Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science

Technical University of Munich
Summer 2016

Based on slides by Jörg Kreiker

Lecture 21
 $\mathrm{NP} \subseteq \operatorname{PCP}[p o l y(n), 1]$

Recap: Two views of the PCP theorem

prob. checkable proofs		hardness of approximation
PCP verifier V	\leftrightarrow	CSP instance
proof π	\leftrightarrow	variable assignment
$\|\pi\|$	\leftrightarrow	number of vars in CSP
number of queries	\leftrightarrow	arity of constraints
number of random bits	\leftrightarrow	log m, where
		m is number of clauses

Goal and plan

Goal

- proof a weaker PCP theorem
- learn interesing encoding/decoding schemes useful in such proofs

Plan

- proof
- an NP-complete language: Quadeq
- Walsh-Hadamard encodings
- a PCP[poly, 1] system for Quadeq
- summary: PCP and hardness of approximation

Weak PCP

Theorem

$\mathrm{NP} \subseteq$ PCP[poly, 1]

Proof: It suffices to come up with a PCP system for one NP-complete language, where the verifier

- uses polynomially many random bits (exponentially long proofs)
- makes a constant number of queries to that proof

Plan:

- an NP-complete language: Quadeq
- Walsh-Hadamard encodings
- a PCP[poly, 1] system for Quadeq

Disclaimer

All arithmetic today will be modulo 2 , that is, over the field $\{0,1\}$!

- $1+1=0$
- $x^{2}=x$
- $x+y=x-y$

Quadeq

- satisfiable quadratic equations over $\{0,1\}$
- n variables/m equations
- no purely linear terms
- NP-complete (exercise!)

Example (Running example)

$$
\begin{aligned}
& x y+x z=1 \\
& y^{2}+y z+z^{2}=1 \\
& x^{2}+y x+z^{2}=0
\end{aligned}
$$

Quadeq

- satisfiable quadratic equations over $\{0,1\}$
- n variables/m equations
- no purely linear terms
- NP-complete (exercise!)

Example (Running example)

$$
\begin{aligned}
& x y+x z=1 \\
& y^{2}+y z+z^{2}=1 \\
& x^{2}+y x+z^{2}=0
\end{aligned}
$$

Solution: $x=1, y=0, z=1$
as a vector: $\mathbf{s}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$

Be smart, use vector notation

$$
\begin{array}{ccc}
x y+x z & = & 1 \\
y^{2}+y z+z^{2} & = & 1 \\
x^{2}+y x+z^{2} & = & 0
\end{array}
$$

Be smart, use vector notation

$$
\begin{array}{ccc}
x y+x z & = & 1 \\
y^{2}+y z+z^{2} & = & 1 \\
x^{2}+y x+z^{2} & = & 0 \\
\mathbf{s}=\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right) &
\end{array}
$$

vector notation: for a given $m \times n^{2}$ matrix A and m vector \mathbf{b} find solution

$$
\mathbf{u}=\left(\begin{array}{ll}
x & y \\
z
\end{array}\right) \text { such that }
$$

$$
A(\mathbf{u} \otimes \mathbf{u})=\mathbf{b}
$$

$\mathbf{u} \otimes \mathbf{u}$	x^{2}	$x y$	$x z$	$y x$	y^{2}	$y z$	$z x$	$z y$	z^{2}	
$\mathbf{s} \otimes \mathbf{s}$	1	0	1	0	0	0	1	0	1	\mathbf{b}
A	0	1	1	0	0	0	0	0	0	1
	0	0	0	0	1	1	0	0	1	1
	1	0	0	1	0	0	0	0	1	0

Overview

- Quadeq is the language of satisfiable systems of quadratic equations over $\{0,1\}$
- natural PCP system expects a solution \mathbf{u} and checks whether it is valid
- but this yields superconstant number of queries!
- how can we encode a solution such that a constant number of queries suffices?

Overview

- Quadeq is the language of satisfiable systems of quadratic equations over $\{0,1\}$
- natural PCP system expects a solution \mathbf{u} and checks whether it is valid
- but this yields superconstant number of queries!
- how can we encode a solution such that a constant number of queries suffices?
- use longer proofs!
- an NP-complete language: Quadeq \checkmark
- Walsh-Hadamard encodings
- a PCP[poly, 1] system for Quadeq

PCP for Quadeq

Input: $m \times n^{2}$ matrix A, m vector \mathbf{b}
Verifier
Proof π

1. check that f, g are linear functions
2. check that
$g=W H(\mathbf{u} \otimes \mathbf{u})$ where
$f=W H(\mathbf{u})$
3. check that g encodes a satisfying assignment

- $\pi \in\{0,1\}^{2^{n}+2^{n^{2}}}$
- π is a pair of linear functions $\langle f, g\rangle$, i.e. strings from $\{0,1\}^{2^{n}}$ and $\{0,1\}^{2^{n^{2}}}$, resp.
- if u satisfies
$A(\mathbf{u} \otimes \mathbf{u})=\mathbf{b}$ then
$f=W H(\mathbf{u})$ and
$g=W H(\mathbf{u} \otimes \mathbf{u})$ are
Walsh-Hadamard encodings

Walsh-Hadamard encoding

Definition (WH)

Let $\mathbf{u} \in\{0,1\}^{n}$ be a vector. The Walsh-Hadamard encoding of \mathbf{u} written $W H(\mathbf{u})$ is the truth table of the linear function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ where $f(\mathbf{x})=\mathbf{u} \odot \mathbf{x}$. Furthermore $\left(u_{1} \ldots u_{n}\right) \odot\left(x_{1} \ldots x_{n}\right)=\sum_{i=1}^{n} u_{i} x_{i}$

Walsh-Hadamard encoding

Definition (WH)

Let $\mathbf{u} \in\{0,1\}^{n}$ be a vector. The Walsh-Hadamard encoding of \mathbf{u} written $W H(\mathbf{u})$ is the truth table of the linear function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ where $f(\mathbf{x})=\mathbf{u} \odot \mathbf{x}$. Furthermore $\left(u_{1} \ldots u_{n}\right) \odot\left(x_{1} \ldots x_{n}\right)=\sum_{i=1}^{n} u_{i} x_{i}$

Example

The solution to our running example is $\mathbf{s}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$. We have

$$
W H(\mathbf{s})=\left(\begin{array}{lllllll}
0 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

Note: $|W H(\mathbf{u})|=2^{\mid \mathbf{u |}}$

Properties (without proof)

Random subsum principle

- if $\mathbf{u} \neq \mathbf{v}$ then for $1 / 2$ of the choices of \mathbf{x} we have $\mathbf{u} \odot \mathbf{x} \neq \mathbf{v} \odot \mathbf{x}$
- if $\mathbf{u} \neq \mathbf{v}$ then $W H(\mathbf{u})$ and $W H(\mathbf{v})$ differ on at least half their bits

Properties (without proof)

Random subsum principle

- if $\mathbf{u} \neq \mathbf{v}$ then for $1 / 2$ of the choices of \mathbf{x} we have $\mathbf{u} \odot \mathbf{x} \neq \mathbf{v} \odot \mathbf{x}$
- if $\mathbf{u} \neq \mathbf{v}$ then $W H(\mathbf{u})$ and $W H(\mathbf{v})$ differ on at least half their bits

Local linearity testing

- we say that $f, g:\{0,1\}^{n} \rightarrow\{0,1\}$ are ρ-close if

$$
\operatorname{Pr}_{\mathbf{x}_{\in_{R}\{0,1\}^{n}}}[f(\mathbf{x})=g(\mathbf{x})] \geq \rho
$$

- if there exists a $\rho>1 / 2$ s.t.

$$
\operatorname{Pr}_{\mathbf{x}, \mathbf{y} \in_{R}\{0,1\}^{n}}[f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})] \geq \rho
$$

then f is ρ-close to a linear function

PCP for Quadeq

Input: $m \times n^{2}$ matrix A, m vector \mathbf{b}
Verifier
Proof π

1. check that f, g are linear functions
2. check that
$g=W H(\mathbf{u} \otimes \mathbf{u})$ where
$f=W H(\mathbf{u})$
3. check that g encodes a satisfying assignment

- $\pi \in\{0,1\}^{2^{n}+2^{n^{2}}}$
- π is a pair of linear functions $\langle f, g\rangle$, i.e. strings from $\{0,1\}^{2^{n}}$ and $\{0,1\}^{2^{n^{2}}}$, resp.
- if u satisfies
$A(\mathbf{u} \otimes \mathbf{u})=\mathbf{b}$ then
$f=W H(\mathbf{u})$ and
$g=W H(\mathbf{u} \otimes \mathbf{u})$ are
Walsh-Hadamard encodings

Local linearity testing

- we test the linearity condition $(f(x+y)=f(x)+f(y))$ independently $1 / \delta>2$ times, and accept if all tests pass
- we accept a linear function with probability 1
- if f is not $1-\delta$-close to a linear function
- all tests are passed with probability at most $(1-\delta)^{(1 / \delta)}$
\Rightarrow such a function is rejected with probability at least $1-1 / e>1 / 2$
- for instance, we could make a 0.999 linearity test using 1000 trials

Local decoding

- it might happen, that we accept non-linear functions that are very close to linear functions
- in this case we treat them as if they were linear
- if we want to query $f(\mathbf{x})$

1. we choose $\mathbf{x}^{\prime} \in\{0,1\}^{n}$ at random
2. set $\mathbf{x}^{\prime \prime}=\mathbf{x}+\mathbf{x}^{\prime}$
3. let $\mathbf{y}^{\prime}=f\left(\mathbf{x}^{\prime}\right)$ and $\mathbf{y}^{\prime \prime}=f\left(\mathbf{x}^{\prime \prime}\right)$
4. output $\mathbf{y}^{\prime}+\mathbf{y}^{\prime \prime}$

- this makes two queries instead of one
- and recovers the value of the closest linear function with high probability

PCP for Quadeq

Input: $m \times n^{2}$ matrix A, m vector \mathbf{b}
Verifier Proof π

1. check that f, g are linear functions \checkmark
2. check that
$g=W H(\mathbf{u} \otimes \mathbf{u})$ where
$f=W H(\mathbf{u})$
3. check that g encodes a satisfying assignment

- $\pi \in\{0,1\}^{2^{n}+2^{n^{2}}}$
- π is a pair of linear functions $\langle f, g\rangle$, i.e. strings from $\{0,1\}^{2^{n}}$ and $\{0,1\}^{2^{n^{2}}}$, resp.
- if u satisfies
$A(\mathbf{u} \otimes \mathbf{u})=\mathbf{b}$ then
$f=W H(\mathbf{u})$ and
$g=W H(\mathbf{u} \otimes \mathbf{u})$ are
Walsh-Hadamard encodings

Check WH encodings

Test 10 times for random $\mathbf{r}, \mathbf{r}^{\prime} \in\{0,1\}^{n}$

$$
f(\mathbf{r}) f\left(\mathbf{r}^{\prime}\right)=g\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right)
$$

Check WH encodings

Test 10 times for random $\mathbf{r}, \mathbf{r}^{\prime} \in\{0,1\}^{n}$

$$
f(\mathbf{r}) f\left(\mathbf{r}^{\prime}\right)=g\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right)
$$

If the proof is correct we always accept:

$$
\begin{aligned}
f(\mathbf{r}) f\left(\mathbf{r}^{\prime}\right) & =\left(\sum_{i \in[n]} u_{i} r_{i}\right)\left(\sum_{j \in[n]} u_{j} r_{j}^{\prime}\right) \\
& =\sum_{i, j \in[n]} u_{i} u_{j} r_{r} r_{j}^{\prime} \\
& =\left((\mathbf{u} \otimes \mathbf{u}) \odot\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right)\right) \\
& =g\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right)
\end{aligned}
$$

Check WH encodings

Test 10 times for random $\mathbf{r}, \mathbf{r}^{\prime} \in\{0,1\}^{n}$

$$
f(\mathbf{r}) f\left(\mathbf{r}^{\prime}\right)=g\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right)
$$

If the proof is correct we always accept:

$$
\begin{aligned}
f(\mathbf{r}) f\left(\mathbf{r}^{\prime}\right) & =\left(\sum_{i \in[n]} u_{i} r_{i}\right)\left(\sum_{j \in[n]} u_{j} r_{j}^{\prime}\right) \\
& =\sum_{i, j \in[n]} u_{i} u_{j} r_{i} r_{j}^{\prime} \\
& =\left((\mathbf{u} \otimes \mathbf{u}) \odot\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right)\right) \\
& =g\left(\mathbf{r} \otimes \mathbf{r}^{\prime}\right)
\end{aligned}
$$

If the proof is wrong we reject with probability at least $1 / 4$ by applying the random subsum principle twice, because in esence we compute $\mathbf{r} U \mathbf{r}^{\prime}$ and $\mathbf{r} W \mathbf{r}^{\prime}$ for different matrices U and W.

PCP for Quadeq

Input: $m \times n^{2}$ matrix A, m vector \mathbf{b}
Verifier
Proof π

1. check that f, g are linear functions \checkmark
2. check that
$g=W H(\mathbf{u} \otimes \mathbf{u})$ where
$f=W H(\mathbf{u}) \checkmark$
3. check that g encodes a satisfying assignment

- $\pi \in\{0,1\}^{2^{n}+2^{n^{2}}}$
- π is a pair of linear functions $\langle f, g\rangle$, i.e. strings from $\{0,1\}^{2^{n}}$ and $\{0,1\}^{2^{n^{2}}}$, resp.
- if u satisfies
$A(\mathbf{u} \otimes \mathbf{u})=\mathbf{b}$ then
$f=W H(\mathbf{u})$ and
$g=W H(\mathbf{u} \otimes \mathbf{u})$ are
Walsh-Hadamard encodings

Is the assignment satisfying?

- for each of m equations we can check $g(\mathbf{z})$ at some place \mathbf{z} corresponding to the coefficients in matrix A
- but this is not constant queries!

Is the assignment satisfying?

- for each of m equations we can check $g(\mathbf{z})$ at some place \mathbf{z} corresponding to the coefficients in matrix A
- but this is not constant queries!
- instead multiply each equation by a random bit and take the sum of all equations
- if g encodes a solution, we will always have a solution to the sum
- otherwise, we have a solution with probability $1 / 2$ only

Is the system in PCP[poly(n), 1]?

1. $\pi \in\{0,1\}^{2^{n}+2^{n^{2}}}$
2. check that f, g are linear functions

- $2(1-\delta) \cdot n$ random bits, $2(1-\delta)$ queries

3. check that $g=W H(\mathbf{u} \otimes \mathbf{u})$ where $f=W H(\mathbf{u})$

- $20 n$ random bits, 20 queries

4. check that g encodes a satisfying assignment

- m random bits (one per equation), 1 query

Is the system in PCP[poly(n), 1]?

1. $\pi \in\{0,1\}^{2^{n}+2^{n^{2}}}$
2. check that f, g are linear functions

- $2(1-\delta) \cdot n$ random bits, $2(1-\delta)$ queries

3. check that $g=W H(\mathbf{u} \otimes \mathbf{u})$ where $f=W H(\mathbf{u})$

- $20 n$ random bits, 20 queries

4. check that g encodes a satisfying assignment

- m random bits (one per equation), 1 query

Yes!

Conclusion

PCP and hardness of approximation

- computing approximate solutions to NP-hard problems is important
- the classical Cook-Levin reduction does not rule out efficient approximations
- many nontrivial approximation algorithms exist (2-app for metric TSP, knapsack, 2-app for vertex cover)
- PCP theorem shows hardness of approximating max3SAT to within any constant factor if $\mathrm{P} \neq \mathrm{NP}$
- we showed hardness of approximation for Indset as well
- this is equivalent to having a probabilistically checkable proof system with logarithmic randomness and constant queries
- PCP proofs involve intricate encoding schemes like Walsh-Hadamard

Further Reading Luca Trevisan, Inapproximability of Combinatorial
Optimization Problems, available from
http://www.cs.berkeley.edu/~luca/pubs/inapprox.pdf
Next and final topic: Parallelism

