Complexity Theory

Jan Kretinsky

Chair for Foundations of Software Reliability
and Theoretical Computer Science
Technical University of Munich

Summer 2016

Based on slides by Jérg Kreiker



Lecture 22

Models of Parallel Computation



Goal and plan

Goal
¢ introduce two models of parallel computation
e understand why they are equivalent

Plan
o PRAM: parallel random access machine
e circuits
e some complexity class definitions



Random access machine

RAM: more realistic model of sequential computation, which can be
simulated by standard TMs with polynomial overhead.

e computation unit with user-defined program

e read-only input tape, write-only output tape, unbounded
number of local memory cells

e memory cells can hold unbounded integers

e instructions include

e moving data between memory cells
e comparisons and branches
e simple arithmetic operations

o all operations take unit time



Parallel random access machine

PRAM: parallel extension of RAM

unbounded collection of RAM processors without tapes:
PO,P1,P2,...

unbounded collection of shared memory cells:

M[o], M[1], M[2], ...

each P; has its own local memory (registers)

input: n items stored in M[0],..., M[n - 1]

output stored on some designated part of memory

instructions execute in 3-phase cycles

e read from shared memory
¢ |ocal computation
e write to shared memory

processors execute cycles synchronously
Py starts and halts execution



Read/write conflicts

It may happen that several processors want to read from or write to
the same memory cell in one cycle.



Read/write conflicts

It may happen that several processors want to read from or write to
the same memory cell in one cycle.

Three policies:
EREW : exclusive read/exclusive write

CREW : concurrent read/exclusive write allows for
simultaneous reads

CRCW : simultaneous read and write allowed



Practical concerns

e idealized: PRAMs are an abstract, idealized formalism
e unbounded integers
e communication between any two processors in constant time

due to shared memory (in reality: interconnection networks)

e t00 many processors

e CRCW and CREW hard to build technically but easier to

design algorithms
o still useful as benchmark

o if there is no good PRAM algorithm, probably the problem is
hard to parallelize



Time and space complexity

time complexity: number of steps of Pgy
space complexity: number of shared memory cells accessed

one can show that the weakest PRAM (EREW) can simulate
the strongest with logarithmic overhead; cf. search-example
efficient parallel computation

e polynomially many processors

e polylogarithmic time, where polylog(n) = -1 log* n
problems with efficient parallel algorithms are said to be in NC
NC is robust wrt different PRAM models (and circuits)



Example: Search

Example

Given n items on the shared memory tape and p +1 < n
processors. For some x € N Py wants to know, whether there exists
an 0 < i < n such that M[i] = x.



Example: Search

Example

Given n items on the shared memory tape and p +1 < n
processors. For some x € N Py wants to know, whether there exists
an 0 < i < n such that M[i] = x.

Solution (high level):
1. Py publishes x
2. for 1 <i < p each P; searches through
M5 = 1)L..... MTg1i = 1]
3. each P; announces its search result



Analysis

Step 2 need n/p parallel time independently of PRAM model.

10



Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

e needs O(1) time in CRCW and CREW since Py can simply
write x on the shared tape which everybody can read
simultaneously

e needs log p steps in EREW by binary broadcast tree

10



Analysis

Step 2 need n/p parallel time independently of PRAM model.

Step 1

e needs O(1) time in CRCW and CREW since Py can simply
write x on the shared tape which everybody can read
simultaneously

e needs log p steps in EREW by binary broadcast tree

Step 3

e needs O(1) time in CRCW only, where all successful
processors indicate success in the same memory cell

o otherwise, we need log p time to perform a parallel reduction

10



Other problems in NC

Many practical problems are known to be in NC, for details, take
some class on parallel algorithms.

e sorting

e matrix multiplication

e expression evaluation

e connected components of graphs

¢ string matching



Signpost

Just seen:
e RAMs and PRAMs
e CRCW, CREW, EREW
¢ simulations between models have at most logarithmic overhead

o efficient parallel ~ polylogarithmic (stable under different PRAM
models)

Next:
e Boolean circuits as parallel model of computation

e equivalence with respect to efficient parallel algorithms of
PRAM and circuits

192



Boolean Circuits

Definition
A Boolean circuit,C, is a directed acyclic graph with labeled nodes.

e the input nodes are labeled with a variable x; or with a constant
Oorf

¢ the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
e A (fan-in k)
e V (fan-in k)
e — (fan-in 1)

e the output nodes are labeled output and have fan-out 0

13



Boolean Circuits

Definition
A Boolean circuit,C, is a directed acyclic graph with labeled nodes.
e the input nodes are labeled with a variable x; or with a constant
Oorf
¢ the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
e A (fan-in k)
e V (fan-in k)
e — (fan-in 1)
o the output nodes are labeled output and have fan-out 0

Given an assignment o : {0, 1} — {0, 1} to the m variables, C(o)
denotes the value of the o output nodes. We denote by size(C) the
number of gates and by depth(C) the maximum distance from an
input to an output.

13



Boolean Circuits

Definition
A Boolean circuit,C, is a directed acyclic graph with labeled nodes.

e the input nodes are labeled with a variable x; or with a constant
Oorf
¢ the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
e A (fan-in k)
e V (fan-in k)
e — (fan-in 1)
o the output nodes are labeled output and have fan-out 0

Given an assignment o : {0, 1} — {0, 1} to the m variables, C(o)
denotes the value of the o output nodes. We denote by size(C) the
number of gates and by depth(C) the maximum distance from an
input to an output.

We distinguish circuits with and without a-priori bounds on fan-in.

13



Boolean Circuits

Definition
A Boolean circuit,C, is a directed acyclic graph with labeled nodes.
e the input nodes are labeled with a variable x; or with a constant
Oorf
¢ the gate nodes have fan-in k > 0 are labeled with one of the
Boolean functions
e A (fan-in k)
e V (fan-in k)
e — (fan-in 1)
o the output nodes are labeled output and have fan-out 0

Given an assignment o : {0, 1} — {0, 1} to the m variables, C(o)
denotes the value of the o output nodes. We denote by size(C) the
number of gates and by depth(C) the maximum distance from an
input to an output.

We distinguish circuits with and without a-priori bounds on fan-in.
Wilog we assume that all negations appear in the input layer only.

13



Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2""1 — {0, 1}



Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2"*1 — {0, 1}
Ripple carry adder

e n sequential full adder

e depth: O(n)

e size: O(n)



Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2""1 — {0, 1}
Ripple carry adder
e n sequential full adder
e depth: O(n)
e size: O(n)
Conditional sum adder
e depth: O(log n)
e size: O(nlogn)



Example: addition

Assume we want to add two n-bit integers, that is, we want circuits
to compute + : {0, 1}2""1 — {0, 1}
Ripple carry adder

e n sequential full adder

e depth: O(n)

e size: O(n)
Conditional sum adder

e depth: O(log n)

e size: O(nlogn)
Carry lookahead adder

e depth: O(log n)

e size: O(n)



Deciding languages with circuits

Definition

A language L C {0, 1}* is said to be decided by a family of circuits
{Cn}, where C; takes i input variables, iff for all i holds:

Ci(x) = xL(x), where y (x) is 1iff x € L.

15



Deciding languages with circuits

Definition

A language L C {0, 1}* is said to be decided by a family of circuits
{Cn}, where C; takes i input variables, iff for all i holds:

Ci(x) = xL(x), where y (x) is 1iff x € L.

Definition
Let d,s : N — N be functions. We say that a family {C,,} has depth
d and size s if for all n

e depth(Cy) < d(n)

e size(Cp) < s(n)

15



Examples

Example (Parity)
Parity = {x € {0, 1}* | x has an odd number of 1s}

16



Examples

Example (Parity)
Parity = {x € {0, 1}* | x has an odd number of 1s}

e circuits are binary trees of xor gates
e each xor-gate has depth 3
= logarithmic depth

16



Examples

Example (Parity)
Parity = {x € {0, 1}* | x has an odd number of 1s}

e circuits are binary trees of xor gates
e each xor-gate has depth 3
= logarithmic depth

Example (UHalt)
UHalt = {1 |
n’s binary expansion encodes a pair (M, x) such that M halts on x}

16



Examples

Example (Parity)
Parity = {x € {0, 1}* | x has an odd number of 1s}

e circuits are binary trees of xor gates
e each xor-gate has depth 3
= logarithmic depth

Example (UHalt)
UHalt = {1 |
n’s binary expansion encodes a pair (M, x) such that M halts on x}

e circuit family of linear size decides UHalt even though it is
undecidable

e for each nwith 1”7 € UHalt is a tree of and-gates
e otherwise, constant O circuit

16



On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.



On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.

Solution: uniformity



On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, {C,} is logspace-uniform if
there exists a logspace TM M such that for every n,

M(1™) = desc(Cy), where desc(Cp) is the description of C,.



On Uniformity

Problem on previous slide: the description of the circuit family is not
computable.

Solution: uniformity

Definition (logspace uniform)

A family of polynomially-sized circuits, {C,} is logspace-uniform if
there exists a logspace TM M such that for every n,
M(1™) = desc(Cy), where desc(Cp) is the description of C,.

Remarks

e a description could be a list of gates along with type and
predecessors

o the circuit family for Parity is logspace-uniform



Signpost

Just seen:
e circuit definition
o families of circuits decide languages

e there exist families of polynomial size deciding undecidable
languages

= require logspace-uniformity

Next:
e circuits vs PRAMs

18



Circuits vs PRAMs

For efficient parallel computations only:
parallel time on PRAM ~ circuit depth
number of processors ~  circuit size

circuits - PRAM

suppose L decided by family {C,} of polynomial size N and
depth O(log? n)

a PRAM with N processors decides L:

compute a description of Cp

each circuit node — one processor

each processor computes its output and sends it to all other
processors that need it (might require logarithmic overhead for
non-CR models)

parallel time ~ circuit depth

circuit size ~ number of processors
19



Circuits vs PRAMs

For efficient parallel computations only:
parallel time on PRAM ~ circuit depth
number of processors ~  circuit size

PRAM — circuits
e circuit with N - D nodes in D layers

¢ the i-th node in the t-th layer performs computation of
processor i at time t

20



NC and AC

Obviously, variations of PRAMs and circuits are robust wrt.
polynomial size/number of processors and polylogarithmic
depth/parallel run time motivating the following definition.

Definition (NC and AC)

Let k > 0. L € AC¥ iff L is decided by a logspace-uniform family of
circuits with polynomial size and depth O(logX n). If the family of
circuits is of bounded fan-in, then L € NC*.

* NC = Ukso NC*
e AC = Uyzo AC

21



NC and AC

Obviously, variations of PRAMs and circuits are robust wrt.
polynomial size/number of processors and polylogarithmic
depth/parallel run time motivating the following definition.
Definition (NC and AC)

Let k > 0. L € AC¥ iff L is decided by a logspace-uniform family of
circuits with polynomial size and depth O(logX n). If the family of
circuits is of bounded fan-in, then L € NC*.

* NC = Uk=o NC*

e AC = | Ji»o ACK

NC is the class of problems with efficient parallel solutions
AC circuits cannot be build easily in hardware

it is an open problem whether P = NC, that is, whether all
problems in P are efficiently parallelizable (conjecture: no)
Parity € NC' (but not in ACY)

21



Summary

three variations of a PRAM

uniform and non-uniform circuit families can decide languages

efficiently parallelizable: NC

circuits and PRAM are equivalent wrt NC problems
Up next: small depth circuits (AC and NC)
o their relation to well-known (space) complexity classes
e some lower bounds

29



