseteq\{0,1\}^{*}$ holds: $L \in N P$ if and only if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time TM M such that for every $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)} \cdot M(x, u)=1
$$

- M is called verifier
- u is called certificate

Proof:
\Rightarrow certificate is sequence of choices
\Leftarrow NDTM guesses certificate

Examples

- Indset: certificate is set of nodes, size of certificate for k nodes in graph with n nodes $O(k \log n)$
- 0/1-ILP: given a list of m linear inequalities with rational coefficients over variables x_{1}, \ldots, x_{k}; find out if there is an assignment of $0 s$ and 1s to x_{i} satisfying all inequalities; certificate is assignment.
- Iso: given two $n \times n$ adjacency matrices; do they define isomorphic graphs; certificate is a permutation $\pi:[n] \rightarrow[n]$

Agenda

- efficiently checkable certificates \checkmark
- reductions, hardness, completeness
- Cook-Levin: 3SAT is NP-complete

Reductions - reminder

IF - there is an efficient procedure for problem A and

- and an efficient procedure for B using the procedure for A
THEN B cannot be radically harder than A
notation: $B \leq A$

We have seen (at least) two reductions.

- 3-Coloring was reduced to Indset
- the diagonalized, undecidable language reduced to Halt
- reduction does not make anything smaller

Reductions - definition

Definition (Karp reduction)

Let $L, L^{\prime} \subseteq\{0,1\}^{*}$ be languages. L is polynomial-time Karp reducible to L^{\prime} iff there exists a polynomial-time computable funtion $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow f(x) \in L^{\prime}
$$

We write $L \leq_{p} L^{\prime}$.

Reductions - definition

Definition (Karp reduction)

Let $L, L^{\prime} \subseteq\{0,1\}^{*}$ be languages. L is polynomial-time Karp reducible to L^{\prime} iff there exists a polynomial-time computable funtion $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$

$$
x \in L \Leftrightarrow f(x) \in L^{\prime}
$$

We write $L \leq_{p} L^{\prime}$.

Note: \leq_{p} is a transitive relation on languages (because the composition of polynomials is a polynomial).

Hardness and Completeness

Definition (NP-hardness and -completness)
Let $L \subseteq\{0,1\}^{*}$ be a language.

- L is NP-hard if $L^{\prime} \leq_{p} L$ for every $L^{\prime} \in N P$
- L is NP-complete if L is NP-hard and $L \in N$.

Hardness and Completeness

Definition (NP-hardness and -completness)
Let $L \subseteq\{0,1\}^{*}$ be a language.

- L is NP-hard if $L^{\prime} \leq_{p} L$ for every $L^{\prime} \in N P$
- L is NP-complete if L is NP-hard and $L \in N$.

Examples of NP-hard languages: Indset, Halt ${ }_{\mathrm{k}}$, Halt

Hardness and Completeness

Definition (NP-hardness and -completness)
Let $L \subseteq\{0,1\}^{*}$ be a language.

- L is NP-hard if $L^{\prime} \leq_{p} L$ for every $L^{\prime} \in N P$
- L is NP-complete if L is NP-hard and $L \in N P$.

Examples of NP-hard languages: Indset, Halt ${ }_{\mathrm{k}}$, Halt

Observation

- L NP-hard and $L \in P$ implies $P=N P$
- L NP-complete implies $L \in \mathrm{P}$ iff $\mathrm{P}=\mathrm{NP}$

Do NP-complete languages exist?

- upcoming result independently discovered by Cook (1971) and Levin (1973)
- uses notion of satisfiable Boolean formulas
- Boolean formula φ over variables $X=\left\{x_{1}, \ldots, x_{k}\right\}$ defined by

$$
\varphi::=x|\neg \varphi| \varphi \wedge \varphi \mid \varphi \vee \varphi
$$

- write \bar{x} instead of $\neg x, x$ and \bar{x} literals u
- assume formulas are in CNF:

$$
\varphi=\bigwedge_{i} \bigvee_{j} u_{i j}
$$

- disjunctions $\bigvee_{j} u_{i_{j}}$ called clauses
- formula is in k-CNF if the no clause has more than k literals

Cook-Levin Theorem

- φ is satisfiable iff there exists an assignments $a: X \rightarrow\{0,1\}$ making φ true
- 3SAT $=\{\varphi \mid \varphi$ in 3-CNF and satisfiable $\}$

Theorem 3SAT is NP-complete.

Proof agenda

1. SAT is NP-complete (without restriction to clauses of size three)
1.1 SAT, 3SAT \in NP
1.2 for every $L \in N P L \leq_{p}$ SAT
2. Show that SAT $\leq_{p} 3$ SAT

What have we learnt?

- NP is polynomial certificates
- Karp reductions, hardness, completeness
- Cook-Levin: reduce any language in NP to 3SAT
- up next: more NP-complete problems, P vs. NP, tool demos

