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Lecture 22

Models of Parallel Computation



Goal and plan

Goal
¢ introduce two models of parallel computation
e understand why they are equivalent

Plan
o PRAM: parallel random access machine
e circuits
e some complexity class definitions



Random access machine

RAM: more realistic model of sequential computation, which can be
simulated by standard TMs with polynomial overhead.

e computation unit with user-defined program

e read-only input tape, write-only output tape, unbounded
number of local memory cells

e memory cells can hold unbounded integers

e instructions include

e moving data between memory cells
e comparisons and branches
e simple arithmetic operations

o all operations take unit time



Parallel random access machine

PRAM: parallel extension of RAM

unbounded collection of RAM processors without tapes:
PO,P1,P2,...

unbounded collection of shared memory cells:

M[o], M[1], M[2], ...

each P; has its own local memory (registers)

input: n items stored in M[0],..., M[n - 1]

output stored on some designated part of memory

instructions execute in 3-phase cycles

e read from shared memory
¢ |ocal computation
e write to shared memory

processors execute cycles synchronously
Py starts and halts execution



Read/write conflicts

It may happen that several processors want to read from or write to
the same memory cell in one cycle.



Read/write conflicts

It may happen that several processors want to read from or write to
the same memory cell in one cycle.

Three policies:
EREW : exclusive read/exclusive write

CREW : concurrent read/exclusive write allows for
simultaneous reads

CRCW : simultaneous read and write allowed



Practical concerns

e idealized: PRAMs are an abstract, idealized formalism
e unbounded integers
e communication between any two processors in constant time

due to shared memory (in reality: interconnection networks)

e t00 many processors

e CRCW and CREW hard to build technically but easier to

design algorithms
o still useful as benchmark

o if there is no good PRAM algorithm, probably the problem is
hard to parallelize



Time and space complexity

time complexity: number of steps of Pgy
space complexity: number of shared memory cells accessed

one can show that the weakest PRAM (EREW) can simulate
the strongest with logarithmic overhead; cf. search-example
efficient parallel computation

e polynomially many processors

e polylogarithmic time, where polylog(n) = -1 log* n
problems with efficient parallel algorithms are said to be in NC
NC is robust wrt different PRAM models (and circuits)



Example: Search

Example

Given n items on the shared memory tape and p +1 < n
processors. For some x € N Py wants to know, whether there exists
an 0 < i < n such that M[i] = x.



Example: Search

Example

Given n items on the shared memory tape and p +1 < n
processors. For some x € N Py wants to know, whether there exists
an 0 < i < n such that M[i] = x.

Solution (high level):
1. Py publishes x
2. for 1 <i < p each P; searches through
M5 = 1)L..... MTg1i = 1]
3. each P; announces its search result



Analysis

Step 2 need n/p parallel time independently of PRAM model.
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Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

e needs O(1) time in CRCW and CREW since Py can simply
write x on the shared tape which everybody can read
simultaneously

e needs log p steps in EREW by binary broadcast tree
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Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

e needs O(1) time in CRCW and CREW since Py can simply
write x on the shared tape which everybody can read
simultaneously

e needs log p steps in EREW by binary broadcast tree

Step 3

e needs O(1) time in CRCW only, where all successful
processors indicate success in the same memory cell

o otherwise, we need log p time to perform a parallel reduction
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Other problems in NC

Many practical problems are known to be in NC, for details, take
some class on parallel algorithms.

e sorting

e matrix multiplication

e expression evaluation

e connected components of graphs

¢ string matching



Signpost

Just seen:
e RAMs and PRAMs
e CRCW, CREW, EREW
¢ simulations between models have at most logarithmic overhead

o efficient parallel ~ polylogarithmic (stable under different PRAM
models)

Next:
e Boolean circuits as parallel model of computation

e equivalence with respect to efficient parallel algorithms of
PRAM and circuits
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Boolean Circuits

Definition
A Boolean circuit,C, is a directed acyclic graph with labeled nodes.

e the input nodes are labeled with a variable x; or with a constant
Oorf

¢ the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
e A (fan-in k)
e V (fan-in k)
e — (fan-in 1)

e the output nodes are labeled output and have fan-out 0
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Boolean Circuits

Definition
A Boolean circuit,C, is a directed acyclic graph with labeled nodes.
e the input nodes are labeled with a variable x; or with a constant
Oorf
¢ the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
e A (fan-in k)
e V (fan-in k)
e — (fan-in 1)
o the output nodes are labeled output and have fan-out 0

Given an assignment o : {0, 1} — {0, 1} to the m variables, C(o)
denotes the value of the o output nodes. We denote by size(C) the
number of gates and by depth(C) the maximum distance from an
input to an output.
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Boolean Circuits

Definition
A Boolean circuit,C, is a directed acyclic graph with labeled nodes.
e the input nodes are labeled with a variable x; or with a constant
Oorf
¢ the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
e A (fan-in k)
e V (fan-in k)
e — (fan-in 1)
o the output nodes are labeled output and have fan-out 0

Given an assignment o : {0, 1} — {0, 1} to the m variables, C(o)
denotes the value of the o output nodes. We denote by size(C) the
number of gates and by depth(C) the maximum distance from an
input to an output.

We distinguish circuits with and without a-priori bounds on fan-in.
Wilog we assume that all negations appear in the input layer only.
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Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2""1 — {0, 1}



Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2"*1 — {0, 1}
Ripple carry adder

e n sequential full adder

e depth: O(n)

e size: O(n)



Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2""1 — {0, 1}
Ripple carry adder
e n sequential full adder
e depth: O(n)
e size: O(n)
Conditional sum adder
e depth: O(log n)
e size: O(nlogn)



Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2""1 — {0, 1}
Ripple carry adder

e n sequential full adder

e depth: O(n)

e size: O(n)
Conditional sum adder

e depth: O(log n)

e size: O(nlogn)
Carry lookahead adder

e depth: O(log n)

e size: O(n)



Deciding languages with circuits

Definition

A language L C {0, 1}* is said to be decided by a family of circuits
{Cn}, where C; takes i input variables, iff for all i holds:

Ci(x) = xL(x), where y (x) is 1iff x € L.
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Deciding languages with circuits

Definition

A language L C {0, 1}* is said to be decided by a family of circuits
{Cn}, where C; takes i input variables, iff for all i holds:

Ci(x) = xL(x), where y (x) is 1iff x € L.

Definition
Let d,s : N — N be functions. We say that a family {C,,} has depth
d and size s if for all n

e depth(Cy) < d(n)

e size(Cp) < s(n)
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Examples

Example (Parity)
Parity = {x € {0, 1}* | x has an odd number of 1s}
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Examples

Example (Parity)
Parity = {x € {0, 1}* | x has an odd number of 1s}

e circuits are binary trees of xor gates
e each xor-gate has depth 3
= logarithmic depth
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Example (Parity)
Parity = {x € {0, 1}* | x has an odd number of 1s}

e circuits are binary trees of xor gates
e each xor-gate has depth 3
= logarithmic depth

Example (UHalt)
UHalt = {1 |
n’s binary expansion encodes a pair (M, x) such that M halts on x}
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Examples

Example (Parity)
Parity = {x € {0, 1}* | x has an odd number of 1s}

e circuits are binary trees of xor gates
e each xor-gate has depth 3
= logarithmic depth

Example (UHalt)
UHalt = {1 |
n’s binary expansion encodes a pair (M, x) such that M halts on x}

e circuit family of linear size decides UHalt even though it is
undecidable

e for each nwith 1”7 € UHalt is a tree of and-gates
e otherwise, constant O circuit
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On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.
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On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, {C,} is logspace-uniform if
there exists a logspace TM M such that for every n,

M(1™) = desc(Cy), where desc(Cp) is the description of C,.



On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, {C,} is logspace-uniform if
there exists a logspace TM M such that for every n,
M(1™) = desc(Cy), where desc(Cp) is the description of C,.

Remarks

e a description could be a list of gates along with type and
predecessors

o the circuit family for Parity is logspace-uniform



Signpost

Just seen:
e circuit definition
o families of circuits decide languages

e there exist families of polynomial size deciding undecidable
languages

= require logspace-uniformity

Next:
e circuits vs PRAMs
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Circuits vs PRAMs

For efficient parallel computations only:
parallel time on PRAM ~ circuit depth
number of processors ~  circuit size

circuits - PRAM

suppose L decided by family {C,} of polynomial size N and
depth O(log? n)

a PRAM with N processors decides L:

compute a description of Cp

each circuit node — one processor

each processor computes its output and sends it to all other
processors that need it (might require logarithmic overhead for
non-CR models)

parallel time ~ circuit depth

circuit size ~ number of processors
19



Circuits vs PRAMs

For efficient parallel computations only:
parallel time on PRAM ~ circuit depth
number of processors ~  circuit size

PRAM — circuits
e circuit with N - D nodes in D layers

¢ the i-th node in the t-th layer performs computation of
processor i at time t
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NC and AC

Obviously, variations of PRAMs and circuits are robust wrt.
polynomial size/number of processors and polylogarithmic
depth/parallel run time motivating the following definition.

Definition (NC and AC)

Let k > 0. L € AC¥ iff L is decided by a logspace-uniform family of
circuits with polynomial size and depth O(logX n). If the family of
circuits is of bounded fan-in, then L € NC*.

* NC = Ukso NC*
e AC = Uyzo AC

21



NC and AC

Obviously, variations of PRAMs and circuits are robust wrt.
polynomial size/number of processors and polylogarithmic
depth/parallel run time motivating the following definition.
Definition (NC and AC)

Let k > 0. L € AC¥ iff L is decided by a logspace-uniform family of
circuits with polynomial size and depth O(logX n). If the family of
circuits is of bounded fan-in, then L € NC*.

* NC = Uk=o NC*

e AC = | Ji»o ACK

NC is the class of problems with efficient parallel solutions
AC circuits cannot be build easily in hardware

it is an open problem whether P = NC, that is, whether all
problems in P are efficiently parallelizable (conjecture: no)
Parity € NC' (but not in ACY)
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Summary

three variations of a PRAM

uniform and non-uniform circuit families can decide languages

efficiently parallelizable: NC

circuits and PRAM are equivalent wrt NC problems
Up next: small depth circuits (AC and NC)
o their relation to well-known (space) complexity classes
e some lower bounds
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